
Lecture 31: Filtering Out Spam

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

May 18, 2020
10:38pm

c©2020 Avinash Kak, Purdue University

Goals:
• Spam and computer security

• How I read my email

• The acronyms MTA, MSA, MDA, MUA, etc.

• Structure of email messages

• How spammers alter email headers

• A very brief introduction to regular expressions

• An overview of procmail based spam filtering

• Writing Procmail recipes

Computer and Network Security by Avi Kak Lecture 31

CONTENTS

Section Title Page

31.1 Spam and Computer Security 3

31.2 How I Read My Email 6

31.3 Structure of an Email Message 14

31.4 How Spammers Alter the Email 21
Headers — A Case Study

31.5 A Very Brief Introduction to 25
Regular Expressions

31.6 Using Procmail for Spam 44

Filtering

31.7 Homework Problems 63

2

Computer and Network Security by Avi Kak Lecture 31

Back to TOC

31.1 SPAM AND COMPUTER SECURITY

• Spam is a major source of malware that infects individual

computers and, sometimes, entire networks.

• Much spam tries to lure you into clicking on URLs of websites

that serve as hosts for viruses, worms, and trojans.

Consequences of inadvertently downloading such software into

your computer can be deadly — as previously described in

Lecture 30.

• In addition to the dangerous spam that may try to steal

information from your computer or turn it into a spambot for

spreading even more spam, there is also another kind of spam

these days: This consists of email generated by legitimate

businesses and organizations that you either have no interest in

reading or have no time for following up on. [For example, half of my

spam consists of unsolicited messages sent to me by marketing companies, public relations houses,

government agencies, university departments advertising their activities, and students in various

parts of the world seeking to come to Purdue. Even just opening all of these messages would consume

a significant portion of each day.]

• I am not much of a believer in spam filters that carry out a

3

Computer and Network Security by Avi Kak Lecture 31

statistical analysis of email to decide whether or not it is spam.

These filters are also sometimes called Bayesian filters for

blocking spam. A statistical filter with sufficiently low “falses”

to suit my tastes would require too many samples of a certain

type of spam before blocking such messages in the future. On

the other hand, with a regular-expression based filter, once you

see a spam message that has leaked through, it is not that

difficult to figure out variations on that message that the

spammers may use in the future. In many cases, you can design

a short regular expression to block the email you just saw and

all its variations that the spammer may use in the future in just

one single step.

• Based on my personal experience, and in line with my above

stated observation, you can design nearly 100% effective spam

filters with tools that carry out regular-expression based

processing of email messages. [A spam filter is close to 100%

effective if it traps close to 100% of what YOU consider to be

spam and lets through close to 100% of the messages that

YOU consider legitimate.]

• Spam filter that are close to 100% effective for your specific

needs in the sense defined above can only be built slowly. My

spam filter has evolved over several years. It needs to be

tweaked up every once in a while as spammers discover new

ways of delivering their unwelcome goods.

4

Computer and Network Security by Avi Kak Lecture 31

• Before ending this section, I’d urge you to scan through the

following well-written report that was issued by CISCO in June

2019 about how you and your organization can be seriously

harmed by email borne malware:

https://www.cisco.com/c/dam/en/us/products/collateral/security/email-security/email-threat-report.pdf

5

https://www.cisco.com/c/dam/en/us/products/collateral/security/email-security/email-threat-report.pdf

Computer and Network Security by Avi Kak Lecture 31

Back to TOC

31.2 HOW I READ MY EMAIL

• These days most folks read their email through web based mail

clients. If you are at Purdue, in all likelihood, you log into

Purdue’s webmail service to check your email. Or, perhaps, you

have it forwarded to your email account at a third party service

such as that provided by gmail or yahoomail. This way of

reading email is obviously convenient for, say, English majors.

However, if you happen to be a CS or a CompE major, that is

not the way to receive and send your email.

• The web based email tools can only filter out standard spam —

this is, the usual spam about fake drugs, about how you can

enlarge certain parts of your body, and things of that sort. But

nowadays there is another kind of spam that is just as much of

a nuisance. As mentioned in the previous section, you have

generally well-meaning folks (and organizations) who want to

keep you informed of all the great stuff they are engaged in and

why you should check out their latest doings. These include

local businesses, marketing companies, PR folks, etc. When you

write your own spam filter, you can deal with such email in a

much more selective manner than would otherwise be the case.

• Writing your own spam filter is also a great way to become

6

Computer and Network Security by Avi Kak Lecture 31

more proficient with regular-expression based processing of

textual data.

• Shown in Figure 1 is how I receive my email.

• To understand the flow of email in Figure 1, you need to

become familiar with the acronyms MTA, MDA, MUA, etc.

• An MTA (Mail Transfer Agent) is used to transfer email to

another MTA in the internet. [It is also called a “Mail Transport Agent,” or a “Mail

Server.” In the context of DNS, it is referred to as a “Mail Exchange Server,” as you saw in Lecture 17.

Although the main function of an MTA is to exchange email with another MTA, they can also be

programmed to receive email directly from MUAs and to send messages directly to the same. More generally,

the client email first goes to an MSA (Mail Submission Agent) and the MSA forwards it to the MTA. By the

same token, when an MTA receives email for clients in its own domain, it generally forwards the email to an

MDA (Mail Delivery Agent) and it is the MDA’s job to send that email to the clients. However, an MTA can

also be programmed to send email directly to the clients.] Let’s say someone in some

corner of the world wants to send an email to

kak@purdue.edu. As you should know from Lecture 17, the

name resolver associated with the email client being used by the

sender will ask the DNS servers for the IP address of the host

that is designated to be the mail exchange server for the

purdue.edu domain. Subsequently, the MTA program running

on this host at Purdue will receive the email sent to me. The

most popular program that is used as an MTA is known as

Sendmail. Other MTAs include MMDF, Postfix, Smail,

7

Computer and Network Security by Avi Kak Lecture 31

Internet

Purdue Mail Transport Agent (MTA)
(sendmail)

fetchmail makes the email available on port 25 of the laptop where
it is picked up by the sendmail program running on the laptop

sendmail on the laptop deposits the email in /var/mail/kak of the laptop

The email client on the laptop, Thunderbird, picks up the email from the mailbox
/var/mail/kak in the laptop and makes it available to me through a visual interface

My email on RVL4 is made available by the IMAP server
for pickup by fetchmail running on my Ubuntu laptop

The procmail Program on the Engineering Computer Network

The procmail looks at the recipes in the .procmailrc file in the
’kak’ account on my maildrop machine RVL4.ecn.purdue.edu
before depositing the email in RVL4: /var/mail/kak

M
y Spam

 F
ilter

Figure 1: This figure shows how I receive my email

in my Linux laptop. The fetchmail program in my

laptop picks up my email at the maildrop machine

RVL4.ecn.purdue.edu at Purdue. (This figure is from Lecture 31 of “Lec-

ture Notes on Computer and Network Security” by Avi Kak)

8

Computer and Network Security by Avi Kak Lecture 31

Qmail, Zmailer, Exchange, etc.

• An MTA may use either a Mail Delivery Agent (MDA) to

deliver a received email to the recipient’s mailbox, or deliver it

directly to the recipient’s mailbox. [Note that MTA’s main job is server-to-server

transmission of email. On the other hand, MDA’s job — when MDA is used — is to apply any applicable

filters to the email before sending the messages to the clients in the local network.] On

Linux/Unix platforms, the most commonly used MDA is

Procmail. Another MDA one hears about is called Deliver.

• In typical Linux/Unix environments, the mailbox assigned to a

user is the file /var/mail/user account that, although NOT

in the home directory of the user, can only be read by the user

who owns that mailbox.

• As mentioned earlier, MDA’s main job is to apply appropriate

filters to the email before it is deposited in the mailboxes of the

user accounts. These filters may be at the system level, in which

case they can affect all users, or at the level of individual users.

• On Linux/Unix machines, the filters used by MDA take the

form of recipes that are placed in a file named .procmailrc.

The .procmailrc file for the filters that are specific to

individual users must reside at the top level of the user-account

home directories.

9

Computer and Network Security by Avi Kak Lecture 31

• After the email is deposited in a user mailbox as mentioned

above, it may be read by the user with the help of an MUA

(Mail User Agent). Widely used examples of MUAs are

Thunderbird, MH, Pine, Elm, Mutt, Outlook, Eudora,

Evolution, etc. Informally speaking, an MUA is also frequently

referred to as an an email client.

• Getting back to how I read my email as shown in Figure 1, I

usually execute the two commands

ssh kak@rvl4.ecn.purdue.edu

tail -f Mail/logfile

in one of the terminal windows of whatever computer I happen

to be working on. As shown in Figure 1, the local email

exchange server sends my email to the machine

rvl4.ecn.purdue.edu. The ‘tail -f’ command shows me on a

running basis the latest entries created by Procmail in the

logfile ‘Mail/logfile’. That way, when I so wish, I can see at a

glance the decisions being made by my spam filter with regard

to the incoming email. The logfile that you see mentioned

in the second command shown above is created by my Procmail

spam filter.

