
Lecture 24: The Dictionary Attack and the

Rainbow-Table Attack on Password Protected Systems

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 13, 2023

5:28pm

©2023 Avinash Kak, Purdue University

Goals:

� The Dictionary Attack

� Thwarting a dictionary attack with log scanning

� Cracking passwords with direct table lookup

� Cracking passwords with hash chains

� Cracking password with rainbow tables

� Password hashing schemes

Computer and Network Security by Avi Kak Lecture 24

CONTENTS

Section Title Page

24.1 The Dictionary Attack 3

24.2 The Password File Embedded in 12
the Conficker Worm

24.3 Thwarting the Dictionary Attack 14

with Log Scanning

24.4 Cracking Passwords with Hash 28
Chains and Rainbow Tables

24.5 Password Hashing Schemes 41

24.6 Federated Identity Management 52

24.7 Homework Problems 58

2

Computer and Network Security by Avi Kak Lecture 24

Back to TOC

24.1 THE DICTIONARY ATTACK

� Scanning blocks of IP addresses for vulnerabilities at the ports

that are open is in many cases the starting point for breaking

into a network.

� If you are not behind a firewall, it is easy to see such ongoing

scans. All you have to do is to look at the access or the

authorization logs of the services offered by a host in your

network. You will notice that the machines in your network

are being constantly scanned for open ports and possible

vulnerabilities at those ports.

� In this lecture I will focus on how people try to break into port

22 that is used for the SSH service. This is a critical service

since its use goes way beyond just remote login for terminal

sessions. It is also used for secure pickup of email from a

mail-drop machine and a variety of other applications.

� The most commonly used ploy to break into port 22 is to mount

what is referred as a dictionary attack on the port. In a

dictionary attack, the bad guys try a large number of commonly

used names as possible account names on the target machine

3

Computer and Network Security by Avi Kak Lecture 24

and, should they succeed in stumbling into a name for which

there is actually an account on the target machine, they then

proceed to try a large number of commonly used passwords for

that account. [An attack closely related to the dictionary attack is known as the brute-force

attack in which a hostile agent systematically tries all possibilities for usernames and passwords. Since the

size of the search space in a brute-force attack increases exponentially with the lengths of the usernames and

passwords used in the attack, it is not generally feasible to mount such attacks through the internet.]

� If you are logged into a Ubuntu machine, you can see these

attempts on an ongoing basis by running the following

command line in a separate window

tail -f /var/log/auth.log | sed G

� I will now show just a two minute segment of this log

produced not too long ago on the host

moonshine.ecn.purdue.edu. To make it easier to see the

usernames being tried by the attacker, I have made a manual

entry in a separate line for just the username that the attacker

tries in the next break-in attempt. Note that the third line

shown for each break-in attempt is truncated because it is much

too long. Nonetheless, you can see all of the relevant

information in what is displayed. This scan was mounted from

the IP address 61.163.228.117. If you enter this IP address in

the query window of http://www.ip2location.com/ or

http://geoiptool.com, you will see that the attacker is

logged into a network that belongs to the The Postal

4

http://www.ip2location.com/
http://geoiptool.com

Computer and Network Security by Avi Kak Lecture 24

Information Technology Office in the city of Henan in China.

username tried: staff

Apr 10 13:59:59 moonshine sshd[32057]: Invalid user staff from 61.163.228.117

Apr 10 13:59:59 moonshine sshd[32057]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 13:59:59 moonshine sshd[32057]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:01 moonshine sshd[32057]: Failed password for invalid user staff from 61.163.228.117 port 40805 ssh2

username tried: sales

Apr 10 14:00:08 moonshine sshd[32059]: Invalid user sales from 61.163.228.117

Apr 10 14:00:08 moonshine sshd[32059]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:08 moonshine sshd[32059]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:10 moonshine sshd[32059]: Failed password for invalid user sales from 61.163.228.117 port 41066 ssh2

username tried: recruit

Apr 10 14:00:17 moonshine sshd[32061]: Invalid user recruit from 61.163.228.117

Apr 10 14:00:17 moonshine sshd[32061]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:17 moonshine sshd[32061]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:19 moonshine sshd[32061]: Failed password for invalid user recruit from 61.163.228.117 port 41303 ssh2

