
Lecture 25: Structured Peer-to-Peer Networks and

Their Security Issues

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 18, 2024
4:31pm

©2024 Avinash Kak, Purdue University

Goals:
• What are peer-to-peer (P2P) overlay networks

• Distributed hash tables (DHT)

• The Chord protocol

• The Pastry protocol

• The Kademlia Protocol

• The BitTorrent File Sharing Protocol

• Security Aspects of Structured DHT-Based P2P Protocols

• Anonymity in Structured P2P Overlay Networks

• An Answer to “Will I be Caught?”

CONTENTS

Section Title Page

25.1 What are Peer-to-Peer Overlay Networks? 3

25.2 Distributed Hash Tables (DHT) 8

25.3 Consistent Hashing 18

25.4 The Chord Protocol 20

25.5 Node Proximity Issues in Routing with DHTs 26

25.6 The Pastry Protocol 28

25.7 The Kademlia Protocol 35

25.8 Some Other DHT-Based P2P Protocols and a 41

Comparison of the Protocols

25.9 The BitTorrent Protocol 43

25.10 Security Aspects of Structured DHT-Based 51

P2P Protocols

25.11 Anonymity in Structured P2P Overlay 59
Networks

25.12 An Answer to “Will I be Caught?” 64

25.13 Suggestions for Further Reading 68

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.1 WHAT ARE PEER-TO-PEER
OVERLAY NETWORKS?

• Network services are typically based on the client-server model

of communications. For example, the web services as provided

by web servers (such as the HTTPD servers) and their

interactions with the browsers that act as clients vis-a-vis the

servers are based on the client-server model. Another common

example of such a model would be the email servers that are in

charge of transporting (sending and receiving) email over the

internet and their interactions with a client email program

running on your personal digital device that downloads email

from designated servers.

• In the client-server model of communications, the servers are

used as centralized repositories of information that is delivered

to the clients upon receipt of appropriately formatted requests.

This is the same as the relationship between a library and you

as a user/member of that library.

• Services in peer-to-peer (P2P) networks are based more on the

notion of a book club. All the participants in a P2P network

share equally all the information of mutual interest. [Sharing in the

context of a P2P book-club could mean that, for the sake of overall efficiency in storage,

3

Computer and Network Security by Avi Kak Lecture 25

a member participating in a network would store only that chapter that they are

currently reading. When a member decides to look at a chapter that is not currently in

their own computer, the computer would know automatically how to fetch it from one

of the other members participating in the P2P network.]

• Ideally, a P2P network should work in a completely

decentralized fashion. That is, there should be no machine that

acts as a coordinator in the network. The machines

participating in a P2P network are frequently referred to as

nodes. [The earliest P2P systems that made this acronym virtually a household

word did possess centralized components. Napster, launched originally in 1999, was

the first P2P system that became very popular for sharing music files. Its functioning

required a centralized database for mapping the song titles to the hosts where the songs

were actually stored. Then, around 2001, came BitTorrent for P2P downloading of

large multimedia objects such as movies. The earliest version of BitTorrent also

required the notion of a central coordinator that was called the tracker which kept

track of who had what segments of a large movie file. If you allow for centralized

coordinators, constructing a P2P system for file sharing is a relatively easy thing to do.

Let’s say you are a content provider and you want your files to be downloaded through

P2P file sharing. All you have to do is to provide at your web-site a tracker that keeps

track of who has requested what file and a client program that folks can download. It

would be the job of the client program to talk to the tracker program at your website.

As a user, your client program will request a file from the tracker and the tracker would

supply your client program with a list of all users currently in possession of the various

segments of the file you want (and, at the same time, add you to the list of users who

could be in possession of some segments of the file in question). Your client program

would then request the various segments of the file from their keepers and assemble

4

Computer and Network Security by Avi Kak Lecture 25

them back into the file that you were looking for.]

• As we will see in this lecture, the nodes in modern P2P

networks are self-organizing. That is, each new incoming node

can easily figure out where to place itself in an overall

organization of all the participating nodes.

• In addition to being self-organizing, and partly because of it,

the P2P protocols reviewed here allow for such networks to

scale up easily.

• Because all nodes participating in modern P2P networks

operate in an identical fashion and without the help of any sort

of a central manager, P2P networks can be characterized as

distributed systems. [The distributed nature of P2P networks also makes them more

fault tolerant. That is, a sudden failure of one or more nodes in a network does not bring down the

network. When node failures do take place, the rest of the network adapts gracefully. For that

reason, P2P systems can also be called adaptive.]

• Since P2P networks are overlaid on top of the internet, they are

commonly referred to as overlay networks or just overlays.

• We can therefore talk about routing in the underlying network

(meaning the internet) and routing in the overlay.

5

Computer and Network Security by Avi Kak Lecture 25

• There are two fundamentally different types of P2P networks:

structured and unstructured. Structured P2P networks

generally guarantee that the number of hops required to reach

any node in the network is upper-bounded by O(logN) where

N is the number of participating nodes. Another important

guarantee that a structured P2P network provides is that if a

document is present in the network, it will definitely be reached.

On the other hand, unstructured P2P networks, as we will see

in Lecture 26, do NOT guarantee that a document that was

previously stored in the network will definitely be reached.

Additionally, unstructured P2P networks may not provide any

specific guarantees regarding the number of hops needed to

reach a given node.

• Fundamental to both the structured and the unstructured P2P

networks is the concept of a distributed hash table (DHT).

• In the rest of this lecture, I will first introduce the concept of a

distributed hash table (DHT) in Section 25.2. DHTs play a

fundamental role in the operation of modern P2P networks.

• Subsequently, I’ll briefly review three DHT-based P2P

protocols: Chord, Pastry, and Kademlia. All of these are

modern implementations of the P2P idea. [As noted previously in this

section, while Napster was probably the oldest P2P file-sharing application, it was not a pure P2P

system in the modern sense associated with this acronym since it relied on a central database that

6

Computer and Network Security by Avi Kak Lecture 25

mapped the song titles to the hosts where the songs were actually stored. This database was made

available by a central index server. Such a central database would then become a single point of

failure for the system. Napster was followed by Gnutella that is fully distributed. Search for resources

in early versions of Gnutella was carried out by flooding the network with search requests — a

concept that does not scale well as the network grows. Resource location in more modern P2P

systems is based on the concept of DHT. Besides Chord, Pastry, and Kademlia, other examples of

modern P2P protocols include CAN, Tapestry, Symphony, etc. The very popular BitTorrent, when

used in the trackerless mode, also uses DHT for resource location; it is the same DHT as in

Kademlia. See Section 25.9 on BitTorrent.]

• Finally, I’ll talk about the security and anonymity issues related

to structured overlay networks based on DHTs.

7

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.2 DISTRIBUTED HASH TABLES
(DHT)

• I recommend that the reader first review Section 15.10 of

Lecture 15 before going through the material presented in this

section. A Distributed Hash Table (DHT) is an extension of the

idea of a hash table, as explained in Section 15.10 of Lecture 15,

for efficient storage of associative arrays that consist of

<key,value> pairs.

• As mentioned in Section 15.10 of Lecture 15, a telephone

directory is probably the quickest example one can think of for

an associative array. Our goal in that section was to store the

<key,value> pairs in the buckets of a hash table in such a way

that we could access the phone numbers associated with the

names in close to constant time, meaning in time that was

largely independent of the size of the directory. [Note that the system

of web pages also constitutes an associative array of <key,value> pairs in which the URLs are the

keys and, for each key, the web page at that URL the value associated with the key.]

• Our desire now is to store the telephone directory at a

geographically distributed set of machines that we will again

refer to as nodes. Each node will be characterized by its IP

address and the port number it monitors for incoming data

8

Computer and Network Security by Avi Kak Lecture 25

lookup queries.

• Let’s assume that, at least initially, we have access to 5

volunteer machines for implementing our DHT based storage.

Let the IP addresses and the port numbers of these 5 nodes be:

Node1: 123.45.118.231:6783

Node2: 212.32.221.172:23799

Node3: 86.135.11.1:2378

Node4: 56.135.134.90:7651

Node5: 67.15.134.22:3213

• Just for the purpose of illustrating the basic idea of a DHT, we

will now hash each IP address along with the port number into

an 8-bit hash by adding the ASCII code values associated with

all the characters and setting the hash to modulo 256 remainder.

The following two-line Perl script can do this calculation for us:

#!/usr/bin/env perl

silly_hash2

use List::Util qw(sum);

my $hash = (sum map ord, split //, join ’ ’, @ARGV) % 256; #(A)

print "$hash\n";

The script does all its work in line (A). Note that the command

line args are stored in the array “@ARGV”. The part “split //,

join ’ ’, @ARGV” joins everything in that array, while placing a

white space between the successive items. The call to

split then splits the resulting string into an array of characters.