• The rest of this section is for folks who wish to use the

Thunderbird MUA on their Ubuntu laptop (or other mobile

devices based on Ubuntu) to pick up email from a designated

maildrop machine (and to also deliver the outgoing email

10

Computer and Network Security by Avi Kak Lecture 31

emanating from your laptop to the SMTP server running on the

maildrop machine or elsewhere in the internet). The material

that follows is particularly applicable if you want your spam

filter to do its job in the maildrop machine itself. That is, you

want the incoming email to be filtered before it is made

available for pickup at the maildrop machine by an IMAP

server. So here we go:

– My maildrop machine happens to be RVL4.ecn.purdue.edu and I
want the spam filter to be applied at the maildrop machine before it

is made available by an IMAP server for pickup by my laptop (or
other mobile devices).

– Ordinarily (this is the mode used by a vast majority of folks), when
an MUA client (like the Thunderbird client) in your laptop picks up

email from a maildrop machine, it interacts directly with the IMAP
server on the maildrop machine. That creates a very tight coupling

between the email client running in your laptop and the mailbox file
/var/mail/user name in the maildrop machine where all your your

email is deposited. As an example of this coupling, when you delete
an email in the Thunderbird email client, you can opt for it to also
be deleted from the list of messages stored in /var/mail/user name

on the maildrop machine. [As previously mentioned, a file such as

/var/mail/user name is referred to as the mailbox.]

– For reasons having to do with the management of a very large
amount of email (including spam) that I receive every day, I did not

want the above mentioned coupling between my maildrop machine
(RVL4.ecn. purdue.edu) and the Thunderbird email client on my

laptop. What that implied was that I needed to run Thunderbird off

11

Computer and Network Security by Avi Kak Lecture 31

the laptops’s /var/mail/user name as opposed to RVL4’s
/var/mail/user name.

– This required running the fetchmail and sendmail programs on

the Ubuntu laptop. It is the job of fetchmail to serve as a client to
the IMAP server on RVL4 — it picks up the new email once every
minute from /var/mail/user name on RVL4 and offers it on port

25 of the Ubuntu laptop. Subsequently, sendmail, which is
constantly looking for input on port 25, picks up the messages

offered by fetchmail and deposits them in the laptops’s mailbox
/var/mail/usr name.

– I did not have to change anything in the sendmail’s very large
config files for the above mentioned behavior by sendmail.

– The remaining issue is to get Thunderbird (TB) to work off the
mailbox /var/mail/user name in the laptop itself. [To get the TB

email client to work directly off an IMAP server on a remote
maildrop machine is easy. All you have to do is to enter the IMAP

server information and your email address in the remote machine
directly in the initial welcome screen you see when you bring up TB

in the laptop. But, for reasons already explained, that’s not what I
wanted.] To get TB to work with the local (meaning, on the
laptop itself) mailbox /var/mail/user name, you have to work off

the Edit menubutton at the top of the TB GUI and select “Account
Settings...” from its drop-down menu. After you click on this

selection, you click on “Add Other Account”. That brings up a
popup, in which you click on “Choose Unix Movemail” and hit

“next” and so on. This process will also prompt you for the SMTP
server for the outgoing email, which in my case happened to be

smtp.ecn.purdue.edu. [It is choosing “Unix Movemail” that causes the TB

client to work off the mailbox /var/mail/user name on the laptop itself.]

12

Computer and Network Security by Avi Kak Lecture 31

– You might ask: What is Movemail? [Before I realized what Movemail

was, the TB would display in the GUI my kak@purdue.edu account that I had

created as described above, but without the Inbox, Sent, Trash, etc.,

folders.] As it turns out, for the TB GUI to make available the
Inbox, Sent, Trash, etc., folders, you need to have previously

installed the Gnu email utilities that are included in the mailutils
package that you can install through the Synaptic Package

Manager. Movemail is one of the utilities in this package. The
purpose of Movemail — more accurately called movemail — is to

move messages across mailboxes. [By the way, the others utilities in the

Gnu mailutils package are: dotlock to create lock spool files; frm to display

“From:” header lines; from to display “From:” and “Subject” header lines;

maildag the mail delivery agent; mail the standard /bin/mail interface for a

mail sender and reader; messages for counting the number of messages in a

mailbox; movemail to move messages across mailboxes; readmsg to extract

selected messages from a mailbox; and sieve a mail filtering protocol.]

– One more thing: You will also be asked for the SSL/TLS based
authorizations for SMTP in a screen that you’ll see after you

provide information about the SMTP server.

13

Computer and Network Security by Avi Kak Lecture 31

Back to TOC

31.3 STRUCTURE OF AN EMAIL
MESSAGE

• An email consists of three parts:

body: This is the part that carries the message of the email. It

may also contain multimedia objects.

header: Contains the “From:”, “To:”, “Cc:”, etc., information.

It does NOT usually tell you the route the email took from

the sender to the recipient. The header of an email message

ends at the first empty line encountered from the top. What

comes after that empty line is the body of the email. [It is

important to know where exactly the header of an email ends and where the body begins. That is

because spam filter rules can be based on just the header, or just the body, or both. For a spam filter

rule meant for just the header, the pattern matching operations of the rule are applied to just the

header portion of the emails.]

envelope: This part is usually suppressed by an MUA. [Some

MUAs provide you with a menu option to see all the headers, including the routing

headers.] It consists of the “conversation” that takes place

between a sender MTA and a receiver MTA involving

recipient authentication, etc.

14

Computer and Network Security by Avi Kak Lecture 31

• Here is a printout of an email as displayed on a terminal by an

MUA:

Date: Sat, 14 Feb 2004 19:06:56 CST

To: kak@ecn.purdue.edu

From: c-donnelly@northwestern.edu

Subject: Re: hi...

Return-Path: c-donnelly@northwestern.edu

Delivery-Date: Sat Feb 14 20:07:06 2004

Content-Disposition: inline

X-Originating-Ip: 165.124.28.55

Priority: 3 (Normal)

X-Webmail-User: cdo388@localhost

X-Priority: 3 (Normal)

MIME-Version: 1.0

X-Http_host: lulu.it.northwestern.edu

Reply-To: c-donnelly@northwestern.edu

X-Mailer: EMUmail 5.2.7 (UA Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; .NET CLR 1.1.4322))

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

.............. Body of email

• For the email shown above, here is a printout of what was

actually sent by the MTA to the MDA:

From c-donnelly@northwestern.edu Sat Feb 14 20:07:06 2004

Received: from fairway.ecn.purdue.edu (fairway.ecn.purdue.edu [128.46.125.96])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F1758Y006551

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:06 -0500 (EST)

Received: from lulu.it.northwestern.edu (lulu.it.northwestern.edu [129.105.16.54])

by fairway.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F172gN003361

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:02 -0500 (EST)

Received: (from mailnull@localhost)

by lulu.it.northwestern.edu (8.12.10/8.12.10) id i1F1718S028285

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 19:07:01 -0600 (CST)

15

Computer and Network Security by Avi Kak Lecture 31

Message-Id: <200402150107.i1F1718S028285@lulu.it.northwestern.edu>

Received: from lulu.it.northwestern.edu (localhost [127.0.0.1]) by lulu.it.northwestern.ed

id xma028114; Sat, 14 Feb 04 19:06:56 -0600

Content-Type: text/plain

Content-Disposition: inline

Content-Transfer-Encoding: binary

X-Originating-Ip: 165.124.28.55

Priority: 3 (Normal)

X-Webmail-User: cdo388@localhost

To: kak@ecn.purdue.edu

X-Priority: 3 (Normal)

MIME-Version: 1.0

X-Http_host: lulu.it.northwestern.edu

From: c-donnelly@northwestern.edu

Subject: Re: hi...

Date: Sat, 14 Feb 2004 19:06:56 -0600

Reply-To: c-donnelly@northwestern.edu

X-Mailer: EMUmail 5.2.7 (UA Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; .NET CLR 1.1.4322))

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

................. Body of email

• In what was sent by the MTA to the MDA, the following is

abstracted from the conversation that took place between the

different MTA’s as the email was traveling through the internet:

Received: from fairway.ecn.purdue.edu (fairway.ecn.purdue.edu [128.46.125.96])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F1758Y006551

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:06 -0500 (EST)

Received: from lulu.it.northwestern.edu (lulu.it.northwestern.edu [129.105.16.54])

by fairway.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F172gN003361

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:02 -0500 (EST)

Received: (from mailnull@localhost)

by lulu.it.northwestern.edu (8.12.10/8.12.10) id i1F1718S028285

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 19:07:01 -0600 (CST)

16

Computer and Network Security by Avi Kak Lecture 31

• Also note the first line of what MTA sends MDA:

From c-donnelly@northwestern.edu Sat Feb 14 20:07:06 2004

For an email to be recognized as legal by an MTA, its very

first line must begin with “From”. There can be no

punctuation marks attached to this word. In other words, it

can only be followed by a space.

You might ask, what happens if the body of an outgoing

message contain the word “From” at the beginning of a line?

To make sure that MTAs are not confused by this, an MSA

typically prefixes such a “From” with the character “>”.

Obviously, such a problem does not arise if you have asked

your email client to send messages formatted according to,

say, HTML. [As was mentioned earlier, MSA stands for “Mail Submission

Agent”. Your email client sends an outgoing email to an MSA and it is the MSA’s job

to then submit it to an MTA possibly through an SMTP server.]

• Also note that the name of the final recipient is present in the

conversation that takes place between the MTA’s at the

Northwestern end and at Purdue’s

fairway.ecn.purdue.edu machine. The name of the

recipient is also present in the conversation that takes place

between Purdue’s fairway machine and the local RVL4

machine.