username tried: alias

Apr 10 14:00:26 moonshine sshd[32063]: Invalid user alias from 61.163.228.117

Apr 10 14:00:26 moonshine sshd[32063]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:26 moonshine sshd[32063]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:29 moonshine sshd[32063]: Failed password for invalid user alias from 61.163.228.117 port 41539 ssh2

username tried: office

Apr 10 14:00:36 moonshine sshd[32065]: Invalid user office from 61.163.228.117

Apr 10 14:00:36 moonshine sshd[32065]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:36 moonshine sshd[32065]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:38 moonshine sshd[32065]: Failed password for invalid user office from 61.163.228.117 port 41783 ssh2

username tried: samba

Apr 10 14:00:46 moonshine sshd[32067]: Invalid user samba from 61.163.228.117

Apr 10 14:00:46 moonshine sshd[32067]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:46 moonshine sshd[32067]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:47 moonshine sshd[32067]: Failed password for invalid user samba from 61.163.228.117 port 42027 ssh2

username tried: tomcat

Apr 10 14:00:55 moonshine sshd[32069]: Invalid user tomcat from 61.163.228.117

Apr 10 14:00:55 moonshine sshd[32069]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:00:55 moonshine sshd[32069]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:00:57 moonshine sshd[32069]: Failed password for invalid user tomcat from 61.163.228.117 port 42247 ssh2

username tried: webadmin

Apr 10 14:01:05 moonshine sshd[32071]: Invalid user webadmin from 61.163.228.117

Apr 10 14:01:05 moonshine sshd[32071]: pam_unix(sshd:auth): check pass; user unknown

5

Computer and Network Security by Avi Kak Lecture 24

Apr 10 14:01:05 moonshine sshd[32071]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:07 moonshine sshd[32071]: Failed password for invalid user webadmin from 61.163.228.117 port 42488 ssh2

username tried: spam

Apr 10 14:01:14 moonshine sshd[32073]: Invalid user spam from 61.163.228.117

Apr 10 14:01:14 moonshine sshd[32073]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:01:14 moonshine sshd[32073]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:16 moonshine sshd[32073]: Failed password for invalid user spam from 61.163.228.117 port 42693 ssh2

username tried: virus

Apr 10 14:01:23 moonshine sshd[32075]: Invalid user virus from 61.163.228.117

Apr 10 14:01:23 moonshine sshd[32075]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:01:23 moonshine sshd[32075]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:25 moonshine sshd[32075]: Failed password for invalid user virus from 61.163.228.117 port 42917 ssh2

username tried: cyrus

Apr 10 14:01:32 moonshine sshd[32077]: Invalid user cyrus from 61.163.228.117

Apr 10 14:01:32 moonshine sshd[32077]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:01:32 moonshine sshd[32077]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:35 moonshine sshd[32077]: Failed password for invalid user cyrus from 61.163.228.117 port 43144 ssh2

username tried: oracle

Apr 10 14:01:42 moonshine sshd[32079]: Invalid user oracle from 61.163.228.117

Apr 10 14:01:42 moonshine sshd[32079]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:01:42 moonshine sshd[32079]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:45 moonshine sshd[32079]: Failed password for invalid user oracle from 61.163.228.117 port 43384 ssh2

username tried: mechael

Apr 10 14:01:52 moonshine sshd[32081]: Invalid user michael from 61.163.228.117

Apr 10 14:01:52 moonshine sshd[32081]: pam_unix(sshd:auth): check pass; user unknown

Apr 10 14:01:52 moonshine sshd[32081]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=61.163.228.117

Apr 10 14:01:54 moonshine sshd[32081]: Failed password for invalid user michael from 61.163.228.117 port 43634 ssh2

....

....

....

� In mounting a dictionary attack, the bad guys focus particularly

on account names that a target machine could be expect to

have with high probability. These include:

root

webmaster

webadmin

6

Computer and Network Security by Avi Kak Lecture 24

linux

admin

ftp

mysql

oracle

guest

postgres

test

sales

staff

user

and several others

� All of the log entries I showed earlier were for accounts that do

not exist on moonshine.ecn.purdu.edu. What I show next is a

concerted attempt to break into the machine through the root

account that does exist on the machine. This attack is from the

IP address 202.99.32.53. As before, if you enter this IP address

in the query window of http://www.ip2location.com/ or

http://www.geoiptool.com/, you will see that the attacker

is logged into a network that belongs to the CNCGroup Beijing

Province Network in Beijing, China. Note that this is just a

three minute segment of the log file.