9

Computer and Network Security by Avi Kak Lecture 25

Calling ord on these characters returns their ASCII codes.

Perl’s map function applies ord to each character returned by

split. Subsequently, sum from the List::Util module adds the

integers for all the characters. Finally, the modulo 256 division

gives us the hash value we want. [If instead of 256 for the modulus in the

Perl expression, I had used a prime number, I’d be implementing one of the oldest

hashing algorithms that was suggested by Arnold Dumey back in 1956 in his book

“Computers and Automation.” I have also stated this fact in Section 15.10 of Lecture

15, where I also mentioned that the first person to coin the term “hash” was the IBM

mathematician Hans Luhn in 1953.]

• When we invoke the above script on the IP address and port

number of the first participating machine, as shown below,

silly_hash2 123.45.118.231:6783

we get the integer value 203. This hash value then becomes the

nodeID of the machine whose IP address and the port number

are given by 123.45.118.231:6783.

• Shown below are the nodeIDs obtained in this manner for all

five machines participating in our DHT:

node IP + port nodeID

-------------------- -------

123.45.118.231:6783 203

212.32.221.172:23799 251

86.135.11.1:2378 50

10

Computer and Network Security by Avi Kak Lecture 25

56.135.134.90:7651 156

67.15.134.22:3213 92

Using the modulus 256 amounts to computing an 8-bit hash.

The integer value of each nodeID is guaranteed to be between

0 and 28 − 1.

• We can visualize the nodeIDs for the five participating

machines on a circle of all possible hash values, as shown in

Figure 1.

• This circle is referred to as the Identifier Circle.

• In general, if we compute m-bit hashes, the Identifier Circle will

contain integer values between 0 and 2m − 1. In our case

m = 8, so the circle contains integer values between 0 and 255,

both ends inclusive. We will start with 0 at the top of the circle

and move clockwise; that will make the rightmost point on the

circle to stand for the integer value 64. The point at the bottom

of the circle will stand for 128; and so on. The circle obviously

represents the modulo 2m value of all possible integers.

• We will also be interested in distances between any two points

on the Identifier Circle. For any two points A and B on the

circle, the distance d(A,B) will be measured clockwise from A

to B. For example, the distance between the points A and E is

11

Computer and Network Security by Avi Kak Lecture 25

Node 3
nodeID = 50

Node 5
nodeID = 92

Content Key Hash = 0

Content Key Hash = 128

Content Key Hash = 64Content Key Hash = 192

Identity Circle on which hash values are located modulo 2 since we
represent node ID hashes and content key hashes by 8 bits.

8

ANode 1

nodeID = 203

Node 2, nodeID = 251

Node 4, nodeID = 156

E

B
C

D

Figure 1: If we calculate the ID to be given to a participat-

ing host as an m-bit hash, the ID values for all the hosts

can be visualized on a circle such as the one shown here.

This circle is referred to as the Identifier Circle. (This figure is

from Lecture 25 of “Lecture Notes on Computer and Network Security” by Avi Kak)

12

Computer and Network Security by Avi Kak Lecture 25

251− 50 = 101. On the other hand, the distance between E and

A is (256 + 50)− 251 = 56.

• Now we are ready to get down to our main business, which

consists of storing a telephone directory in a distributed manner

in the five nodes of the DHT. To illustrate how we can do that,

let’s pretend that our telephone directory has the following

<name,value> pairs it:

avi kak 333-121-3456

rudy eigen 457-222-8823

stacey smythe 333-456-7890

kim catrail 222-737-8328

mik milquetoast 234-987-0098

• Our overall approach will be to compute the 8-bit hash for each

name in the telephone directory and locate that hash value on

the Identifier Circle of Figure 1. We will refer to the hashes of

the names in the telephone directory as content keys or just

as keys.

• We must next figure out the point on the Identifier Circle where

a given content key belongs. What we need is a policy regarding

how to assign various segments of the Identifier Circle to each of

the network nodes already placed on the circle (See Figure 1

that shows five live nodes already situated on the circle).

13

Computer and Network Security by Avi Kak Lecture 25

• We could, for example, use the policy shown in Figure 2. This

policy says that all content keys between any two consecutive

nodes on the Identifier Circle will become the responsibility of

the network node at the end of the circle segment. More

precisely, all the keys that are between A’s nodeID plus 1 and

B’s nodeID, inclusive of both ends, are assigned to B. Similarly

with the other segments of the Identifier Circle in the figure.

• The policy shown in Figure 2 can be implemented by writing a

function that could be called lookup(key). Given any point on

the Identifier Circle that corresponds to a key, this function is

supposed to return the IP address of the participating node that

is responsible for that key. We can think of lookup(key) as a

part of a database client program that could run on any

machine authorized to access the DHT. But note that

lookup(key) must possess a distributed implementation. This

could be done by each node in the overlay network maintaining

a successor pointer to the next node on the Identifier Circle. So

when a query is received by a node concerning a particular key

value key, if the value of key exceeds the nodeID of the node,

it would forward the query to the successor node. More efficient

distributed implementations for lookup(key) will be

presented when we discuss the Chord and the Pastry protocols

for P2P.

• With the key-to-nodeID assignment policy shown in Figure 2,

we are now ready to store in our DHT the telephone directory

14

Computer and Network Security by Avi Kak Lecture 25

Node 3
nodeID = 50

Node 5
nodeID = 92

ANode 1

nodeID = 203

Node 2, nodeID = 251

Node 4, nodeID = 156

E

B
C

D

All content−key hash values between A+1 and B assigned to the node at B

All content−key hash values between B+1 and C assigned to the node at C

All content−key hash values between C+1 and D assigned to the node at D

All content−key hash values between D+1 and E assigned to the node at E

All content−key hash values between E+1 and A assigned to the node at A

Figure 2: Each node on the Identifier Circle is responsible

for those content items whose content hashes fall between

the previous node and the node in question. (This figure is from

Lecture 25 of “Lecture Notes on Computer and Network Security” by Avi Kak)

15

Computer and Network Security by Avi Kak Lecture 25

presented earlier in this section. We apply the silly hash2 Perl

script to each name in the telephone directory to obtain the

hash values shown below in the right column. As stated earlier,

these will be called the content keys or just the keys.

name in directory content key

----------------- ----------------

avi kak 151

rudy eigen 236

stacey smythe 67

kimberly catrail 95

mik milquetoast 25

• We now locate these keys on the Identifier Circle and, with the

key-to-node assignment policy of Figure 2, we must assign the

entry for “mik milquetoast” to node A, for “stacey smythe” to

node B, for “kimberly catrail” and “avi kak” to node C, and,

finally, for “rudy eigen” to node E.

• The above scheme for distributed storage of information would

work reasonably well if we had a fixed set of nodes participating

in a P2P network. For a fixed set of nodes, a DHT would need

to support just one operation lookup(key) that either returns

“current node” if the content key belongs to the segment of

the Identifier Circle that the current node is in charge of, or

returns the IP address of the successor node.

16

Computer and Network Security by Avi Kak Lecture 25

• In actual practice, P2P networks need to be highly dynamic.

They must allow for nodes to join and leave at will. So a

protocol for data lookup in a P2P network must allow for this

sort of churn. How that is accomplished depends on which P2P

protocol you use – as you will see in the rest of this lecture.

• In order to address the challenges created by the need to allow

nodes to join and leave at will, a practical P2P protocol must

possess the following properties:

– It must map content keys to network nodes while observing load

balancing considerations.

– Directly or indirectly, each node must be able to forward the lookup
query for a given content key to a node whose ID hash is closer to
the content key.

– And, most importantly, each individual node must be able

to build a routing table adaptively as new nodes join and
existing nodes leave. A routing table in a P2P protocol is used to
speed up the search for the node that is closest to a given content

key and to facilitate recovery from node failures.

• Before presenting examples of protocols that possess the

properties listed above, let us next talk briefly about an

important property of DHTs that is called consistent hashing.

17

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.3 CONSISTENT HASHING

• The explanation of DHT in the previous section would probably

suffice for constructing a distributed database (albeit one that

would not be efficient with regard to key lookup). However,

that explanation left out one critical question: How do we let

new nodes join the network and existing nodes leave it at their

own pleasure? A related question would be: How do we make

sure that our distributed database can handle node failures?

• The question regarding new nodes joining in and old nodes

leaving has to be examined from the perspective of the extent to

which the content keys must be reassigned to the various nodes.

The notion of consistent hashing addresses this issue.

• We refer to a DHT scheme as consistent hashing if the

insertion of a new node into the P2P overlay affects only the

information stored at the machines whose nodeIDs are closest

to the new node joining the overlay. For consistent hashing, it

must also be true that the removal of an existing node should

affect only the nodes that are still in the overlay and whose

nodeIDs are closest to the departing node on the Identifier

Circle.