17

Computer and Network Security by Avi Kak Lecture 31

• It is the recipient’s name in the envelope part of an email that

determines where an email ends up and NOT what shows up

in the To: header in the header part of an email.

• So you can see why you can get email even if your name shows

up nowhere in any of the headers you can see on your computer.

Here is an example of one such spam email I received:

From leemenjung@kjbd.net Thu Feb 19 10:19:02 2004

Received: from drydock.ecn.purdue.edu (drydock.ecn.purdue.edu [128.46.112.249])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1JFJ1j4025944

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Thu, 19 Feb 2004 10:19:02 -0500 (EST)

Received: from 128.46.112.249 ([61.38.114.147])

by drydock.ecn.purdue.edu (8.12.10/8.12.10) with SMTP id i1JFImFj028889;

Thu, 19 Feb 2004 10:18:49 -0500 (EST)

Received: from [27.22.18.140] by 128.46.112.249 with ESMTP id <229528-89751>; Thu, 19 Feb 2004 17:13:48

Message-ID: <joh3yyx-$317$2c-v--21n@hhz6.9t>

From: "leemenjung" <leemenjung@kjbd.net>

Reply-To: "leemenjung" <leemenjung@kjbd.net>

To: jiy@ecn.purdue.edu

Subject: ~^^ u gobkhgtigshjfn ljf

Date: Thu, 19 Feb 04 17:13:48 GMT

X-Mailer: Microsoft Outlook Express 5.00.2919.6700

MIME-Version: 1.0

Content-Type: multipart/alternative;

boundary="0.D6.._EF0B97BFE__AA._6_"

X-Priority: 3

X-MSMail-Priority: Normal

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

--0.D6.._EF0B97BFE__AA._6_

Content-Type: text/plain;

Content-Transfer-Encoding: quoted-printable

<html>

<TABLE cellpadding=3D’0’ cellspacing=3D’0’ border=3D0 align=3D’center’>=

<TR>

<TD height=3D’50’ bgcolor=3D’#FFFFFF’ align=3D’center’ valign=3D=

’middle’>

<a href=3D"http://nipponbog.com/partner/recom.asp?recome_id=3Dstart"=

18

Computer and Network Security by Avi Kak Lecture 31

target=3D"_blank"><img src=3D"http://nipponbog.com/partner/email/email2=

/1.jpg" border=3D"0">

</TD>

</TR>

</TABLE>

</html>

oada slh vwudbxr sodb frjmh

bs arf

ohf

vjkutctg

yzmyzfuwjadg

ua

uq ffwd

uh

--0.D6.._EF0B97BFE__AA._6_--

In the spam mail shown above, my name shows up only in the

envelope part of the headers.

• Going back to the first c-donnelly email I showed you in this

section, if I examined what the MUA actually stored for that

message (as opposed to what it displayed in the GUI), it would

be something like

Return-Path: c-donnelly@northwestern.edu

Delivery-Date: Sat Feb 14 20:07:06 2004

Received: from fairway.ecn.purdue.edu (fairway.ecn.purdue.edu [128.46.125.96])

by rvl4.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F1758Y006551

(version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:06 -0500 (EST)

Received: from lulu.it.northwestern.edu (lulu.it.northwestern.edu [129.105.16.54])

by fairway.ecn.purdue.edu (8.12.10/8.12.10) with ESMTP id i1F172gN003361

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 20:07:02 -0500 (EST)

Received: (from mailnull@localhost)

by lulu.it.northwestern.edu (8.12.10/8.12.10) id i1F1718S028285

for <kak@ecn.purdue.edu>; Sat, 14 Feb 2004 19:07:01 -0600 (CST)

Message-Id: <200402150107.i1F1718S028285@lulu.it.northwestern.edu>

Received: from lulu.it.northwestern.edu (localhost [127.0.0.1]) by lulu.it.northwestern.ed

19

Computer and Network Security by Avi Kak Lecture 31

id xma028114; Sat, 14 Feb 04 19:06:56 -0600

Content-Type: text/plain

Content-Disposition: inline

Content-Transfer-Encoding: binary

X-Originating-Ip: 165.124.28.55

Priority: 3 (Normal)

X-Webmail-User: cdo388@localhost

To: kak@ecn.purdue.edu

X-Priority: 3 (Normal)

MIME-Version: 1.0

X-Http_host: lulu.it.northwestern.edu

From: c-donnelly@northwestern.edu

Subject: Re: hi...

Date: Sat, 14 Feb 2004 19:06:56 -0600

Reply-To: c-donnelly@northwestern.edu

X-Mailer: EMUmail 5.2.7 (UA Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; .NET CLR 1.1.4322))

X-Virus-Scanned-ECN: by AMaVIS version 11 (perl 5.8) (http://amavis.org/)

................. Body of email

• With regard to the printout shown above, recall I said earlier

that for an email to be legal, its first line must start with

“From”, which in turn must be followed by a blank space. The

printout is meant to convey to you the fact that an MUA may

modify the very first “From” line into two separate lines, one for

“Return-Path” and the other for “Delivery-Date”.

• So what an MTA sends an MDA may not be the same as what

the MUA stores for the email and that, in turn, may not be the

same as what the MUA actually shows you on the screen.

20

Computer and Network Security by Avi Kak Lecture 31

Back to TOC

31.4 HOW SPAMMERS ALTER THE
EMAIL HEADERS — A CASE STUDY

• I will now present an instance of a spam email in which the

main From header at the top of the email record was faked.

Note that the receiving MDA has converted the keyword From

into the Return-Path header label.

• Shown below is an email that was received by my Purdue

account on April 4, 2010:

Return-Path: cossacksrg1@ralvm29.vnet.ibm.com

Delivery-Date: Sun Apr 4 12:36:10 2010

Received: from mx03.ecn.purdue.edu (mx03.ecn.purdue.edu [128.46.105.218])

by rvl4.ecn.purdue.edu (8.14.4/8.14.4) with ESMTP id o34GaAhE013679

(version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT)

for <kak@rvl4.ecn.purdue.edu>; Sun, 4 Apr 2010 12:36:10 -0400 (EDT)

Received: from 114-24-88-69.dynamic.hinet.net (114-24-88-69.dynamic.hinet.net [114.24.88.69])

by mx03.ecn.purdue.edu (8.14.4/8.14.4) with ESMTP id o34GZ2k8020095;

Sun, 4 Apr 2010 12:35:23 -0400

Received: from 114.24.88.69 by e33.co.us.ibm.com; Mon, 5 Apr 2010 00:34:59 +0800

Message-ID: <000d01cad414$c4404060$6400a8c0@cossacksrg1>

From: "Minerva Souza" <cossacksrg1@ralvm29.vnet.ibm.com>

To: <eatabay@ecn.purdue.edu>

Subject: ecn.purdue.edu account notification

Date: Mon, 5 Apr 2010 00:34:59 +0800

MIME-Version: 1.0

Content-Type: multipart/mixed;

boundary="----=_NextPart_000_0006_01CAD414.C4404060"

X-Priority: 3

X-MSMail-Priority: Normal

X-Mailer: Microsoft Outlook Express 6.00.2900.2180

X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.2180

X-ECN-MailServer-VirusScanned: by amavisd-new

X-ECN-MailServer-Origination: 114-24-88-69.dynamic.hinet.net [114.24.88.69]

X-ECN-MailServer-SpamScanAdvice: DoScan

Status: RO

21

Computer and Network Security by Avi Kak Lecture 31

X-Status:

X-Keywords:

X-UID: 7

This is a multi-part message in MIME format.

------=_NextPart_000_0006_01CAD414.C4404060

Content-Type: text/plain;

format=flowed;

charset="iso-8859-1";

reply-type=original

Content-Transfer-Encoding: 7bit

Dear Customer,

This e-mail was send by ecn.purdue.edu to notify you that we have temporanly prevented access to your account.

We have reasons to beleive that your account may have been accessed by someone else. Please run attached file and

(C) ecn.purdue.edu

------=_NextPart_000_0006_01CAD414.C4404060

Content-Type: application/zip;

name="Instructions.zip"

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

filename="Instructions.zip"

UEsDBBQAAgAIAFkQhDwZeJaCR18AADVzAAAQAAAASW5zdHJ1Y3Rpb25zLmV4Ze38BVQfTbcnjP5x

CO4ElwDBHUJwtxDc3d3d3d3dXQNBA8EhENzd3R0S/DZPnvOe98icO3dm7pr5vjW1dknvqv5tqapd

3f1nIa0eC4IAgUCQQH55AYGaQX8SP+j/e3odi0TUggSqhxshaQb7NEKiaGrmQGxrb2Nir2dFbKBn

bW3jSKxvRGzvZE1sZk0sLKNAbGVjaESPiPjmHeh/LsmKgECfwKBAyFiNUv/CWwchg8GDQSH8ZRDK

30yIvzP031aBgf7KkH93/0sNcvx7HJDA/ypR/sZA+QcWyj/JJwbwuF8bsCCQLiLof10CcIn/i256

RyPXV1WNwf/JNoh/Owa4X5fe3lDPUQ8Euv0b8y+7of/tOMAb/PR/hv2xBebvcTD/YVwnvb2DvQHo

.....