Apr 10 16:23:20 moonshine sshd[32301]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:23:22 moonshine sshd[32301]: Failed password for root from 202.99.32.53 port 42273 ssh2

Apr 10 16:23:29 moonshine sshd[32303]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

7

http://www.ip2location.com/
http://www.geoiptool.com/

Computer and Network Security by Avi Kak Lecture 24

Apr 10 16:23:32 moonshine sshd[32303]: Failed password for root from 202.99.32.53 port 42499 ssh2

Apr 10 16:23:39 moonshine sshd[32305]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:23:41 moonshine sshd[32305]: Failed password for root from 202.99.32.53 port 42732 ssh2

Apr 10 16:23:48 moonshine sshd[32307]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:23:50 moonshine sshd[32307]: Failed password for root from 202.99.32.53 port 42976 ssh2

Apr 10 16:23:58 moonshine sshd[32309]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:23:59 moonshine sshd[32309]: Failed password for root from 202.99.32.53 port 43208 ssh2

Apr 10 16:24:06 moonshine sshd[32311]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:08 moonshine sshd[32311]: Failed password for root from 202.99.32.53 port 43439 ssh2

Apr 10 16:24:15 moonshine sshd[32313]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:17 moonshine sshd[32313]: Failed password for root from 202.99.32.53 port 43659 ssh2

Apr 10 16:24:24 moonshine sshd[32315]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:26 moonshine sshd[32315]: Failed password for root from 202.99.32.53 port 43901 ssh2

Apr 10 16:24:33 moonshine sshd[32317]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:35 moonshine sshd[32317]: Failed password for root from 202.99.32.53 port 44128 ssh2

Apr 10 16:24:42 moonshine sshd[32319]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:44 moonshine sshd[32319]: Failed password for root from 202.99.32.53 port 44352 ssh2

Apr 10 16:24:51 moonshine sshd[32321]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:24:53 moonshine sshd[32321]: Failed password for root from 202.99.32.53 port 44577 ssh2

Apr 10 16:25:00 moonshine sshd[32323]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:01 moonshine sshd[32323]: Failed password for root from 202.99.32.53 port 44803 ssh2

Apr 10 16:25:09 moonshine sshd[32325]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:11 moonshine sshd[32325]: Failed password for root from 202.99.32.53 port 45024 ssh2

Apr 10 16:25:18 moonshine sshd[32327]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:20 moonshine sshd[32327]: Failed password for root from 202.99.32.53 port 45269 ssh2

Apr 10 16:25:27 moonshine sshd[32329]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:29 moonshine sshd[32329]: Failed password for root from 202.99.32.53 port 45496 ssh2

Apr 10 16:25:36 moonshine sshd[32331]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:38 moonshine sshd[32331]: Failed password for root from 202.99.32.53 port 45725 ssh2

Apr 10 16:25:45 moonshine sshd[32333]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:47 moonshine sshd[32333]: Failed password for root from 202.99.32.53 port 45951 ssh2

Apr 10 16:25:54 moonshine sshd[32335]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:25:56 moonshine sshd[32335]: Failed password for root from 202.99.32.53 port 46186 ssh2

Apr 10 16:26:03 moonshine sshd[32337]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:26:05 moonshine sshd[32337]: Failed password for root from 202.99.32.53 port 46402 ssh2

Apr 10 16:26:12 moonshine sshd[32339]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:26:14 moonshine sshd[32339]: Failed password for root from 202.99.32.53 port 46637 ssh2

Apr 10 16:26:21 moonshine sshd[32341]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=202.99.32.53

Apr 10 16:26:23 moonshine sshd[32341]: Failed password for root from 202.99.32.53 port 46859 ssh2

....

....

....

8

Computer and Network Security by Avi Kak Lecture 24

� As long as we are on the subject of looking at the

/var/log/auth.log log file, in the same file you will also see

numerous break-in entries that look like those shown below.