18

Computer and Network Security by Avi Kak Lecture 25

• Consistent hashing is a highly desirable property of DHT

schemes because it minimizes the reorganization of the stored

data in the presence of high churn. Churn refers to nodes

joining or leaving a P2P overlay at will.

• We will next review two P2P protocols, Chord and Pastry, and

see how these practical issues are dealt with in these protocols.

19

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.4 THE CHORD PROTOCOL

• The Chord protocol was created by Ion Stoica, Robert Morris,

David Karger, M. Frans Kaashoek, and Hari Balakrishnan.

[Proc. ACM SIGCOMM 2001]

• The Chord protocol uses for node identities the Identifier Circle

shown in Figure 1. The nodeID for each node is typically

calculated by hashing its IP address using the SHA-1 algorithm

(see Lecture 15). As a result, each nodeID is a 160-bit integer

and we have a maximum of 2160 points on the Identifier Circle of

Figure 1. In keeping with our earlier explanation of how DHT

works, the content keys are also calculated with the same SHA-1

algorithm. The goal is to create a distributed database in which

a content document is stored at a node whose nodeID is closest

to the content key going clockwise on the Identifier Circle.

• Each physical node participating in a Chord overlay network

maintains a successor pointer and a predecessor

pointer. [Actually, as we will see later, each node also maintains a list of a certain

number of nearest successors for greater efficiency in content location and to facilitate

recovery from node failures.]

20

Computer and Network Security by Avi Kak Lecture 25

• Note that the notion of a successor pointer applies to a live

node in the overlay. For a given live node on the Identifier

Circle, the successor pointer consists of the nodeID and the IP

address of the live node that is next on the Identifier Circle.

• We will also talk about a function successor(key). We want

this function to return the nodeID of the next live node on the

Identifier Circle after the point that corresponds to the content

key of value key. That is, the function successor() invoked on

the content key key should return the Identifier Circle location

of the live node responsible for the key key.

[It may seem like that the function successor(key) does the same thing as the function

lookup(key) mentioned earlier. But there’s an important difference. The main use of

successor(key) is for constructing a Routing Table and the variable key stands for the

hypothetical content keys for which we want to know the IP addresses of their corresponding

nodeIDs. The function lookup(key) is used for looking up the nodeID for storing a specific

content. It should return either the nodeID of the node where the content in question is meant

to be stored or return the address of the node that would help get us closer to that node.]

• Strictly speaking, the Chord protocol needs to know only the

successor pointer at each live node for the protocol to work

correctly. However, in order to speed up the process of successor

location for an arbitrary content key on the Identifier Circle,

each live node additionally maintains a routing table with at

most m entries in it where m is the number of bits used for

representing nodeIDs and the content keys. With SHA-1 as the

algorithm that calculates the nodeIDs and the content keys,

m = 160. So the routing table at each node will have at most

160 rows in it.

21

Computer and Network Security by Avi Kak Lecture 25

• The first entry in the routing table at the node whose nodeID

is n is the IP address of the successor node to the hypothetical

content key n + 1 on the Identifier Circle; the next entry the IP

address of the successor node to the hypothetical content key

n + 2 on the Identifier Circle; the entry below that the IP

address of the successor node to the hypothetical content key

n + 22 on the Identifier Circle; and so on.

• So, in general, the ith row in the routing table contains the IP

address of the successor node to the hypothetical content key

n + 2i−1 for 1 ≤ i ≤ m where m is the number of bits used to

represent the nodeIDs and the content keys. So if the entry in

the ith row of the routing table is the IP address of a node

whose nodeID is si, we can write

si = successor(n + 2i−1) 1 ≤ i ≤ m− 1

where the addition in the argument to successor() is computed

modulo 2m.

• Whereas m is the maximum number of rows in the routing

table at each node, for obvious reasons the number of successors

listed will not exceed N , the actual number nodes participating

in the overlay. So if N < m, which is not an unlikely scenario

for a small overlay, several of the entries in the routing table

may point to the same successor node.

22

Computer and Network Security by Avi Kak Lecture 25

• With the above construction of the routing table, each

participating node has a detailed “perception” of the nodes that

are ahead of its own position but in its own vicinity on the

Identifier Circle. This perception becomes increasingly coarse

— coarser by halves, to be precise — for nodes that are

farther out on the Identifier Circle.

• This is how the routing table is used to handle a query for a

content key k: This query can be submitted to any live node on

the Identifier Circle. Let’s say that the query goes to a node

whose nodeID is n. If k were to equal n, or n+ 1, or n + 2, we

would directly find in the routing table the successor nodes for

that content key. For any other value of k, the routing table is

queried for an entry whose nodeID j immediately precedes k.

For obvious reasons, the node that is a successor to j is more

likely to own the content key k than the node n was. Through

recursive lookups of the routing tables in this manner, each

contacted node n is bound to get closer and closer to the node

that actually owns the key k.

• The developers of Chord have theoretically established that the

number of nodes that must be contacted to find a successor in

an N -node network is O(logN) with high probability.

• Let’s now talk about how a new node joins the network and

how the network adapts when a node leaves the network.

23

Computer and Network Security by Avi Kak Lecture 25

• To simplify joining (or leaving) the overlay, each participating

node in a Chord network maintains what is known as a

predecessor pointer, which is the nodeID and the IP

address of the node immediately preceding the node in question

on the Identifier Circle. So whereas the successor pointers we

mentioned earlier allow a clockwise traversal of the Identifier

Circle, the predecessor pointers would allow a counterclockwise

traversal of the circle.

• A new node that wants to join a Chord overlay computes its

nodeID and contacts any of the existing nodes with that

information. Assume that the nodeID of the new node is n.

Also assume that the nodeID of the node contacted by the new

node is n′. The new node n queries n′ as to what its (meaning,

n’s) successor is in the Identifier Circle. Let this successor be

ns. The new node then links itself into the Identifier Circle by

making ns its immediate successor and making ns’s predecessor

its own predecessor. The node n also fills up its routing table by

using the entries in the routing table for ns. Subsequently, ns

updates its own routing table and makes n its immediate

predecessor. Finally, the entries in the routing tables of all the

nodes are updated taking into account the new node. [The

developers of Chord have shown that, with high probability, the number of nodes that need to update

their routing tables is O(logN) where, as before, N is the number of nodes in the

overlay.] Finally, the content keys that should be assigned to the

new node are transferred from ns to n.

24

Computer and Network Security by Avi Kak Lecture 25

• When a node whose nodeID is n leaves the network, its

predecessor in the Identifier Circle must update its successor

pointer to what was n’s successor. By the same token, this

latter node must update its predecessor pointer to point to what

was n’s predecessor. As a last step, all of the content keys that

were assigned to the departing node must now be reassigned to

what was n’s successor.

• In order to deal with random joins and departure of nodes,

Chord runs a special high-level program, stabilize(), at every

node every 30 seconds. When a newly joined node n runs its

stabilize(), it is the stabilizer’s job to make sure n’s successor

has a correct predecessor.

• Potential loss of content (that is, the data associated with the

content keys) stored at a node that may have failed or departed

without notification is dealt with by storing a list of immediate

successor nodes at each live node and replicating content

between multiple immediate successors.

25

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.5 NODE PROXIMITY ISSUES IN
ROUTING WITH DHTs

• The basic Chord protocol as described in Section 25.4 suffers

from an interesting “shortcoming”: A good hashing algorithm

— and, despite modern concerns about its security, SHA-1 is a

very good hashing algorithm from the standpoint of how it

disperses the hash values over the entire range — will distribute

the nodeID values all over the Identifier Circle even when the

IP addresses of the nodes are closely related. In what follows,

we will explain why this could degrade the performance of a

Chord overlay network.

• Say that you have a dozen machines participating in a Chord

overlay, with half of these on the local network in your lab in

USA and the other half in another lab somewhere in India.

Since SHA-1 will create a large change in the hash values for

even very small changes in the IP addresses associated with

the machines, when you locate the 12 nodes on the Identifier

Circle of Figure 1, the nodes would be situated in a more or

less random order as you walk around the circle. That is, you

will not see any clustering of the nodes corresponding to the six

machines in the US and the six machines in India.

26

Computer and Network Security by Avi Kak Lecture 25

• So when an application program seeks the overlay node that is

responsible for a given content key, in all likelihood that query

will make multiple hops around the globe even when the overlay

node of interest is sitting right next to the computer running

the application program.

• This problem arises because the basic Chord protocol does not

take into account any proximity between the nodes in deciding

how to route the queries. We consider two nodes to be

proximal if, in the underlying network, each can communicate

with the other either directly or with minimal passage

through router boundaries.

• The next P2P protocol we present, Pastry, is more aware of

proximity between the nodes. Of all the nodes that are

candidates for receiving a query, it will try to choose one that is

most proximal to the one where a query is originating.