.....

.....

------=_NextPart_000_0006_01CAD414.C4404060--

• If you examine the headers, you will see that the email was

generated by 114.24.88.69. If you enter this address in

http://www.ip2location.com window, you will see that this address

belongs to “Chunghwa Telecom Data Communication Business

Group” in Taipei, Taiwan. Obviously, it is not easy for me to

tell whether this domain is hosting an anonymizing email server

22

http://www.ip2location.com

Computer and Network Security by Avi Kak Lecture 31

that is acting as a mail forwarder for third-party folks, or being

more directly complicit in sending out the spam.

• You will also notice in the email message shown above that it

contains a fake “Received: from” line that seems to indicate

that the email was received by a server named

e33.co.us.ibm.com from the address 114.24.88.69 in Taiwan.

This line is fake because higher up in the email header you can

see that the mail exchange server for the ecn.purdue.edu

domain received the email directly from 114.24.88.69.

• My email log file indicated that this email slipped through my

powerful spam filter, meaning that it fell off the bottom of my

.procmailrc file. That is because the main text portion of

the message in this email does not contain anything offensive. [I

could easily include another recipe in my spam filter that would delete a message that contained a

zip attachment consisting of just ‘.exe’ executables. But then I would not have found this gem.]

• When I unzipped the attachment in the email shown above, it

contained only a single file called Instructions.exe. Executing the

command “file Instructions.exe” yielded the following answer:

PE32 executable for MS Windows (GUI) Intel 80386 32-bit

indicating that the executable was meant for a Windows

machine. About the MS DOS PE header shown above, the

23

Computer and Network Security by Avi Kak Lecture 31

Windows NT OS introduced a new executable file format called

the Portable Executable (PE) file format. It retains the old

familiar MZ header from MS-DOS, as you will see in the partial

hexdump of the file presented below.

• Another way to confirm the fact that this file is a Windows

executable is by looking at its hexdump:

/usr/bin/hexdump -C Instructions.exe | more

As shown below, in the very first line you can see the telltale

“MZ” marker that is the beginning of a MS-DOS PE header.

00000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 |MZ..............|

00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |........@.......|

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000030 00 00 00 00 00 00 00 00 00 00 00 00 b8 00 00 00 |................|

00000040 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 |........!..L.!Th|

00000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is program canno|

00000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be run in DOS |

00000070 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 |mode....$.......|

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

.....

.....

• When I uploaded the malicious file to the online virus analysis

tool at http://www.virustotal.com, I received a report that it was a

well-known virus. The report also included the virus signature

and other attributes of the virus.

24

http://www.virustotal.com

Computer and Network Security by Avi Kak Lecture 31

Back to TOC

31.5 A VERY BRIEF INTRODUCTION TO
REGULAR EXPRESSIONS

• A good knowledge of regular expressions is indispensable to

solving problems related to string processing and that includes

spam filtering.

• Chapter 4 of my book “Scripting with Objects” explains in

great detail how to use regular expressions in Perl and Python

scripts. [If you do not have the book, you might at least want to look at the scripts in the

book that are online.]

• The regular expression engine that is now used by a large

number of languages is the one that was first developed for Perl.

This is the engine that is used by Python, Java, C++ based

packages, etc. Unfortunately, this is not the same engine that is

used by Procmail, the main utility used for spam filtering in

Unix/Linux based platforms. Fortunately, the regular

expressions as used in Perl/Python, on the one hand, and as

used by Procmail, on the other, have much in common.

Additionally, by what is known as Condition Line Filtering, you

can always ask Procmail to send any email to a Perl/Python

based script for processing. So in the remainder of this section,

we will focus mainly on the regular expressions that can be used

25

Computer and Network Security by Avi Kak Lecture 31

with Perl and Python. [Procmail uses what are known as Unix regular expressions.

For information on the regex engine used by Procmail, do either ‘man regexp’ or ‘man egrep’.]

• To become proficient with regular expressions, you must learn:

– How to use anchor metacharacters to force matching to take place
at line and word boundaries

– How to use character classes to specify alternative choices for a
single character position in the matching process

– How to specify alternative subexpressions inside a regular expression

– How to use grouping metacharacters to extract substrings from a

string

– How to use quantifier metacharacters to control repetitions in a
string

– The difference between greedy and non-greedy quantifier
metacharacters

– How to use match modifiers to force matching to be, say,
case-insensitive, global, etc.

– More advanced topics in regular-expression based processing include
non-capturing groupings, lookahead and look-behind assertions, etc.

• String processing with both Perl and Python harnesses, on the

one hand, the power of regular expressions, and, on the other,

26

Computer and Network Security by Avi Kak Lecture 31

the support provided by the language’s I/O facilities, control

structures, and so on.

• A regular expression helps search for desired strings in text files

under very flexible constraints, such as when looking for a

string that starts with a particular sequence of characters and

ends in another sequence of characters without regard to what

is in-between. [Through a regular expression, one can also specify the location of the

substring to search for in relation to the beginning of a line, the end of a line, the beginning of a file,

etc. Further constraints that can be built into a regular expression include specifying the number of

repetitions of a given elemental pattern, whether the matching of the regular expression with an

input string should be greedy or non-greedy, etc. Regular expressions are also useful in

search-and-replace operations in text processing, for specifying the separators for splitting long

strings of text substrings, etc.]

• We will refer to the string that will be subject to regex

matching as the input string. [This is simply a device to make it easier to

differentiate between the different strings involved in regex examples. The input string will often be read one

line at a time from a text file, which justifies input in the name input string. But an input string may also be

specified directly in a program.]

• The script word match.pl shown below, taken from Chapter 4

of my SwO book, illustrates the basic syntax of using Perl’s

match operator m// for regular expression matching. Our

regular expression in this case is the string hello. The script

will ask you to enter strings in the terminal window in which

27

Computer and Network Security by Avi Kak Lecture 31

you execute this script. Each string you enter will be matched

with the regular expression pattern. If the match is successful,

the script will print out the portion of the input string before

the match, after the match, etc.

#!/usr/bin/perl -w

word_match.pl

use strict;

my $regular_expression = "hello";

print "Enter a line of text:\n";

while (chomp(my $input_string = <>)) {

if ($input_string =~ /$regular_expression/) {

print ’The line you entered contains "hello"’, "\n";

print "The portion of the line before the match: ", $‘,"\n";

print "The portion of the line after the match: ", $’, "\n";

print "The portion of the line actually matched: ", $&,"\n";

print "The current line number read by <>: ", $., "\n";

print "\nEnter another line of text or Ctrl-C to exit:\n\n";

} else {

print "\nNo match --- try again or enter Ctrl-C to exit\n\n";

}

}

• The regular-expression based matching in the above script takes

place in the conditional of the if statement:

$input_string =~ /$regular_expression/

where =~ is the Perl’s binding operator. In the syntax shown

above, the two forward slashes, ‘//’, which delimit the regular

expression, are a shorthand for ‘m//’, the Perl’s matching

operator.

28

Computer and Network Security by Avi Kak Lecture 31

• Shown below is a Python version of the word match.pl script.

This is also from Chapter 4 of my SwO book:

#!/usr/bin/env python

word_match.py

works with both Python 2.x and Python 3.x

import re

regular_expression = r’hello’

while 1:

import sys

try:

if sys.version_info[0] == 3:

input_string = input("\nEnter a line of text: ")

else:

input_string = raw_input("\nEnter a line of text: ")

except IOError as e:

print(e.strerror)

m = re.search(regular_expression, input_string)

if m:

Print starting position index for the match:

print(m.start())

Print the ending position index for the match:

print(m.end())

Print a tuple of the position indices that span this match:

print(m.span())

print the input strings characters consumed by this match:

print(m.group())

else:

print("no match")

• Note that the regular-expression based matching in the Python

script is carried out by the statement:

m = re.search(regular_expression, input_string)

The call re.search() returns an object of type MatchObject.

29

Computer and Network Security by Avi Kak Lecture 31

The rest of the code then extracts the needed information from

this object. [Regular expression matching in Python is carried out with the re module.

Also note that the prefix r for a string argument causes all the characters in the string to be accepted

literally.]

• In both the Perl and the Python examples shown above, we

used a simple pattern, hello, as our regular expression. The

matching functions invoked in both scripts looked for this

pattern anywhere in the input string.

• But if you wanted to see if the input string contained a pattern

at, say, just the beginning, or at just the end? Now your regular

expression would need to use what are known as anchor

metacharacters.

• Perl and Python use the same set of metacharacters. Typically,

you’d want the match to take place either at the very beginning

of the input string, or at the very end. The anchor

metacharacter ^ is used to force a match to take place at the

beginning of the input string and the anchor metacharacter $

to force the match to take place at the end of the input string.

[The regex ^abra will match the string abracadabra, but not the string cabradababra.

Similarly, the regex dabra$ will match the string abracadabra, but not the string dabracababra.

In addition to forcing a regex match to take place at the beginning and the end of a line with the

help of anchor metacharacters, it is also possible to force a regex to match at the beginning or the

end of a word boundary. Both Perl and Python use the anchor metacharacter \b to denote the word

30

Computer and Network Security by Avi Kak Lecture 31

boundary. The symbol \b can stand for both a non-word to word transition and a word to non-word

transition. So the regex \bwhat will match the string whatever will be will be free, but not

the string somewhat happier than thou. Similarly, the regex ever\b will match the string

whatever will be will be free, but not the string everywhere I go you go. Note that the

anchors do not consume any characters from the input string during the matching operation.]