These entries contain the special entry “failed - POSSIBLE

BREAK-IN ATTEMPT!”. Although such entries look alarming at

first sight, they are no more sinister than the examples I showed

earlier. What triggers this particular form of log entry is when

the local sshd daemon cannot reconcile the domain name from

where SSH connection request is coming from with the IP

address contained in the connection request. Shown below is a

small segment of such an attack on moonshine.ecn.purdue.edu

from the IP address 78.153.210.68. As before, if you enter this

address in the query window of

http://www.ip2location.com/, you will discover that the

attacker is logged into the network that belongs to PEM VPS

Hosting Servers in the city of Carlow, Ireland. The attack

represents a concerted attempt to break into the root account

by guessing the password. I have abbreviated the first line of

each attempt as indicated by the sequence of dots in such lines.

An actual first line of each attempt looks like the following:

Apr 10 21:42:45 moonshine sshd[787]: reverse mapping checking \

getaddrinfo for 210-68.colo.sta.blacknight.ie [78.153.210.68] \

failed - POSSIBLE BREAK-IN ATTEMPT!

Here is just a two minute segment of such an attack:

Apr 10 21:41:58 moonshine sshd[757]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:41:58 moonshine sshd[757]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:41:59 moonshine sshd[757]: Failed password for root from 78.153.210.68 port 43828 ssh2

Apr 10 21:42:01 moonshine sshd[759]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

9

http://www.ip2location.com/

Computer and Network Security by Avi Kak Lecture 24

Apr 10 21:42:01 moonshine sshd[759]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:02 moonshine sshd[759]: Failed password for root from 78.153.210.68 port 43948 ssh2

Apr 10 21:42:03 moonshine sshd[761]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:04 moonshine sshd[761]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:06 moonshine sshd[761]: Failed password for root from 78.153.210.68 port 44058 ssh2

Apr 10 21:42:08 moonshine sshd[763]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:08 moonshine sshd[763]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:09 moonshine sshd[763]: Failed password for root from 78.153.210.68 port 44210 ssh2

Apr 10 21:42:11 moonshine sshd[765]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:11 moonshine sshd[765]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:12 moonshine sshd[765]: Failed password for root from 78.153.210.68 port 44330 ssh2

Apr 10 21:42:14 moonshine sshd[767]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:14 moonshine sshd[767]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:16 moonshine sshd[767]: Failed password for root from 78.153.210.68 port 44440 ssh2

Apr 10 21:42:17 moonshine sshd[769]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:17 moonshine sshd[769]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:19 moonshine sshd[769]: Failed password for root from 78.153.210.68 port 44568 ssh2

Apr 10 21:42:20 moonshine sshd[771]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:20 moonshine sshd[771]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:22 moonshine sshd[771]: Failed password for root from 78.153.210.68 port 44698 ssh2

Apr 10 21:42:23 moonshine sshd[773]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:23 moonshine sshd[773]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:25 moonshine sshd[773]: Failed password for root from 78.153.210.68 port 44818 ssh2

Apr 10 21:42:27 moonshine sshd[775]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:27 moonshine sshd[775]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:29 moonshine sshd[775]: Failed password for root from 78.153.210.68 port 44928 ssh2

Apr 10 21:42:30 moonshine sshd[777]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:30 moonshine sshd[777]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:32 moonshine sshd[777]: Failed password for root from 78.153.210.68 port 45089 ssh2

Apr 10 21:42:33 moonshine sshd[779]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:33 moonshine sshd[779]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:34 moonshine sshd[779]: Failed password for root from 78.153.210.68 port 45186 ssh2

Apr 10 21:42:36 moonshine sshd[781]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:36 moonshine sshd[781]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:37 moonshine sshd[781]: Failed password for root from 78.153.210.68 port 45299 ssh2

Apr 10 21:42:38 moonshine sshd[783]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:38 moonshine sshd[783]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:40 moonshine sshd[783]: Failed password for root from 78.153.210.68 port 45405 ssh2

10

Computer and Network Security by Avi Kak Lecture 24

Apr 10 21:42:41 moonshine sshd[785]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:41 moonshine sshd[785]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:43 moonshine sshd[785]: Failed password for root from 78.153.210.68 port 45521 ssh2

Apr 10 21:42:45 moonshine sshd[787]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:45 moonshine sshd[787]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:47 moonshine sshd[787]: Failed password for root from 78.153.210.68 port 45663 ssh2