27

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.6 THE PASTRY PROTOCOL

• The Pastry protocol was created by Antony Rowstron and Peter

Druschel. [Proc. 18th IFIP/ACM Conference on Distributed

Systems Platforms, 2001]

• Pastry, like Chord, creates a self-organizing overlay network of

nodes. As in Chord, each participating node is assigned a

nodeID by possibly hashing its IP address and port number.

• Pastry uses a 128-bit hash for nodeIDs and for content keys.

So, on the Identifier Circle (see Figure 1), the numeric address

of a node is an unsigned integer between 0 and 2128 − 1.

• When deciding at which node to store a message, Pastry uses

the same basic rule as Chord: A message is delivered to the

node whose nodeID is closest to message key. But Pastry gets

to that final node in a manner that is different from Chord.

• What distinguishes Pastry from Chord is that the former takes

into account network locality by using a proximity metric.

28

Computer and Network Security by Avi Kak Lecture 25

• The proximity metric could be the number of IP routing hops in

the underlying physical network. It is the higher-level

application program that is supposed to supply the proximity

metric. The application program could, for example, use a

utility such as traceroute to estimate the number of hops

between any two nodes. By taking into account network locality

through the proximity metric, Pastry tries to minimize the

distance traveled by messages.

• With regard to how messages are routed, another difference

between Chord and Pastry is how a content key is compared

with the nodeIDs in order to decide which node to forward a

query to. The comparison of the hash values is carried out using

base-b digits. For example, with base-16 digits, Pastry would

compare the hex digits of a content key with the hex digits of a

nodeID. This comparison looks for the common prefix

between the two.

• Pastry makes a routing decision on the basis of the length of the

above-mentioned prefix; the length of the prefix shared with the

current node’s nodeID is compared with the length of the

prefix shared with the next node’s nodeID. The goal is to

make the shared prefix longer with each routing

step. However, if that is not possible, the goal is to select a

node whose nodeID is numerically closer to the content key

but, at the same time, whose prefix shared with the key is no

shorter than what is the case at the current node.

29

Computer and Network Security by Avi Kak Lecture 25

• With the routing scheme described above, the number of correct

digits in the nodeID of the next node chosen as a query is

forwarded will always either increase or stay the same. If it

stays the same, the numerical distance between the nodeID of

the node chosen and the content key will decrease. Therefore,

the routing protocol must converge.

• The above-mentioned routing decisions are made with the help

of a routing table maintained at every node. If b-bit digits are

used for comparing a nodeID with a key, then the routing table

consists of 128/2b rows and 2b columns. Since typically b = 4,

the routing table for a typical Pastry network node will have 8

rows and 16 columns.

• Assuming b = 4, Figure 3 shows the order in which the IP

addresses would be stored in the routing table at a node whose

nodeID is 3a294f1b. Recall that the comparison between the

nodID’s in this case is carried out using hex digits. Each row of

the table orders the IPs according to the nodeIDs associated

with them. In the 0th row, the entries are ordered in increasing

order of the first digit in the nodeIDs. Since there 16 possible

values for the first digit, we will have 16 entries in the first row.

Note the empty cell in the first row of the routing table — this

cell is empty because it corresponds to all possible nodes in the

overlay whose nodeID’s begin with the prefix digit 3. All

such nodes in the overlay are represented by the

rest of the table. Along the same lines, note the empty cell

30

Computer and Network Security by Avi Kak Lecture 25

in the second row of the table. This cell is empty because it

corresponds to all possible nodes in the overlay that begin with

the prefix 3a. All such nodes in the overlay are

represented by the rest of the table below the

second row, and so on.

• Note that in general there will not exist an IP entry in every

non-empty cell of the routing table shown in Figure 3. The

table shows only the order in which the IP addresses of the

nodes would be stored in the routing table if such nodes are

indeed active in the overlay. If there does not exist in the

overlay a node corresponding to any of the non-empty cells in

Figure 3, then that cell would be empty of an IP address.

• In case the reader is wondering as to how the routing table gets

filled, we need to talk about Pastry’s join operation that allows

a new node to join the overlay.

• When a new node wishes to join the overlay, it sends its 128-bit

nodeID to a node that is currently active in the overlay and

that hopefully is close to the new node in terms of the proximity

metric used. Let’s denote the new node’s nodeID by X and

the currently active node that X first contacts as A. The node

A then sends a join message to the rest of the nodes to discover

the node whose nodeID is closest to X . This message

propagates in the overlay like any other query message, except

31

Computer and Network Security by Avi Kak Lecture 25

0 1 2 4 5 6 7 8 9 a b c d e f

3 3 3 3 3 3 3 3 3 3 3 3 3 33
a a a a a a a a a a a a a aa

x xx x x x xx x x x x x x x

3 3 3 3 3 3 3 3 3 3 3 3 3 33

0 1 4 5 6 7 8 9 a b c d e f3

a a a a a a a a a a a a a aa
2 2 2 2 2 2 2 2 2 2 2 2 2 23
0 1 2 4 5 6 7 8 a b c d e f3

3 3 3 3 3 3 3 3 3 3 3 3 3 33
a a a a a a a a a a a a a aa
2 2 2 2 2 2 2 2 2 2 2 2 2 22

0 1 2 5 6 7 8 9 a b c d e f3
9 9 9 9 9 9 9 9 9 9 9 9 9 99

3 3 3 3 3 3 3 3 3 3 3 3 3 33
a a a a a a a a a a a a a aa
2 2 2 2 2 2 2 2 2 2 2 2 2 22
9 9 9 9 9 9 9 9 9 9 9 9 9 99
4 4 4 4 4 4 4 4 4 4 4 4 4 44
0 1 2 4 5 6 7 8 9 a b c d e3

x = arbitrary suffix

x xx x x x xx x x x x x x x

3 3 3 3 3 3 3 3 3 3 3 3 3 33
0 1 2 4 5 6 7 8 9 b c d e f3

x xx x x x x xx x x x x x x

xx x x x x xx x x x x x x x

x xx x x x xx x x x x x x x

x xx x x x x xx x x x x x x

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Routing Table for a Node of nodeID = 3a294f1b

corresponds to all nodes with

This cell is left empty because

with the prefix 3a, the first two

the prefix 3, the first digit of the
nodeID 3a294f1b. The rest of the
table below is for all such nodes.

This cell is left empty because it

it corresponds to all nodes with

digits of 3a294f1b. The rest of

This cell left empty because it
corresponds to all nodes with the
prefix 3a2, the first three digits of

below is for all such nodes.
3a294f1b. The rest of the table

This cell is left empty because it
corresponds to all nodes with the

of 3a294f1b. The rest of the table
below is for all such nodes.

prefix 3a29, the first four digits

This cell is left empty because
it corresponds to all nodes with
the prefix 3a294, the first five

This cell left is empty because
it corresponds to all nodes with
the prefix 3a294f, the first six

digits of the nodeID 3a294f1b.
The rest of the table below is
for such nodes.

digits of the nodeID 3a294f1b.
The rest of the table below is
for such nodes.

the table below is for all such
nodes.

Figure 3: When 4-bit digits are used for comparing nodeIDs

with content hash keys, this figure shows the order in which

the IP addresses would be stored in the routing table. (This

figure is from Lecture 25 of “Lecture Notes on Computer and Network Security” by Avi Kak)
32

Computer and Network Security by Avi Kak Lecture 25

for the fact that any nodes encountered along the way send

their routing tables back to X . Based on the information

received, and possibly on the additional information queried

from other nodes, node X initializes its own state (and that

includes its routing table).

• In addition to the routing table, each node also maintains a

leaf set that consist of a maximum of l nodes whose nodeIDs

are numerically closest to that of the present node. Of these,

l/2 are the nodes whose nodeIDs are larger than that of the

current node and l/2 nodes those whose nodeIDs are smaller

than that of the current node. The value of l , constant for all

the nodes in a network, is typically 8 ∗ log2bN where N is the

total number of nodes in the overlay. Since b = 4 commonly,

that would l typically equal to 8 ∗ log16N . Nodes in the leaf set

are used to seek out a node closest to the current node, in

accordance with the routing rules mentioned earlier. Nodes in

the leaf set are also used for storing copies of the content

information; this is done to make sure that the information is

not lost when a node fails or otherwise leaves the network.

• If the prefix-based routing rules described earlier do not yield a

suitable target node from the routing table and if the leaf set

also does not yield one, then the current node or its immediate

neighbor is the query’s final destination.

33

Computer and Network Security by Avi Kak Lecture 25

• Pastry’s prefix-based routing results in the number of routing

hops being bounded by approximately log16N where N is the

number of nodes in the overlay and when base-16 digits are

used for comparing keys with nodeIDs.

34

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.7 THE KADEMLIA PROTOCOL

• Kademlia was developed by Peter Maymounkov and David

Mazieres. [IPTPS02 2002].