• We will now talk about character classes for regex matching.

When we specify a regex as, say, hello, a successful match

between this regex and an input string requires the input string

to possess exactly the same sequence of characters wherever the

match is scored.

• What if we want more than one choice for an input-string

character for a given character position in a regex? Suppose we

want to detect for the presence of the following substrings in an

input string:

stool spool skool

Can we specify a single regex for extracting all three substrings?

Yes, we can do so with the help of a character class. For

example, the regex s[tpk]ool which includes the character

class [tpk] will be able to search for any of the three words

stool, spool, and skool.

31

Computer and Network Security by Avi Kak Lecture 31

• A character class is simply a set of choices available for a

specific character position in a regex. The most general notation

for a character class calls for placing the set of choices inside

square brackets. The expressive power of a character class can

be enhanced by using special characters; these are

metacharacters that have specifically designated meanings

inside the square-bracket notation for a character class.

• For both Perl and Python, these character-class

metacharacters are

- ^] \

The character class metacharacter ‘-’ acts like a range operator

for a character class. It allows a compact notation for a

character class consisting of a sequence of either alphabetically

contiguous characters or numerically contiguous characters. For

example, the character class [a-f] is simply a more compact

way of writing [abcdef] and the character class [3-9] is a

more compact of writing the [3456789] pattern.

• Here are some other illustrations of the use of the range

operator inside a character class:

regex matches with

-------- -----------------------------

var[0-9] var0, var1, var2,, var9

32

Computer and Network Security by Avi Kak Lecture 31

[0-9a-fA-F] a digit or letter in a hex sequence

[nN][oO][pP][eE] nope, NOPE, Nope, etc.

• The character-class metacharacter ‘-’ loses its special meaning if

it is either the first or the last character inside the square

brackets.

• Let’s now talk about ^ as a character-class metacharacter. If

this character is the first character inside the square brackets, it

negates the entire character class. What that means is that any

input-string character except those in the character class will be

acceptable for matching:

regex matches with

-------- -----------------------------

[^0-9] will match any non-digit character

[^a-fA-F] will match any non-alphabetic character

[^c]at will match aat, bat, dat, eat,

If the character ^ appears anywhere except at the beginning of

a character class, it loses its special meaning vis-a-vis the

character class. Note that a negated character class does not

imply a lack of character at that position in the input string.

• Let’s now talk about specifying alternative subexpressions in a

regex. It is sometimes necessary to specify a list of alternatives

for one or more portions of a regex. For example, if Joe and

Mary would work out equally for a job and you want to see if an

33

Computer and Network Security by Avi Kak Lecture 31

input string mentions either name, you could specify a regex as

the \bJoe|Mary\b pattern. The operator ‘|’ is usually called

the ‘or’ operator. If it is possible that Joe’s name could also

show up as Joseph, we could incorporate that possibility in our

regex by rewriting it as the

\b(Jo(e|seph))|Mary\b pattern.

• When there exist alternatives in a regex for scoring a match

with an input string, the regex engine seeks the earliest possible

match and, as soon as the engine is successful, stops trying out

any remaining alternatives even if one of the remaining

alternatives provides what seems like a ‘better’ match. In the

following example:

input_string = "hellosweetsie"

regex = h(ey|ello|i)(sweet|sweetsie)

Only the “hellosweet” portion of the input string will be used to

score a successful match with the regex, even though it would

seem that all of the input string would provide a ‘better’ — in

the sense of being a more complete — match.

• Note that when a match with the input string does not work

out with the first choice in a set of alternatives, backtracking is

used to try each of the remaining choices. [To explain why we use the

word ‘backtracking’ to describe the matching process in the presence of alternatives, let’s say we have

34

Computer and Network Security by Avi Kak Lecture 31

two alternatives in the first portion of a regex and two alternatives in the remaining portion. Let’s

also say we have a successful match between the input string and the first of the two alternatives in

the first portion of the regex. But, then, we are not able to match either of the two alternatives in

the second part of the regex with what remains of the input string. Now the matcher must backtrack

and try the second choice in the first portion of the regex.]

• We will now talk about using parentheses for grouping

subexpressions in a regular expression. In addition to being

used for specifying alternatives, as you have already seen,

parentheses can also be used to return input string groupings

that match specific subexpressions in a regex. When used for

grouping, the parentheses are known as the grouping

metacharacters. [A pair of matching parentheses surrounding a subexpression creates a

unit for the following purposes: (i) For specifying one of multiple choices, as you saw earlier. (ii) For

being subject to repetition through the use of quantifier metacharacters. (iii) For extracting a

desired substring from an input string. The input-string substring that matches a parenthesized

portion of a regex is available to the rest of the program through a special variable. It is also

available inside later portions of the regex through a backreference. (iv) For specifying non-capturing

groupings in regexes. Non-capturing parentheses have special notation — ‘(?:)’ — as oppose to

‘()’. (v) For specifying lookahead and lookbehind assertions. The parentheses are used in the form

‘(?=)’ for lookahead assertions and ‘(?<=)’ for lookbehind assertions.]

• Consider the following example of an input string and a regex:

input string = hellothere! how are you

regex = (hi|hello)there

35

Computer and Network Security by Avi Kak Lecture 31

The regex engine stores in a special variable the input-string

substring that matches a parenthesized portion of a regex. Perl

actually stores such a substring in two separate variables, one

available in the regex itself and the other available outside the

regex in the rest of the program. Let’s first focus on the

variables available in the rest of the program that allow us to

extract the input-string portions that matched a parenthesized

subexpression in a regex. These variables, called matching

variables, are named:

$1 $2 $3 $4

The value of $1 is set to the input-string substring that matches

the first parenthesized subexpression in a regex, the value of $2

to the substring that matches the second parenthesized

subexpression, and so on. The same substrings from the input

string are available inside a regex through the backreferences:

\1 \2 \3 \4

• What Perl achieves with matching variables is accomplished in

Python by calling the group() method on a match object. If m

denotes the match object returned by a call to re.search(),

m.group(1), m.group(2), etc., will return portions of the input

string that match with the parentheses-delimited subexpressions

of the regex. The backrefrences work the same in both Perl and

Python — as demonstrated by the Python script that follows

the next Perl script.

36

Computer and Network Security by Avi Kak Lecture 31

• Before showing you the scripts with examples of matching

variables and backreferences, note that Perl and Python also

allow us to specify nonextracting groupings or noncapturing

groupings. The non-capturing version of ’()’ is ’(?:)’. That is,

you attach the symbol pair ’?:’ to the left parenthesis.

• Shown below is a Perl script, taken from Chapter 4 of my book

SwO, that demonstrates how we can extract the portions of an

input string that match a regex. The extracted potions are

shown in the commented-out sections.

#!/usr/bin/perl -w

Grouping.pl

use strict;

Demonstrate using match variables:

my $pattern = ’ab(cd|ef)(gh|ij)’; #(A)

my $input_string = "abcdij"; #(B)

$input_string =~ /$pattern/; #(C)

print "$1 $2\n"; # cd ij #(D)

Demonstrate the binding op returning a list of

matched subgroupings:

$pattern = ’(hi|hello) there(,|!) how are (you|you all)’; #(E)

$input_string = "hello there, how are you."; #(F)

my @vars = ($input_string =~ /$pattern/); #(G)

print "@vars\n"; # hello , you #(H)

Demonstrate using backreferences:

$pattern = ’((a|i)(l|m))\1\2’; #(I)

@ARGV = ’/usr/share/dict/words’; #(J)

while (<>) { #(K)

print if /$pattern/; #(L)

}

output of while loop:

37

Computer and Network Security by Avi Kak Lecture 31

balalaika

balalaikas

• Shown below is a Python version of the Perl script shown

above. This one is also from Chapter 4 of SwO.

#!/usr/bin/env python

Grouping.py

import re #(A)

Demonstrate using group() for extracting matched substrings:

pattern = r’ab(cd|ef)(gh|ij)’ #(B)

input_string = "abcdij" #(C)

m = re.search(pattern, input_string) #(D)

print(m.group(1), m.group(2)) # cd ij #(E)

Another demonstration of the above:

pattern = r’(hi|hello) there(,|!) how are (you|you all)’; #(F)

input_string = "hello there, how are you."; #(G)

m = re.search(pattern, input_string) #(H)

print(m.group(1), m.group(2), m.group(3)) # hello , you #(I)

Demonstrate using backreferenes:

filehandle = open(’/usr/share/dict/words’) #(J)

pattern = r’((a|i)(l|m))\1\2’ #(K)

done = 0 #(L)

while not done: #(M)

line = filehandle.readline() #(N)

if line != "": #(O)

m = re.search(pattern, line) #(P)

if (m != None): #(Q)

print(line) #(R)

else: #(S)

done = 1 #(T)

filehandle.close() #(U)

output of while loop:

balalaika

balalaikas

38

Computer and Network Security by Avi Kak Lecture 31

• Let’s now talk about using quantifier metacharacters in regular

expressions. A quantifier metacharacter is used to control the

number of repetitions of the immediately preceding smallest

possible subexpression in a regex.