Apr 10 21:42:48 moonshine sshd[789]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:48 moonshine sshd[789]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:49 moonshine sshd[789]: Failed password for root from 78.153.210.68 port 45778 ssh2

Apr 10 21:42:51 moonshine sshd[791]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:51 moonshine sshd[791]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:53 moonshine sshd[791]: Failed password for root from 78.153.210.68 port 45882 ssh2

Apr 10 21:42:54 moonshine sshd[793]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:54 moonshine sshd[793]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:55 moonshine sshd[793]: Failed password for root from 78.153.210.68 port 46011 ssh2

Apr 10 21:42:57 moonshine sshd[795]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 10 21:42:57 moonshine sshd[795]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=78.153.210.68

Apr 10 21:42:58 moonshine sshd[795]: Failed password for root from 78.153.210.68 port 46123 ssh2

....

....

....

11

Computer and Network Security by Avi Kak Lecture 24

Back to TOC

24.2 THE PASSWORD FILE EMBEDDED
IN THE CONFICKER WORM

� When an attacker who has mounted a dictionary attack does

find an installed account on the victim machine, the next

challenge for the attacker is to gain entry into the account by

making guesses at the password for the account. For example,

the last two segments of the auth.log file shown in the

previous section are for two concerted attempts by two different

attackers to guess the password for the root account on

moonshine.ecn.purdue.edu.

� In the context of guessing the passwords, it is interesting to

examine the guesses that are embedded in the binary for the

Conficker worm that we discussed in Lecture 22. Here are the

240 guesses that were taken from

http://onecare.live.com/standard/en-us/virusenc/virusencinfo.htm?VirusName=Worm:Win32/Conficker.B

123 1234 12345 123456

1234567 12345678 123456789 1234567890

123123 12321 123321 123abc

123qwe 123asd 1234abcd 1234qwer

1q2w3e a1b2c3 admin Admin

administrator nimda qwewq qweewq

qwerty qweasd asdsa asddsa

asdzxc asdfgh qweasdzxc q1w2e3

qazwsx qazwsxedc zxcxz zxccxz

zxcvb zxcvbn passwd password

Password login Login pass

mypass mypassword adminadmin root

12

 http://onecare.live.com/standard/en-us/virusenc/virusencinfo.htm?VirusName=Worm:Win32/Conficker.B

Computer and Network Security by Avi Kak Lecture 24

rootroot test testtest temp

temptemp foofoo foobar default

password1 password12 password123 admin1

admin12 admin123 pass1 pass12

pass123 root123 pw123 abc123

qwe123 test123 temp123 mypc123

home123 work123 boss123 love123

sample example internet Internet

nopass nopassword nothing ihavenopass

temporary manager business oracle

lotus database backup owner

computer server secret super

share superuser supervisor office

shadow system public secure

security desktop changeme codename

codeword nobody cluster customer

exchange explorer campus money

access domain letmein letitbe

anything unknown monitor windows

files academia account student

freedom forever cookie coffee

market private games killer

controller intranet work home

job foo web file

sql aaa aaaa aaaaa

qqq qqqq qqqqq xxx

xxxx xxxxx zzz zzzz

zzzzz fuck 12 21

321 4321 54321 654321

7654321 87654321 987654321 0987654321

0 00 000 0000

00000 00000 0000000 00000000

1 11 111 1111

11111 111111 1111111 11111111

2 22 222 2222

22222 222222 2222222 22222222

3 33 333 3333

33333 333333 3333333 33333333

4 44 444 4444

44444 444444 4444444 44444444

5 55 555 5555

55555 555555 5555555 55555555

6 66 666 6666

66666 666666 6666666 66666666

7 77 777 7777

77777 777777 7777777 77777777

8 88 888 8888

88888 888888 8888888 88888888

9 99 999 9999

99999 999999 9999999 99999999

13

Computer and Network Security by Avi Kak Lecture 24

Back to TOC

24.3 THWARTING THE DICTIONARY
ATTACK WITH LOG SCANNING

� Before getting to the subject of log scanning for protecting a

computer/network against a dictionary attack, I should say

quickly that if, say, the computer you want to protect is at your

home and you want to be able to SSH into it from work without

allowing others to be able to do the same, just a couple of

entries in the /etc/hosts.allow and the /etc/hosts.deny files

would keep all intruders at bay.