• Kademlia is important because its DHT is employed by the very

popular BitTorrent protocol (for downloading music and

movies) when it is used in a trackerless mode. A brief review of

BitTorrent is presented in Section 25.9.

• Kademlia uses the same identifier space as Chord (Figure 1).

Each node wishing to join a Kademlia overlay typically uses

SHA-1 to generate a 160-bit value for its nodeID. The key

values are also generated in the same manner as in Chord — by

applying SHA-1 to the data that needs to be stored. Again as

in Chord and Pastry, data for a given content key is stored at a

node whose nodeID is closest to the key.

• To understand routing in Kademlia, you have to understand

how this protocol measures the “distance” between two points

on the Identifier Circle of Figure 1. Since a new idea is

sometimes best understood by comparison with an older version

of the same idea, let’s first review how Chord and Pastry

35

Computer and Network Security by Avi Kak Lecture 25

measure distances in the identifier space.

• As the reader will recall, Chord measures the distance from a

point A to a point B on the Identifier Circle of Figure 1 by

going clockwise from A to B and subtracting (modulo 2160)

the integer value of A from the integer value of B. This notion

of distance between two points in the identifier space is

asymmetric with respect to the points. On the other hand, as

explained earlier, Pastry uses two separate methods for

computing the distance between two points in the identifier

space: In the first method, Pastry sets the distance on the basis

of the shared prefixes in the base-b representations of the two

points and, in the second method, the distance is computed in

the same way as in Chord. Whereas Pastry’s first method for

computing the distance between two points is symmetric with

respect to the points, the second method, being the same as in

Chord, is asymmetric.

• Compared to Chord and Pastry, Kademlia measures the

distance between any two points A and B on the Identifier

Circle of Figure 1 by taking the XOR of the two bit patterns.

[If d(A,B) denotes the XOR of the bit patterns corresponding to the nodeIDs represented by the

points A and B on the Identifier Circle, it can be shown easily that d is a metric: d(A,B) = 0 if an

only if A = B; d(A,B) ≥ 0 for A and B; d(A,B) = d(B,A); and, finally,

d(A,B) + d(B,C) ≥ d(A,C). The triangle inequality follows from the fact that

d(A,C) = d(A,B)⊕ d(B,C) and the fact that ∀A ≥ 0, ∀B ≥ 0 A+B ≥ A⊕B.]

36

Computer and Network Security by Avi Kak Lecture 25

• Since the XOR metric is symmetric, a node can receive a query

from a node in its own routing table. [For the sake of a comparison, the

metric used in Chord for comparing two values of nodeID is asymmetric, as mentioned previously.

Since Chord measures distances in the clockwise direction only on the Identifier Circle, a node A can

be close to B but B may not be close to A.] The symmetry in the metric used

to measure the distances in the identifier space allows a

Kademlia node to send queries to all nodes in its vicinity.

• In Kademlia, the routing table at each node consists of a

maximum of 160 separate lists when a 160-bit representation is

used in the identifier space. The list for each 0 ≤ i ≤ 160 at a

node consists of the connection information for all the nodes

that are at a distance between 2i and 2i+1 from itself. The

connection information on each destination node consists of the

IP address, the UDP port, and the nodeID value.

• The list of the nodes for each i is referred to as a k-bucket.

The reason for k in the name k-bucket will become clear

shortly.

• Each k-bucket is kept sorted by the time last seen, with the

least recently “seen” node at the the head of the list and the

most recently “seen” node at the tail. It will soon become clear

as to what is meant by “seen.”

• Since the distance between 2i and 2i+1 can be very small for

37

Computer and Network Security by Avi Kak Lecture 25

small i, it is possible for the k-buckets for small i to be empty.

For large i, we keep a maximum of k nodes in the k-bucket,

with k being typically set to 20. Kademlia refers to k as the

system-wide replication parameter.

• When node A receives a message (query or reply) from node B,

A updates the appropriate k-bucket depending on the distance

between nodeID values for A and B. If B is already in the

k-bucket, it is moved to the tail of the list. If B is not in the

k-bucket and the list is not full, B is still moved to the tail of

the list. If B is not in the k-bucket and the list is full, the

node at the head of the list — the least recently seen node — is

pinged. If the response to the ping times out, it is removed from

the k-bucket and B inserted at the tail. However, if there is a

response to the ping, the pinged node is moved to the tail of the

list and B simply ignored with regard to its insertion in the

routing table. The authors of Kademlia refer to this as the

least-recently seen eviction policy.

• When a <key,value> is stored in the DHT, for data

replication purposes it is stored in the k nodes that are nearest

to that key. This is the same as what happens in Chord and

Pastry. However, the procedure used to discover the k nodes

closest to a key is different in Kademlia.

• The search for the k closest nodes to a given key begins by

38

Computer and Network Security by Avi Kak Lecture 25

selecting α “contacts” from the closest k-bucket of any node

in the overlay. Let A be the node where we search for the k

closest nodes to a given key. We therefore start at A with the

k-bucket that is closest to the key in question. If there are

fewer than α nodes in that bucket, the node A selects nodes

from the k-bucket that is next closest to the key and so on

until a pool of α nodes has been constructed. This list of α

nodes is referred to as the shortlist for the search. The node A

then sends out parallel asynchronous requests to all the nodes in

the shortlist. If any of the targeted nodes fails to reply, the node

A removes it from the shortlist. From the replies that are

received, the node A reconstitutes with the k nodes closest to

the key in question. This process continues iteratively at the

node A until no further nodes are dropped from the shortlist.

• The above procedure for finding the k nodes closest to a given

key is referred to as node lookup(key).

• One big advantage of sending out parallel asynchronous queries

in node lookup(key) is that timeout delays from failed nodes

are minimized. Note that α is a system-wide concurrency

parameter, usually set to 3.

• Many of the operations in Kademlia are based on

node lookup(key).

39

Computer and Network Security by Avi Kak Lecture 25

• When a new node wishes to join a Kademlia overlay, it first

computes its own nodeID and then inserts the contact triple

(IP address, UDP port, and the nodeID number) of some

known active node in the overlay into the appropriate bucket as

its first contact. The new node invokes node lookup(key) with

the argument key set to its own nodeID. This step populates

the k-buckets of the currently active nodes that are contacted

by node lookup(key) with the contact triple of the new node.

After this, the new node refreshes its k-buckets by calling

node lookup(key) using values for key set randomly to a point

in the intervals covered by the k-buckets.

• Finally, there exists a Python implementation of Kademlia — it

is called Khashmir — that is used in BitTorrent. Other Python

implementations of Kademlia include SharkyPy and Entangled.

40

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.8 SOME OTHER DHT-BASED P2P
PROTOCOLS AND A COMPARISON OF

THE PROTOCOLS

• The other DHT-based P2P protocols that have also received

much attention include CAN (Content Addressable Network),

Tapestry, RSG (Rainbow Skip Graph), Viceroy, and so on.

• Tapestry’s routing algorithm is similar to Pastry’s. Therefore,

like Pastry, it can include node proximity in its criterion for

selecting entries for the routing table at each node. Tapestry is

also based on the one-dimensional circular nodeID space used in

Chord, Pastry, Kademlia, etc.

• Whereas Chord, Pastry, Kademlia, etc., route messages in a

one-dimensional circular nodeID space, CAN routes messages

in a d-dimensional space. Each node maintains a routing table

with O(d) entries in it. The entries in the routing table refer to

the node’s neighbors in the d-dimensional space. Like Chord,

CAN is not able to take into account node proximities.

• Shown next are two tables, the first lists some performance

metrics for comparing DHT-based P2P protocols, and the

41

Computer and Network Security by Avi Kak Lecture 25

second a comparison of some of the DHT-based P2P protocols

with respect to the metrics.

(1) Messages required for each key lookup

(2) Messages required for each store lookup

(3) Messages needed to integrate a new peer

(4) Messages needed to manage a peer leaving

(5) Number of connections maintained per peer

(6) Topology can be adjusted to minimize per-hop latency (yes/no)

(7) Connections are symmetric or asymmetric

Table 1: This table is reproduced from “Routing in the Dark:

Pitch Black” by Nathan Evans, Chris GauthierDickey, and Chris-

tian Grothoff

Chord Pastry Kademlia CAN RSG

(1) O(log N) O(log N) O(log N) O(N−d) O(log N)

(2) O(log N) O(log N) O(log N) O(N−d) O(log N)

(3) O(log2 N) O(log N) O(log N) O(N +N−d) O(log N)

(4) O(log2 N) O(1) O(1) O(d) O(log N)

(5) O(log N) O(log N) O(log N) O(d) O(1)

(6) no yes yes yes no

(7) asymmetric asymmetric symmetric symmetric asymmetric

Table 2: This table is reproduced from “Routing in the Dark:

Pitch Black” by Nathan Evans, Chris GauthierDickey, and Chris-

tian Grothoff

42

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.9 THE BitTorrent PROTOCOL

• Because this protocol has become extremely popular for fast

downloads of large video and movie files on a peer-to-peer basis

and because, in some of its versions, the protocol uses the

Kademlia DHT, it is appropriate to review it briefly here.