• Both Perl and Python use the following as quantifier

metacharacters:

* + ? {}

A quantifier metacharacter is placed immediately after whatever

portion of the regex it is that we want to see repeated.

• The metacharacter ‘*’ means an indefinite, including zero

repetitions of the preceding portion of the regex. The regex

‘ab*’ will match the following input strings

a

ab

abb

abbb

abbbb

...

...

It is obviously straightforward to interpret the behavior of the

quantifier ‘*’ when it applies to a single preceding character

(that is not a metacharacter), as in the above example where it

is applied to the character ‘b’.

39

Computer and Network Security by Avi Kak Lecture 31

• But now let’s examine the pattern ‘a[bc]*’ as a regex where

the quantifier ‘*’ now applies to the character class ‘[bc]’. It

is best to visualize this regex as a shorthand way of writing a

whole bunch, actually an indefinitely large number, of the

following regexes:

a

a[bc]

a[bc][bc]

a[bc][bc][bc]

a[bc][bc][bc][bc]

...

...

• If there exists a match between the input string and any of

these indefinitely large number of regexes, the regex engine will

declare a successful match between the input string and the

regex.

• Now consider the subexpression ‘.*’ that is used very

commonly in regexes. Let’s say our regex is the

‘a.*b’ pattern. This regex is a compact way of writing an

indefinitely large number of regexes that look like

ab

a.b

a..b

40

Computer and Network Security by Avi Kak Lecture 31

a...b

a....b

a.....b

and so on

Any input string that matches any of these regexes would be

considered to be a match for the regex.

• The quantifier metacharacter ‘+’ again means an indefinite

repetitions of the preceding subexpression as long as there is at

least one occurrence of the subexpression.

• When a part of a regex is followed by the quantifier

metacharacter ‘?’, that means that the subexpression is an

optional part of the larger regex, meaning that it can appear

zero or one times.

• If it is desired to specify the number of repetitions at the both

the high end and at the low end, one can use the quantifier

metacharacters ‘{}’. The regex, for example, ‘a{n}’ where ‘n’

is a specific integer value means that exactly ‘n’ repetitions of

‘a’ are allowed. Therefore, the regex ‘a[bc]{3}’ is a short way

of writing ‘a[bc][bc][bc]’ as a regex.

• A variable number of repetitions within specified bounds is

41

Computer and Network Security by Avi Kak Lecture 31

expressed in the following manner: ‘a{m,n}’ where ‘m’ and ‘n’

are specific integer values, the former specifying the minimum

number of repetitions of the preceding subexpression and the

latter the maximum number.

• The quantifier metacharacters we have shown so far are greedy,

in the sense they gobble up as much of the input string as

possible. For some string matching problems, you need what are

known as non-greedy quantifiers. The non-greedy quantifiers

are also known as minimal-match quantifiers. The non-greedy

version of the greedy quantifiers * + ? {} are

*? +? ?? {}?, respectively.

• So, as far as the notation is concerned, the non-greedy version of

each quantifier is the corresponding greedy version with ‘?’

attached as a postfix. As with ‘*’, the quantifier ‘*?’ stands for

an indefinite number of repetitions of the preceding

subexpression in the regex, but it will choose as few as possible.

• Let’s now talk about match modifiers. The matching of a

regular expression with a string can be subject to what are

known as match modifiers that control various aspects of the

matching operation.

• The modifier flags themselves are not directly a part of a regex.

They are more a language feature and, therefore, how they are

42

Computer and Network Security by Avi Kak Lecture 31

specified is different in Perl and Python.

• For case insensitive matching, Perl uses the modifier //i. And

in Python you need to supply the option re.IGNORECASE to

the matching function.

• Ordinarily the regex stops at the first possible position in the

input string where there is a match with the regex. But if you

want the regex engine to continue chugging along and scan the

entire input string for all possible positions where there exist

matches with the regex, you have to set the global option as a

match modifier. The match modifier in Perl for the global

option is m//g. In Python you have to call the function

re.findall().

• What precisely is returned by the regex engine when you set the

global option depends on two factors: (i) whether or not the

regex contains any groupings of subexpressions; and (ii) the

evaluation context of matching.

• All of our discussion so far has dealt with input strings that

consisted of single lines, which were either read one line at a

time from an input file or were specified directly so in the

program. Another match modifier is to take care of the case

when the input string consisting of multiple lines.

43

Computer and Network Security by Avi Kak Lecture 31

Back to TOC

31.6 USING procmail FOR SPAM
FILTERING

• As mentioned previously, Procmail is a mail processing utility

for Unix. When used for controlling spam, a procmail filter is

applied at the MDA level. In other words, a procmail filter is

applied BEFORE an email goes to your MUA. (See Section 31.2

for what the acronyms MDA and MUA mean.)

• The first version of procmail was written in 1991 by Stephen

R. van den Berg. But now its maintenance is supervised by

Philip Guenther. Procmail is open source.

• A lot of information about procmail can be gleaned from the

following manpage commands in Unix or Linux:

man procmail

man procmailrc

man procmailsc

man procmailex (A very useful manpage for recipe examples)

• A procmail filter will be invoked by your local MDA if you

include the following sort of a line in your .forward file

"|/usr/local/bin/procmail #kak"

44

Computer and Network Security by Avi Kak Lecture 31

where you must replace ‘kak’ by your own login name. If you

are outside the ‘ecn’ domain at Purdue, you must also replace

the path to the procmail utility with what it is on the host

where the MTA to MDA transfer of email takes place. The pipe

symbol at the very beginning of the string in the .forward file

tells the Sendmail program to make the email available to the

Procmail program on its standard input. What follows ’#’ is

really a comment that sendmail may use to make your

.forward file unique in its own cache.

• The very first thing that Procmail does is to look for the file

$HOME/.procmailrc

in your home directory. The email is processed according to the

recipes laid out in the .procmailrc file. If no .procmailrc

file can be found or if the processing of the email according to

the recipes in .procmailrc reaches the end of the file

without any resolution, Procmail stores the email in the

default system mailbox for your account, which for me would be

/var/mail/kak on RVL4. [Included in the code that you can download from the

lecture notes web site is a file called dot procmailrc. You can use it as your starter .procmailrc file. Make

sure you change the name of the file from dot procmailrc to .procmailrc]

• A .procmailrc file consists of three parts:

1. Assignment of relevant environment information to local variables

45

Computer and Network Security by Avi Kak Lecture 31

2. Assignments to variables that will be used locally as macros in the
.procmailrc file

3. Recipes

• Here is the beginning portion of my .procmailrc file:

SHELL=/bin/sh

PATH=/usr/local/lib/mh:$PATH

MAILDIR=$HOME/Mail

LOGFILE=$HOME/Mail/logfile

#VERBOSE=1

VERBOSE=0

EOL="

"

LOG="EOLEOL$EOL"

LOG="New message log:$EOL"

LOG=‘perl GET_MESSAGE_INDEX‘

LOG="$EOL"

where SHELL, PATH, MAILDIR, and LOGFILE are local variables that

store the environment information needed by Procmail. The

variables VERBOSE and EOL are the two other local variables; the

first controls the level of detail placed in the log files and the

second defines the end-of-line character for log entries. The

variable EOL defines a macro that can subsequently be used

through the $EOL syntax shown in the last line. Note that all

these variables are local to the .procmailrc file. Any assignment

to the local variable LOG generates information that is written to

the logfile. Note the call ‘perl GET MESSAGE INDEX’ for

46

Computer and Network Security by Avi Kak Lecture 31

associating an integer index with each entry in the logfile. The

Perl script GET MESSAGE INDEX merely reads an integer value

stored in a local file, increments that integer, uses it for the

current entry in the logfile, and writes the incremented value

back to the file where the index is stored. In this manner, you

can associate an integer index with each entry in the log file —

something that comes in handy if you want to see quickly how

many emails your spam filter has processed so far. [Included in the

code that you can download from the lecture notes web site is the GET MESSAGE INDEX script file that I use.]

• We will now talk about the third part of a .procmailrc file —

the part consisting of recipes. A recipe in a .procmailrc file will

ordinarily consist of the following three parts:

1. A colon line (always begins with :0 for historical reasons)

:0 [flags] [: [locallockfile]]

We will have more to say about the ‘flags’ and ‘locallockfile’
through illustrations of the colon line that you will soon see.

2. A condition (or conditions) starting in a new line. A condition line

always begins with a ‘*’. There can be only one condition per line.
However, you can have any number of condition lines.

Everything in a condition line after ‘*’ is processed by the egrep

regex engine. [As previously mentioned, for information on the regex engine used by Procmail,

do either ‘man regexp’ or ‘man egrep’.] Any white space between the ‘*’ that

marks the start of a condition-line and the first non-blank character
that comes after that in the same line is ignored.

47

Computer and Network Security by Avi Kak Lecture 31

Multiple conditions, each in a different condition line, are “anded”
together. No condition lines mean “true” by default.

3. An action starting in a new line. There can only be one action line

in a recipe.

• Shown below is a recipe that is meant for trapping an email

that contains even a single non-English or non-numeric

character in its subject line. Note that because of the action line

/dev/null, the action consists of deleting such emails.