/etc/hosts.allow : sshd: xxx.xxx.xxx.xxx

/etc/hosts.deny : ALL: ALL

where xxx.xxx.xxx.xxx is the IP address from where you wish to

connect to your home machine. Since /etc/hosts.allow takes

precedence over /etc/hosts.deny , the above two entries will

ensure that only you will be allowed SSH access into the

machine.

� Let’s now consider a more general situation of detecting

repeated break-in attempts and temporarily (or, sometimes,

permanently) blacklisting IP addresses from where the attacks

are emanating.

14

Computer and Network Security by Avi Kak Lecture 24

� Until recently, DenyHosts was the most popular tool used for

keeping an eye on the sshd server access logs (in

/var/log/auth.log on Linux machines). DenyHosts, however,

was removed from Ubuntu distributions of Linux sometime in

2014 for “unaddressed security issues” and other reasons.

� As far as the Linux platforms are concerned, Fail2Ban is now

the most commonly used tool for intrusion prevention through

log scanning. [According to the Wikipedia page on Fail2Ban, the development of Fail2Ban has been

led by Cyril Jaquier, Yaroslav Halchenko, Daniel Black, Steven Hiscocks, and Arturo ’Buanzo’ Busleiman as

an opensource project. DenyHosts was created by Phil Schwartz.]

� While both Fail2Ban and DenyHosts detect intrusion attempts

by keeping track of the number of login attempts (during a time

interval whose length in set is the config file), there is a

fundamental difference in how the two tools keep the blacklisted

IP addresses at bay. With Fail2Ban, a blacklisted IP address is

kept out by adding a new rule to the iptables firewall. [See Lecture 18

on iptables.] On the other hand, DenyHosts places a blacklisted IP

address in the /etc/hosts.deny file. Subsequently, with both

tools, no further SSH connections from the same IP address

would be honored — at least until the expiration of a certain

pre-set time interval. [Depending on the config options you set, Fail2Ban would be happy to

just send you a notification (that is, without banning the IP address) when it sees too many unsuccessful

attempts at entry. As you will soon see, by using regex based filters, Fail2Ban can also try to detect malicious

behaviors by the connections made by IP addresses (say, for downloading web pages) and subsequently it can

take any action you wish vis-a-vis those IP addresses.]

15

Computer and Network Security by Avi Kak Lecture 24

� You may think there is a bit of irony involved in making future

intrusion prevention decisions on the basis of unsuccessful

attempts in the past. Let’s say an intruder has successfully

managed to break into a machine as root the very first time. It

is safe to assume that such an intruder would immediately

eliminate all signs of his/her entry into the system. So, one

might say, with log scanning of the sort used in Fail2Ban and

DenyHosts, your security decision is based more on the actions

of a clumsy thief who is unsuccessful and not on the actions of

those who may have caused you serious harm in the past.

� However, since it is reasonable to assume that even a successful

thief may need to make a few attempts before hitting the

jackpot, it makes sense to use tools like Fail2Ban and

DenyHosts.

� DenyHost was created exclusively for monitoring the SSHD

access log files.

� On the other hand, one of the best things about Fail2Ban is

its versatility. It can block network access to just about any

application that creates a log file for incoming connection

requests. It’s worth your while to spend a few minutes poring

over its config file /etc/fail2ban/jail.conf and to see its

different sections, as delineated by ‘[application name]’, in

order to get a sense of the range of applications for which you

16

Computer and Network Security by Avi Kak Lecture 24

can trap misbehaving IP addresses. By the way, you can also

specify additional server applications — applications that are of

your own making and that are not currently mentioned in the

config file — if you want to monitor and control network access

to them with Fail2Ban. All you have to do is to enter a few

lines of text in the config files. [Fail2Ban is so versatile that, even for the same

server application running in your computer, it can identity IP addresses that are engaged in

different malicious activities and, depending on what activity is involved, it can take different

actions. If you examine the file jail.conf, you will see entries for an application that is named

[apache-badbots] that monitors accesses to HTTP and HTTPS in order to catch intruders that

make seemingly ordinary web accesses but for the sole purpose of mining email addresses from

the web pages being doled out. Fail2Ban detects activities with the help of filters based on

regular expressions. A certain number of these filters are predefined in the /etc/fail2ban/

directory. However, you can create your own filters to supersede those that come predefined or

that are new for new kinds of behaviors by malicious hosts.]