• There is no official specification of the BitTorrent protocol that

was originally developed by Bram Cohen. He created a

BitTorrent client that is now referred to as the mainline client.

The mainline client serves as a reference for the

protocol. [A casual reader might think that if we have BitTorrent clients, we must also

have BitTorrent servers. Strictly speaking, there is no such thing as a BitTorrent server. That is, all

machines that run the BitTorrent software are clients. A BitTorrent client does both the downloading

and the uploading of the different pieces of a file. BitTorrent creates a peer-to-peer network for

exchanging the different pieces of a large file. However, note that some folks refer to the node on

which a tracker is running as a server. (As you we will see later in this section, a tracker stores the

content key for each media object that is available for P2P download and, for each content key, a list

of IP/port addresses of the peers currently distributing the content.) Using a DHT, however, it is

possible to run BitTorrent in a pure P2P trackerless mode. You could say that with DHT, the tracker

becomes distributed over all the nodes participating in the DHT.]

• BitTorrent breaks a large file into smaller pieces called blocks

that can subsequently be downloaded by clients by interacting

43

Computer and Network Security by Avi Kak Lecture 25

with other clients possessing different pieces of the same file. A

client that has collected all the blocks is called a seeder. And a

client that is still collecting the blocks is called a leecher. A

block is typically 250 kilobytes in size.

• Let’s say you want to make a file available for a BitTorrent

download by others. The first thing you do is to use the

BitTorrent software to create a torrent file; this is a file whose

name ends in the suffix “.torrent”. The torrent file contains the

following sections:

– an “announce” section that mentions the URL of the tracker.

– an “info” section that mentions the block size used and

SHA-1 hash for each block

• The tracker associates with a .torrent file the current list of

peers, these being the nodes that currently possess different

pieces of the file. This list is updated by the tracker as new

nodes join a swarm and the old nodes leave. By definition, a

swarm is the current set of peers engaged in exchanging

different pieces of a file.

• Someone wishing to download a large file starts out by

downloading the small .torrent file related to the desired

44

Computer and Network Security by Avi Kak Lecture 25

download. The .torrent file tells the BitTorrent client where

the tracker is located and the tracker informs the client what

other peers are currently active in the swarm. [A BitTorrent client

queries a tracker with a SHA-1 hash of the .torrent file. This hash serves as the

content key for the media object that the user wants to download through BitTorrent.

When querying a tracker, a client also subscribes to the tracker its IP address and the

port number. The tracker returns to the client the IP addresses and the associated

ports for all of the hosts that are currently in the same swarm. Therefore, the

BitTorrent client running on your machine can see the IP addresses of all of the folks

who are downloading the same media content. Since anyone can join a swarm for

downloading any content whatsoever, what this means is that there is no anonymity

at all for the downloaders of media content through BitTorrent. This lack of

anonymity is further exacerbated by the fact that the communication between the

tracker and the client is in plaintext. Therefore, anyone monitoring the traffic between

a client and a tracker would be able to get information on the participants in a swarm

even without having to join the swarm. Note that the communication between a client

and tracker may be either through TCP or UDP. In either case, the security

ramifications are the same.] If only the initial seeder for the file is

available, the client connects with the seeder and starts

downloading the different file pieces. As other clients join in by

checking in with the tracker, thus creating a swarm, the clients

start trading pieces with one another.

• What I have described so far is the “traditional” way of using

BitTorrent for downloading large files. This approach suffers

from the flaw that the service provider that serves as a clearing

house for the .torrent files becomes a single point of failure

45

Computer and Network Security by Avi Kak Lecture 25

for content delivery. A large service provider would obviously

construct an index of all the .torrent files it can make

available to the BitTorrent clients.

• A second shortcoming of the “traditional” approach is the

heavy burden it places on the trackers. The world’s largest

repository of .torrent files, http://thepiratebay.org,

used to maintain eight BitTorrent trackers for all the incoming

traffic for P2P downloads. A user’s BitTorrent client would first

download a .torrent file from the web site and then approach

one of the eight trackers with the content ID (SHA-1 hash of

the the torrent file) in order to join the swarm related to the

download of interest to the user.

• An ancillary protocol, called the PEX (for “Peer Exchange”)

protocol, was introduced to reduce the workload on the trackers.

The PEX protocol allows a peer A to query peer B directly

about the peers that B knows about that are currently in the

swarm (that A is interested in).. The PEX protocol opened up

the possibility that P2P file sharing could go on even if the

tracker were to go down on account of, say, a DoS attack.

• Another shortcoming of the “traditional” approach is that

maintaining an index for all the .torrent files and the trackers

can make the provider of these services potentially complicit in

the violation of anti-piracy laws should the authorities discover

46

http://thepiratebay.org

Computer and Network Security by Avi Kak Lecture 25

these services as having facilitated unauthorized download of

media content.

• So it should come as no surprise that torrent sites like

http://thepiratebay.org have completely switched over to

the DHT based operation of BitTorrent. With distributed

storage and access made possible by DHT in the manner

explained in the previous sections, there is now no need for

centralized trackers anywhere. [With DHT, a BitTorrent client either

directly downloads the hash of a torrent file or computes the same and then uses this

hash as the content key to query the DHT for the node that has the tracker for that

key. Subsequently, the client subscribes its IP address and the port number to that

tracker. The tracker supplies to the client a list of all the peers currently in the

swarm. The rest of the process is the same as with centralized trackers.]

• Even the need to provide a central index for the .torrent files

is being done away with through the use of what are known as

magnet links. A magnet link, at its simplest, is Base32 encoding

of the SHA-1 hash of a .torrent file. Now instead of storing

.torrent files directly and making them available through an

index, a site such as http://thepiratebay.org would only

store the magnet links and the BitTorrent clients would use

those links to search the DHT network for the node that has the

tracker.

• Abandoning centralized trackers (and even abandoning

47

http://thepiratebay.org
http://thepiratebay.org

Computer and Network Security by Avi Kak Lecture 25

centralized indexes for the torrent files) may make it easier for

BitTorrent service providers to stay one step ahead of the

anti-piracy police, the folks who like to use BitTorrent for

downloading media content need to keep in mind the fact that

nothing has changed from the perspective of anyone being able

to join a swarm and seeing the IP addresses of all the others

currently in the same swarm.

• Note that Ubuntu comes prepackaged with a BitTorrent client

that you are likely to find at

Applications→Internet→BitTorrent. Another popular

BitTorrent client for Linux and Windows platforms that we will

mention later is BitTornado. Folks who use MACS are likely to

use a client called Miro.

• BitTorrent uses a set of policies to ensure a fast and fair

distribution of all the file pieces to all the peers in a swarm.

Here are some examples of these policies:

– – Clients in a swarm request pieces for download in a

random order to increase opportunities for trading pieces

with other clients later.

– – It may seem that fair trading would result from a client

sending pieces to only those clients who send pieces back.

But such a policy, if followed strictly, would prevent new

48

Computer and Network Security by Avi Kak Lecture 25

clients from joining a swarm. To get around this problem, a

BitTorrent client uses what Bram Cohen has called

opportunistic unchoking. This policy consists of a

client using a portion of its bandwidth to send pieces to

clients selected at random from the list made available by

the tracker. This allows new BitTorrent clients to bootstrap

themselves with information that they can subsequently

trade.

• Each BitTorrent client keeps track of the other clients in a

swarm. The set of the other clients known to a client is known

as the peer set.

• BitTornado is a Python-based BitTorrent client. This client is

also known as ShadowBT. This works on a one GUI per torrent

basis. BitTornado is a set of command line utilities for working

with BitTorrent files.

• To use BitTornado in the form of a GUI as a BitTorrent client,

after downloading and installing the BitTornado package, all

you have to do is to call

btdownloadgui filename.torrent

or, if you want to specify the filename with just a command line

and without recourse to the GUI, use

btdownloadcurses filename.torrent

49

Computer and Network Security by Avi Kak Lecture 25

assuming in both cases that you are invoking these commands

in a directory that contains the torrent file. To download a

torrent in the background, you can invoke

btdownloadheadless

• If you are using version 0.3.18 of BitTornado with wxPython for

the GUI, you may wish to look at the following “fix” provided

by me:

https://engineering.purdue.edu/kak/distbt/

What you will find there is a rebundled BitTornado package

with changes to five files in order to make BitTornado 0.3.18

compatible with the python-wxgtk2.8 package.