:0 :

* ^Subject.*[^ [:alnum:][:punct:]]+.*$

/dev/null

where the metacharacters ^ and $ carry the same meanings as

described in Section 31.5. Note the use of the character classes

[:alnum:] and [:punct:]. These are defined for the egrep

regex engine; the first stands for the English alphanumeric

characters (it is the same as the character class [0-9A-Za-z]),

and the second stands for the punctuation marks.

• Here are some examples of the colon line. The examples also

illustrate the use of flags in the colon line. Note that when

there is a second colon present in the same line, as in the

second recipe, a local lockfile is used to properly sequence the

processing of emails should they arrive much too quickly. That

48

Computer and Network Security by Avi Kak Lecture 31

is, should a new email arrive while the previous one is being

processed by a recipe with a lockfile indicator, the new email

will be made to wait until the previous one has exited the recipe.

:0 The simplest case. Only the header is

egreped, meaning that only the header is sent

to the regex engine.

:0 : The second colon causes a local lockfile to be used

if multiple emails arrive concurrently.

As this recipe is being used, its invocation for

the next email if it arrives at about the same

time will be put on hold.

Important only if you are writing to a file.

:0 B The recipe will be applied only to the body of

the email

:0 H The recipe will be applied only to the headers.

This, by default, is the same as the first case

shown above.

:0 HB The recipe will be applied to both the head and

the body

:0 c a copy of the email will be processed by this

recipe; the original email will continue to be

processed by the remaining recipes.

:0 D Tell the internal egrep to be case-sensitive in

matching regexes in the condition lines. The default

is case insensitive.

49

Computer and Network Security by Avi Kak Lecture 31

:0 f This sends the email to the program named after the

pipe symbol in the action line. Procmail expects

the external program to return a modified email on

the standard input. Further processing by procmail

is then carried out on this modified email. THIS

FLAG CREATES FILTERING RECIPES.

:0 fhw You will use this for a filtering recipe that tells

procmail that the body of the email will NOT be

changed by the external filtering program. In other

words, the external program in the action line will

only change the header of the email. All that is

accomplished by the ‘h’ flag. The ‘w’ flag tells

procmail to wait for the filtering program to return

and TO CHECK THAT IT EXECUTED SUCCESSFULY.

.... and many others (see procmailrc manpage)

• The following characters immediately after ‘*’ in a condition

line have special meaning. You can think of them as Procmail

condition line metacharacters.

! Invert the condition.

? Use the exit code of the specified program

(This is called CONDITION LINE FILTERING)

< Check that the total length of email is less

than the number of bytes that is specified after

this character

> Opposite of above

and others (check procmailrc manpage)

• Here are examples of simple recipes:

Recipe 1:

50

Computer and Network Security by Avi Kak Lecture 31

:0:

* ^From.*joe.shmoe

* ^Subject.*seminar.(announce.*|notice)

junkMail

Recipe 2:

:0:

* !^From.*groothuis

* ^From.*root

junkMail

Recipe 3:

:0:

* ^From.*joe.*bureaucrat

* ^To.*engfaculty

junkMail

Recipe 4:

:0 HB:

* ^Content-Type: text/html

* !(charset="?us-ascii"?|charset="?iso-8859-1"?)

junkMail

Recipe 5:

:0 HB

* ^Content-Disposition:.*attachment

* < 300000

{

:0 c

! avi_kak@yahoo.com

:0 c:

medium_attachments

:0 :

/var/mail/kak

}

• You will find two kinds of recipes in the list shown above:

51

Computer and Network Security by Avi Kak Lecture 31

Delivering Recipes: These cause the email to be written to

a file, or to be forwarded to another email address, or to be

absorbed by a program. Procmail quits processing the email

when it encounters a delivering recipe. Recipes 1 through 4

in the list shown above are delivering recipes.

Non-delivering Recipes: These are recipes that cause the

output of a program to be captured back by Procmail. The

procmail then continues processing this new output in the

same way it processes as a regular email. A non-delivering

recipe is also used to start a nested block of recipes. Recipe

5 shown on the previous page is a non-delivering recipe.

• As shown by the nested block in Recipe 5 above, a delivering

recipe can be made to behave like a non-delivering recipe by

specifying the “c” flag in the colon line. The “c” flag stands for

“copy”. This causes a copy of the email to be sent to the

delivering recipe while the original is saved for processing by the

rest of the .procmailrc file.

• The sole action line that is allowed in a recipe starts with one of

the following symbols:

! the email is forwarded to the email address that

comes after this symbol

| the email is piped into the program you name after

this symbol

52

Computer and Network Security by Avi Kak Lecture 31

{ this marks the beginning of a nested block of

recipes; the block must end in a matching ’}’

none of the above ---- whatever is in the action line

is taken to be the name of a

mailbox file in which the email

is deposited.

You saw the first (‘‘!’’), the third (‘‘{’’), and the fourth of

four action-line possibilities in the five recipes shown earlier.

Note the very different roles played by the character ‘!’ in a

condition line and in an action line.

• We will now talk about condition line filtering in recipes. For

condition line filtering, the condition line must have the

character ‘?’ after the mandatory ‘*’ character at the beginning

of the line. Consider the recipe:

:0 HB:

* < 15000

* ? $MAILDIR/condfilter2.pl 2>&1

junkMail

This recipe feeds the email into the Perl script

condfilter2.pl. The condition succeeds if the Perl script

returns the exit code of 0 and fails if the exit code returned is 1.

The string ‘2>&1’ redirects the STDERR stream to the STDOUT

stream (which the filtering program redirects into the log file).

53

Computer and Network Security by Avi Kak Lecture 31

• I will now show a simple example of condition line filtering. The

name of the Perl script shown below is condfilter2.pl. This is

the script that is called in the second condition statement in the

recipe shown above. The main job of this script is to first

construct a single string from all of the Base64 encoded material

that forms a single multimedia partition in the email and to

then invoke the decode base64() function from the MIME::Base64

module on the encoded string in order to decode it. Then if the

size of this decoded string is less than a threshold, an email to

considered to be potential spam. [It might seem strange that we would want to

declare an email to possibly be spam merely on the basis of the size of its Base64 decoded

attachment. But note that such a filter would be invoked only AFTER a lot of other tests that would

have declared the message to be non-spam if that was indeed the case. Base64 encoding is commonly

used by spammers to hide their text content.]

#!/usr/bin/perl -w

use strict;

use MIME::Base64;

my $encoded_string = "";

my $decoded_string = "";

my $content_html_flag = 0;

my $encoding_flag = 0;

open LOG, ">> /home/rvl4/a/kak/Mail/log_condfilter2";

Change default for output from STDOUT to LOG. Since this is

a condition line filter, its actual output is not of any use

to procmail. Procmail only needs to know whether the program

exits with status 0 or a non-zero status.

select LOG;

print "\n\n"; # separator for new log entry

while (<STDIN>) {

chomp;

if (/^From:/) {

print "$_\n";

next;

}

54

Computer and Network Security by Avi Kak Lecture 31

if (/^Date:/) {

print "$_\n";

next;

}

if (/content-type.*text\/html/i) {

$content_html_flag = 1;

next;

}

if ($content_html_flag && /content.*encoding.*base64/i) {

$encoding_flag = 1;

next;

}

next if $content_html_flag == 0;

next if /^Content-T/;

next if /^X-/;

next if /^\s*$/;

$encoded_string .= $_;

last if (/^s*$/ && ($encoded_string ne ""));

}

if ($encoding_flag == 0) {

print "Exited with non-zero status because no text/html content.\n";

print "This e-mail will stay in processing stream.\n";

exit(1);

} else {

$decoded_string = decode_base64($encoded_string);

my $length = length($decoded_string);

print "length of the decoded string: $length\n";

if ($length < 15000) {

print "Exited with status 0 because of short base64-encoded\n";

print "content. Potential spam\n";

print "This e-mail will go to junkMail.\n";

exit(0);

} else {

print "text/html encoded content is large. Possible not spam.\n";

print "Exited with non-zero status.\n";

print "This e-mail will stay in the processing stream of procmail.\n";

exit(1);

}

}

• We will now talk about filtering recipes. A filtering recipe

merely modifies the email, but keeps it in the processing

pipeline for the recipes that follow. The example shown below

only modifies the ‘Subject:’ line in the header:

:0

* ^From.*ack

55

Computer and Network Security by Avi Kak Lecture 31

* ^Subject.*the key is[]+\/.*[0-9a-z].*

{

KEY=‘echo $MATCH | sed ’s/[^0-9a-zA-Z]//g’ | tr ’A-Z’ ’a-z’‘

SUBJECT=‘echo "the key you supplied $KEY"‘

:0 fhw

| formail -I "Subject: $SUBJECT"

:0

!kak@purdue.edu

}

To understand this recipe, you must know about the special role

played by the symbol pair ‘\/’ in the second condition line.

Whatever portion of the subject line in the email being

processed by this recipe matches the regex that comes after ‘\/’

becomes implicitly the value of the local variable MATCH. Next we

have a local variable KEY inside a sub-recipe. Because of the

backquotes, the value of KEY will be whatever is returned by the

Unix process in which the command(s) that is/are within the

backquotes is/are executed. The first Unix command is echo;

this command simply echos its argument to the standard

output, where it is picked up by the second Unix command sed,

etc. What that means is that the string value of the local

variable MATCH will be subject to a modification by the sed

command, and so on.

• To explain further the syntax of the assignment to the local

variable KEY at the top of the nested recipe shown in the

56

Computer and Network Security by Avi Kak Lecture 31

previous bullet:

KEY=‘echo $MATCH | sed ’s/[^0-9a-zA-Z]//g’ | tr ’[A-Z]’ ’[a-z]’‘

The command sed as invoked here accepts the characters on its

standard input and drops all non-alphanumeric characters.

Therefore, it can also get rid of any spaces that the email might

have in the key value in the subject line. The output of sed is

piped into the Unix utility tr that simply carries out a

‘translation’ from uppercase to lowercase. The output of tr is

written to the standard output, where it is captured by the

backticks operator, and the output of the backticks operator

becomes the value of the local variable KEY. [The assignment statement shown

above is just to illustrate how you can invoke various Unix/Linux utilities inside a recipe. You may or may

not want to use the sed and tr utilities in the manner I have shown.]

• Also note that I am using the Unix/Linux utility formail to

modify the Subject header of the email. The ‘-I’ option to

formail will cause any existing Subject fields in the email

processed to be deleted before inserting the new such header.

For a further explanation of what else happens in the above

filtering recipe, see the explanations that follow since I have

used the same example below.

• I will next show a small recipe file called my recipe file whose

job is to accomplish the following:

-- to trap incoming email from the ‘ack’ account

57

Computer and Network Security by Avi Kak Lecture 31

-- to extract the ‘Subject:’ header of the incoming

mail, especially the part that comes after the

phrase ‘the key is’

-- to extract the ‘Date:’ header of the incoming

email

-- to insert a new ‘Subject:’ header for the outgoing

email

-- to insert a new ‘Date:’ header for the outgoing

email

-- and, finally, to insert some additional text just

after the headers in the outgoing email.

Here is what is in the file my recipe file:

name of this file: my_recipe_file

SHELL=/bin/sh

MAILDIR=$HOME/proc_folder

LOGFILE=$HOME/proc_folder/logfile

#VERBOSE=1

VERBOSE=0

EOL="

"

LOG="EOLEOL New message log:$EOL"

:0

* ^From.*ack

* ^Subject.*the key is[]+\/.*[0-9a-z].*

{

KEY=‘echo $MATCH | sed ’s/[^0-9a-zA-Z]//g’ | tr ’[A-Z]’ ’[a-z]’‘

SUBJECT=‘echo "the key you supplied $KEY"‘

DATE=‘formail -x Date:‘

:0

{

:0 fhw

| formail -I "Subject: $SUBJECT"

:0 fhw

58

Computer and Network Security by Avi Kak Lecture 31

| formail -I "Date: $Date"

}

:0 fhw

| cat -; echo "<><><>MESSAGE AT THE BEGINNING OF NEW BODY<><><>"

:0

!kak@purdue.edu

}

• In the recipe shown shown above, note the following two

different uses of the formail Unix utility. I first use this utility

in the line:

DATE=‘formail -x Date:‘

This invokes the formail program in a separate process on

account of the backticks that you see in the line. The backticks

will cause formail to read data on its standard input and to

output the results on the standard output. Whatever formail

returns becomes the value of the variable DATE in the procmail

program. The ‘-x’ option extracts the “Date” field from the

header of the email read from the standard input.

• Now note the second different use of formail in the action line

for the recipe shown in the file my recipe file:

formail -I "Subject: $SUBJECT"

Here I am using formail to insert the Subject: header in the

email being compose by the filtering recipe. As mentioned

previously, the ‘-I’ option will cause the previous value of the

“Subject” header to be replaced by the new value.

59

Computer and Network Security by Avi Kak Lecture 31

• So whereas the first use of formail is extracting information

from the incoming email, the second use is inserting information

into the email being composed for output.

• In the file my_recipe_file, note the condition line

* ^Subject.*the key is[]+\/.*[0-9a-z].*

As mentioned earlier, everything that gets consumed by that

part of the regex that comes after \/ is deposited in the

Procmail variable MATCH. Therefore, if the Subject: header of

the incoming message is something like

Subject: the key is AbcDEF 123

the string ‘AbcDEF 123’ will become the value of the local

variable MATCH.

• Again in the file my recipe file, notice from the following action

line how I am adding some additional text to the body of the

incoming email to form the body of the outgoing email:

| cat -; echo "<><><>MESSAGE AT THE BEGINNING OF NEW BODY<><><>"

The echo function will place in the standard output the text

that is given to it as the argument. This additional text will

appear BEFORE the body of the incoming email because only

the flag ‘h’ is in the colon line of this sub-recipe. Regarding the

invocation ‘cat -’ , note that the basic job of the command

60

Computer and Network Security by Avi Kak Lecture 31

cat is to send to standard output whatever it reads from its

argument. When the argument is just the symbol ‘-’ the

command cat takes its input from whatever the standard input

happens to be. In our case, the recipe would send to the

standard input the header of the incoming email. So, in the

example shown above, the cat command will simply redirect

the header to the standard output, where it is subsequently

followed by the output of the echo command. It is this

mechanism that causes the argument to echo to be placed just

after the email header.

• The previous case showed the following sub-recipe for inserting

a message at the beginning of email

:0 fhw

| cat -; echo ‘‘<><><>MESSAGE AT THE BEGINNING OF NEW BODY<><><>’’

We could also have used

:0 fbw

| echo ‘‘<><><><>MESSAGE AT THE BEGINNING OF BODY<><><><>’’; cat -

In the first case, the ‘h’ flag is crucial; and in the second case,

the ‘b’ flag is crucial. The ‘h’ flag makes available only the

header section on the standard input. The ‘b’ flag makes

available only the body at the standard input. [Recall that the ‘-’

argument to cat causes the standard input to be used for reading the input. Of course, in both cases,

cat will make its output available at the standard output.]

61

Computer and Network Security by Avi Kak Lecture 31

• I should also point out that for experimenting with a recipe, you

do NOT have to put it in a .procmailrc file at the top level of

your home directory. For testing purposes, your recipe can be

in any file in any directory. For example, the recipe file

my recipe file that I showed earlier could be tested in any

directory with a command line like:

procmail my_recipe_file < mail_file

where the file mail file is some file that contains a previously

collected email message for testing purposes.

62

Computer and Network Security by Avi Kak Lecture 31

Back to TOC

31.7 HOMEWORK PROBLEMS

1. Your ability to write procmail recipes for trapping spam

depends entirely on your proficiency with regular expressions.

To figure out for yourself how good you are at constructing

regular expressions, can you create an example for each of the

eleven regex related items shown in magenta on page 27?

2. Programming Assignment:

Using the “starter kit” made available through the Lecture 31

code link at Lecture Notes website, design a procmail based

spam filter that would trap all 75 messages in the

junkMail.tar.gz gzipped tar archive. When you gunzip and

untar the archive with, say,

tar -zxvf junkMail.tar.gz

you’ll see 75 individual spam messages with names junkMail 1

through junkMail 75. About these messages:

junkMail 1 through junkMail 50 : The headers of all these

messages have one thing in common: they contain multiple

entries in the “From:” header. All these messages were

trapped by a single recipe in your instructors spam filter.

The regex in your instructors recipe has only 40 characters in

63

Computer and Network Security by Avi Kak Lecture 31

it. (If the regex engine used by procmail allowed for Perls

‘{}’ metacharacters, this regex could have been made as

short as just 10 characters.)

junkMail 51 through junkMail 63 : These messages can be

trapped just on the basis of the “Subject:” line in the email

headers.

junkMail 64 through junkMail 66 : In your instructors spam

filter, these messages were trapped on basis of the content

(email body) of the messages.

junkMail 67 through junkMail 75 : You can trap these with a

single recipe that contains compound rules. Here is an

example of a recipe with compound rules:

:0 HB:

* ^Content-Type: text/plain

* !^Content-Type: text/html

* !^content-type: application/pdf

* !^content-type: application/zip

* !^content-type: application/msword

* !^content-type: application/.*signature

* Content-Transfer-Encoding: base64

junkMailCompound6

What this says is that if the “Content-Type” MIME header

is text/plain and none of the MIME objects are of type

PDF, ZIP, etc., and yet the “Content-Transfer-Encoding”

MIME header calls for Base64 encoding, then there is a great

chance it is a spam message. By the way, this is the NOT

64

Computer and Network Security by Avi Kak Lecture 31

the compound recipe you need for trapping the messages

junkMail 67 through junkMail 75.

After you have incorporated the new recipes in your

.procmailrc file, you can test your filter on an individual

message by invoking the command:

procmail .procmailrc < junkMail_XX

where “XX” is the integer suffix for the message file. Obviously,

you would need to write either a shell script, or a Python script,

or a Perl script to execute the above command in a loop for all

75 spam messages. If your recipes work on all 75 messages, you

will not see any messages being subject to the default action of

your procmail filter, which is usually to put the surviving

messages in your mailbox /var/mail/account name.

Since the spam messages in the tar archive are in their raw

form, it is sometimes difficult to see what is in them —

especially if the MIME objects in the messages are Base64

encoded. To help you decipher those spam messages that are

fully or partially encoded, youll find in the starter kit a Perl

script named EmailParser2.pl. Execute this script and give it a

command-line argument that is the name of the junk mail file

you want to decipher. It will deposit the different MIME

objects in the email in a subdirectory called mimemail in the

directory in which you execute the script.

65