50

https://engineering.purdue.edu/kak/distbt/

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.10 SECURITY ASPECTS OF
STRUCTURED DHT-BASED P2P

PROTOCOLS

• The basic protocols for open DHT-based overlay networks are

founded on the assumption that every node joining the overlay

can be trusted to provide its own nodeID that can be assumed

to come from a uniform probability distribution over the entire

node identity space. For Chord and Pastry protocols, this space

is the one-dimensional space corresponding to the Identifier

Circle shown in Figure 1. When m bits are used for nodeID,

this space will have a total of 2m points in it. In the rest of

this section, we will use the phrase “identifier

space” to refer to the space of all possible values for

nodeID and the content keys.

• The above-stated founding assumption will in general be true if

each node wishing to join a P2P network uses an algorithm such

as SHA-1 or MD5 to hash its IP address into a fixed-length

nodeID.

• In small P2P overlays, this trust in the participating nodes may

be well-placed. But it would obviously be naive to make this

assumption of trust if all and sundry are allowed to join a P2P

51

Computer and Network Security by Avi Kak Lecture 25

overlay.

• When no constraints are placed on who can join a P2P overlay,

security problems can be created by any or all of the following

possibilities:

– – a new node supplying a legitimate nodeID but falsifying

information in its own routing table

– – a new node supplying a fake nodeID that is meant to

cause harm to the operation of the overlay

– – the same new node joining an overlay repeatedly with

different nodeIDs

– – a set of nodes conspiring together with fake values for

nodeID to disrupt the operation of the overlay

We will now talk about each of the above possibilities.

• One of the easiest ways for a malicious node to cause problems

is by falsifying the information in its routing table (and, for the

case of Pastry, in its leaf table also). As the reader will recall,

for the case of Chord, the ith entry in the routing table of the

node whose nodeID is n is the IP address of the node whose

nodeID is the smallest integer going clockwise after the point

52

Computer and Network Security by Avi Kak Lecture 25

n + 2i−1 on the Identifier Circle. By inserting some other or

even a non-existent IP address at this location in the routing

table, routing queries would be misdirected (or not further

directed at all). This could cause the data to be stored at places

from where it would subsequently not be retrievable.

• All DHT-based overlays are vulnerable to false information in

the routing tables of the intruder nodes. This is referred to as a

topology attack on a P2P overlay.

• Theoretically at least, the misdirections caused by fake pointers

in routing tables should be detectable because a query in a

DHT-based P2P overlay can only travel in the direction of

decreasing difference between the nodeIDs and the content key.

But for this to actually work in practice, the propagation of a

query in an overlay must create an audit trail for the originator

of the query.

• Even with an audit trail, it may not be possible for the

originator of a query to verify that the query landed at the node

whose nodeID is closest to the query key. That is because, by

design, DHT-based P2P overlays are meant to be a dynamic

that allow for nodes to join and leave at will and because, again

by design, there is no global record of the configuration of the

overlay at any time instant. So the only way to verify that data

meant for storage landed at the correct node is to later retrieve

53

Computer and Network Security by Avi Kak Lecture 25

that data from some other node in the overlay.

• Let’s now consider the case when a node supplies a fake

nodeID when issuing its request to join the overlay. We will

assume that the intruder node is using a legitimate IP address

assigned to it. [Although not a part of the basic P2P protocols, a node’s IP address could

be verified by having it acknowledge test messages when it first links up with its neighboring nodes in

the P2P network. A node advertising a fake IP address for itself could still receive test messages from

other nodes in the network if the fake address belonged to a co-conspirator machine. But, at least for

the present, we will assume that such is not the case.] An attack mounted with a

fake nodeID, especially if that identity belongs to some other

legitimate node, is called the Spartacus Attack.

• Let’s further assume that the fake nodeID supplied above is

the content key for a particular resource (that we may assume

can be computed by hashing either its title or its content). In

this manner, the node would become the destination for that

content object. If content keys are computed solely on the basis

of a set of key words or the title of the data object, the

malicious node could supply any questionable material when

receiving a query for that data object.

• Ordinarily, for the sake of fault tolerance and for dealing with

node departures, replicas of the same data object would be

stored at a set of nodes in a neighborhood (in the nodeID

space) of the node that minimizes the difference between the

54

Computer and Network Security by Avi Kak Lecture 25

nodeID and the key. Several nodes conspiring together could

hijack a neighborhood around a key and cause disruptions with

the delivery of any of the replicas. The same sort of an attack

could be mounted by a single node that is able to field multiple

nodeID values. When a single malicious node presents multiple

nodeIDs to an overlay network, we say the offending node is

mounting a Sybil attack.

• Another possible security problem can arise if a malicious node

in a “legal” overlay is simultaneously a member of another

similar overlay consisting of a set of co-conspiring malicious

nodes. An unsuspecting new node wishing to join the legal

overlay may instead get directed into the illegal overlay. If the

illegal overlay contains some of the same data as the legal

overlay, the new node may not be able to detect that anything

is awry. Since the data storage in a P2P overlay is itself a

dynamic process, in the sense that the data can migrate around

as new nodes join and existing nodes leave the overlay, data

siphoning off by illegal operators would not be detectable.

• Another security problem can occur when several malicious

nodes decide to join and leave an overlay in rapid succession.

This has the potential of degrading the performance of the

overlay network since the routing table updates at all the

affected nodes in the overlay may not be able to keep up with

the additions and the departures of the offending nodes. As a

result, several legitimate nodes may end up with inconsistent

55

Computer and Network Security by Avi Kak Lecture 25

routing tables.

• Proximity routing used in Pastry is vulnerable to fake

proximities injected into the overlay by a malicious node

working in cahoots with other malicious nodes. Ordinarily, an

estimate of proximity would be obtained by invoking a utility

such as traceroute to estimate the number of a hops to a

given IP. But if this probe is intercepted by a malicious node,

that node can send back a pointer to another cooperating

malicious node.

• Although not by itself a security issue, the fact that it is now

common for a machine to possess a non-static IP addresses

(through DHCP) can create issues of its own with regard to

how a node behaves in an overlay. Let’s say an active node

changes its IP address after its DHCP lease expires, that would

invalidate its IP-address-based nodeID. Suddenly, all of the

information stored at the node would become inconsistent with

its new nodeID. So the node would have to reinitialize itself as

if it was starting with a blank slate.

• Somewhat along the same lines as mentioned above, the fact

that many machines these days operate behind NAT devices

and proxy servers can also create big problems with regard to

their participation in DHTs. The IP addresses for these

machines as visible from the outside are usually the same for all

56

Computer and Network Security by Avi Kak Lecture 25

the machines that are being NATed or that are operating

behind the same proxy server. So it may make no sense to base

the nodeID for such machines on their IP addresses.

• To deal with the above problem and also to make it easier to

authenticate the nodes participating in a P2P overlay network,

it has been suggested that the nodeID of a node be derived by

hashing its public key. Such a nodeID would be

unforgable.

• About defenses against the security problems mentioned above

(and others not mentioned here), P2P security is still a wide

open research area. As P2P system become even more

important in the years to come, the security aspect will surely

see a lot of action.

• It is conceivable that as a protection against some of the attacks

listed above, a structured P2P network will have certain

designated nodes acting as guards at certain chosen

locations in the identifier space. By exchanging

“network integrity messages” amongst themselves — messages

that involve different values for the content keys — and

observing the behavior of the overlay network with regard to

the storage and retrieval of those messages, the guard nodes will

be able to monitor the health of the overlay.

57

Computer and Network Security by Avi Kak Lecture 25

• Further protection could be obtained by designating certain

trusted machines to act as bootstrap machines. Those would be

the only entry points for the new nodes. In order not to create

choke points in a P2P system, the set of machines designated

for bootstrapping could itself be made dynamic by insisting that

such machines possess certificates issued by certain authorities.

58

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.11 ANONYMITY IN STRUCTURED
P2P OVERLAY NETWORKS

• There is a legitimate need for privacy and anonymity in the

conduct of human enterprise. That is, perverts and the mentally

sick are not the only ones who may wish to remain private

and/or anonymous in their dealings with the rest of the world.

• Privacy and anonymity are somewhat interrelated. Whereas

privacy refers to a desire that others not become privy to one’s

actions, anonymity refers to one engaging in actions that would

be visible to others but without a knowledge of the author of

the actions.

• As an example of a legitimate need for privacy, it is now

common for lawyers to ask their expert witnesses to not use

email (for communicating with the lawyers) because all email is

discoverable and can be subject to court scrutiny. So if an

expert witness wanted to have a serious conversation with the

lawyers, it would require either voice communications or a

face-to-face meeting. Obviously, then, any email system that

allows you to communicate truly privately, it would be popular

in many legitimate business enterprises.

59

Computer and Network Security by Avi Kak Lecture 25

• With regard to anonymity, history has shown that it serves an

important role in legitimate expressions of dissent and in

mounting opposition to repressive control.

• Privacy and anonymity are also important for each one of us

individually in order to keep our private lives private —

especially with regard to how we interact with the internet at

large. It should be no one’s business as to what sort of music

and movies I download from web, or as to which web sites I

frequent for my amusement. [Individually we desire privacy and anonymity,

not because we have anything illegitimate to hide, but simply because we do not care

for others to know about certain aspects of ourselves. For example, I have a desire to

not be seen by others when I am picking my nose.]

• Anonymity was one of the original reasons for people to get

excited about P2P networks. The reasoning was that if

information could migrate to any node (or to even a set of

nodes) in a P2P network and could subsequently be downloaded

from wherever it resided, there would be less of an association

between the information and the keeper of that information,

and, therefore, there would be less of a legal hassle when others

downloaded that information.

• So an important question is as to what extent the structured

P2P overlay networks provide anonymity to the nodes

participating in a network.

60

Computer and Network Security by Avi Kak Lecture 25

• A problem with most structured P2P protocols is that in their

basic implementations they do not allow for the nodes to remain

anonymous. Since the overlay topology is controlled strictly by

mathematical formulas and since that is also the case with how

the information to be stored is assigned to the different nodes,

ordinarily speaking there is no anonymity either with regard to

the node identities or with regard to the association between the

nodes and the information they make available.

• Yet, it is possible for a DHT-based structured P2P overlay to

provide sender anonymity — as demonstrated recently by

the work of Nikita Borisov — provided the lookup queries are

forwarded recursively as opposed to iteratively.

• We say that a lookup query in a P2P overlay is forwarded

iteratively if the original sender node contacts one of its

neighbors in its routing table to find out where the query should

be directed. Subsequently, the original node sends the query to

that node to find out where the query should be sent next. This

process continues iterative until the goal node is reached that

minimizes the distance between the key and the nodeID. At

that point, the original sender sends the query directly to the

goal node. Note that, in the iterative mode, the original sender

node directly communicates with all of the enroute nodes until

the goal node is found. Obviously, there is no way for

the sender to remain anonymous in this approach to

data lookup for either posting new information or

61

Computer and Network Security by Avi Kak Lecture 25

retrieving existing information.

• We say that a lookup query in a P2P overlay is forwarded

recursively if the original sender node sends the query itself

to one of its neighbors in its routing table. That node forwards

the query to the next node in its own routing table, and so on,

until the query reaches the goal node. If the query was for

posting new information, there would be no need to include the

identity of the original sender with the query as it wends its way

to the final destination. On the other hand, if the query was for

retrieving data, the destination node (if it has the data) can

send the data back to the node from which it received the

query, and that node can send it back to where it got the query

from, and so on. In this manner, the original sender of the

query will be able to access the information but the

intermediate nodes will not have direct access to the identity of

the original sender. So this approach does offer a

measure of sender anonymity as the intermediate

nodes would not know where the query originated.

• But the above seemingly simple approach to achieving

anonymity has a few shortcomings, not the least of which is

that it depends on the distance between the original sender and

the final destination in the identifier space.

• Borisov has shown that it is possible to achieve greater

62

Computer and Network Security by Avi Kak Lecture 25

anonymity with recursive queries if one interposes a random

walk in the path of a query from the original sender to its final

destination.

63

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.12 AN ANSWER TO “Will I be Caught?”

• When P2P file-sharing tools first hit the internet, they became

instantly popular. Many people believed that a big reason for

this popularity was the perception that there was less of a

chance of “getting caught” if you downloaded music or video

from others just like yourself, especially if the different pieces of

what you wanted came from different randomly selected places

on the internet.

• So are the chances of being caught really less with a P2P

file-sharing system compared to the more traditional methods of

downloading stuff directly from web sites?

• The bottom-line answer to the question is that you are just as

vulnerable with P2P as you are with the more traditional

methods — even if what you are downloading is

protected by strong encryption.

• Confidentiality offered by strong encryption and anonymity

offered by mechanisms such as the insertion of random walks in

query propagation in P2P overlays is mostly illusory.

64

Computer and Network Security by Avi Kak Lecture 25

• If you can join a P2P network, so can any everyone else and

that includes the folks who want to know what it is you are

downloading. If your viewer is able to see the contents of an

encrypted file, the viewer available to those folks will be able to

do the same. If the material is questionable, all that the

enforcement folks have to do is to compare the digital signature

of the file they downloaded with the file you downloaded. So

giving a different name to a downloaded encrypted file with

questionable content does not necessarily protect you.

• You could, of course, give the files strong encryption on your

own with a key that only you know about. Obviously, such a

file would not be examinable by enforcement folks. But, don’t

forget that when you downloaded the file it was encrypted

either by the P2P protocol or by a protocol associated with the

communication link. If the encryption was provided by the P2P

protocol with a session key (that may be different for each

download), your end of the protocol most likely decrypted the

file before it was stored on the disk. The same would be true for

the encryption provided by the communication link. In either

case, the ISP you are connected to can easily record the digital

signatures of the files you download. These can be compared

with the digital signatures of the files that the enforcement folks

would download from the same P2P network.

• I am not saying that ISPs routinely log the digital signatures of

the files that are downloaded by their customers. But the

65

Computer and Network Security by Avi Kak Lecture 25

important point is that it could be done.

• The enforcement folks may also deliberately post questionable

material in the overlay database to catch “bad guys.” Not only

that, people who want to watch you and others can deploy a

large number of machines at different points in a P2P overlay’s

identifier space to monitor how the information is being routed

in those portions of the space. By examining the routing tables

at the nodes under their control, the enforcement folks can get a

sense of how the material posted by them is migrating in the

overlay. This may not immediately reveal as to who has

actually downloaded what. However, since the routing tables

must contain the IP addresses, over time and with repeated

trials of the ploy, the enforcement folks may be able develop a

good list of suspects.

• The bottom line is that there is practically no anonymity on the

internet. [Even using fake login names at popular web email sites does not give you a whole

lot of anonymity since the locations from where you are logging in can be monitored.]

• Yes, by using strong encryption, you can get a measure of

confidentiality, but that is only true amongst a small group of

individuals who trust one another. There is no privacy or

confidentiality when it comes to downloading files that are

available to all and sundry even when these files are strongly

encrypted.

66

Computer and Network Security by Avi Kak Lecture 25

• If what I have said above is the case, how come there are so

many bad guys on the internet? From all the spam we receive

and all of the nefarious places we can wander into, there

appears to be no shortage of scamsters on the internet. How

can they get away with it?

• The answer to the above question is that law enforcement with

regard to internet fraud is extremely weak in a large number of

countries. Additionally, even in the US, the law enforcement

folks simply have not considered it worth their while to pursue

certain crimes on the internet.

• So if you have a desire to use P2P for questionable downloads,

I’d say don’t. It’s not worth it.

67

Computer and Network Security by Avi Kak Lecture 25

Back to TOC

25.13 SUGGESTIONS FOR FURTHER
READING

• Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications”
SIGCOMM’01, August 27-31, San Diego, CA, 2001.

• Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica,
“Looking Up Data in P2P Systems,” Communications of ACM, pp. 43-47, 2001.

• Antony Rowstron and Peter Druschel, “Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” 18th IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware 2001),
Heidelberg, Germany, 2001.

• Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron, “Exploiting
Network Proximity in Peer-to-Peer Overlay Networks,” Technical Report
MSR-TR-2002-82, Microsoft Research, 2002.

• Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron, “Exploiting
Network Proximity in Distributed Hash Tables,” position paper.

• Emil Sit and Robert Morris, “Security Considerations for Peer-to-Peer Distributed
Hash Tables,” Proc. of the 1st International Workshop on Peer-to-Peer Systems
(IFTPS ’02), Cambridge, MA, March 2002.

• John Douceur, “The Sybil Attack,” Proc. of the 1st International Workshop on
Peer-to-Peer Systems (IFTPS ’02), Cambridge, MA, March 2002.

• Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan Wallach,
“Secure Routing for Structured Peer-to-Peer Overlay Networks,” Proc. 5th Usenix
Symposium on Operating Systems Design and Implementation, December 2002.

• Nikita Borisov, “Anonymous Routing in Structured Peer-to-Peer Overlays”, Ph.D.
Dissertation, Computer Science, University of California, Berkeley, 2005.

• Peter Maymounkov and David Mazieres, “Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric,” Proceedings of IPTPS02, Cambridge, March 2002.

• Michael Goodrich, Michael Nelson, and Jonathan Sun, “The Rainbow Skip Graph: A
Fault-Tolerant Constant-Degree Distributed Data Structure,” Proceedings of the 7th
Annual ACM/SIAM Symposium on Discrete Algorithms, pp. 384-393, New York,
2006.

68

Computer and Network Security by Avi Kak Lecture 25

• Nathan Evans, Chris GauthierDickey, and Christian Grothoff, “Routing in the Dark:
Pitch Black,” ACSAC 2007.

69