� You can install Fail2Ban with apt-get or through your Synaptic

Package Manager. By default, it will only monitor the log

entries in the /var/log/auth.log file. However, as mentioned in

the previous bullet, you can monitor network attacks on just

about any server application running in your computer as long

as it spits out a log file for the incoming requests for

connections. [You enable log monitoring for an application by inserting the line ‘enabled = true’ in

the relevant section of the file /etc/fail2ban/jail.local. By default, enabled is set to true for SSHD.]

� Fail2Ban is written in Python and all of its files are in the

directory /etc/fail2ban. That directory and its subdirectories

17

Computer and Network Security by Avi Kak Lecture 24

contain a number of config files that can be used to specify

different criteria for trapping IP addresses that make intrusion

attempts (and that engage in malicious behaviors) and for

specifying the actions to be taken for the blacklisted addresses.

Execute ‘man jail.conf’ to see the man page regarding the

different configuration options.

� The act of installing Fail2Ban also enables it on your machine.

You must however customize its behavior for your specific host.

To verify that Fail2Ban is up and running, you can execute

sudo fail2ban-client status

It should return:

Status

|- Number of jail: 1

‘- Jail list: sshd

� Another way to see that you have successfully installed

Fail2Ban is by checking your iptables firewall rules. For

example, assuming that the chains in your firewall were empty

to begin with, if you execute the command ‘sudo iptables -L’

after installing Fail2Ban, you should see

Chain INPUT (policy ACCEPT)

target prot opt source destination

f2b-sshd tcp -- anywhere anywhere multiport dports ssh

Chain FORWARD (policy ACCEPT)

18

Computer and Network Security by Avi Kak Lecture 24

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Chain f2b-sshd (1 references)

target prot opt source destination

RETURN all -- anywhere anywhere

Note, in particular, the jump to the ‘user-defined’ chain

f2b-sshd action inserted by Fail2Ban in the predefined INPUT

chain of the filter table of the firewall. [You may wish to review Lecture 18 at this

point if you do not remember that ‘filter’ is one of the four tables in an iptables based firewall and that this

table has three predefined chains: INPUT, OUTPUT and FORWARD.] In this manner, all

incoming packets would be first subject to the rules in the

f2b-sshd chain and those that are not trapped by any of the

rules in that chain would be sent back to be processed by the

rest of the rules in the INPUT chain. That we can say on

account of the definition of the f2b-sshd chain at the bottom of

the output At the moment there are no restrictions on any IP

addresses in the f2b-sshd chain.

� If all you want from Fail2Ban is for it to monitor SSH access

(and to ban offending IP addresses) on port 22, you need to

make only a very small number of changes — six or fewer — to

just one config file. However, as mentioned in the config file

/etc/fail2ban/jail.conf, you must first create its copy with the

name /etc/fail2ban/jail.local. All of your customizations

must be in the “.local” version of the config file. [Fail2Ban is programmed

to first parse the “.conf” files and, subsequently, the “.local” files. In this manner, any customizations in the

19

Computer and Network Security by Avi Kak Lecture 24

“.local” files override the corresponding entries in the “.conf” files. This ploy allows the “.conf” files to be

changed with upgrades to the software without losing the user-specified customization information.] The

small number of changes you’d need to make in

/etc/fail2ban/jail.local are likely to be in the following lines

(I have shown the entries in my install of Fail2Ban):

bantime = 3600

findtime = 3600

maxretry = 5

mta = sendmail

destemail = root@localhost

action = %(action_mwl)s

Here is a description of what these parameters mean: The config parameter

bantime specifies in seconds the duration of time for which a blacklisted IP address is denied further

access. The config parameters findtime and maxtry are used together to decide when to blacklist an

IP address. If the intruder makes more than maxtry attempts during a findtime period of time, the

IP address is quarantined for the duration set by bantime. The parameter mta specifies the mail

transport agent to use for sending an email notification to a designated person/admin when an IP

address is blacklisted. This notification is sent to the account specified by the parameter destemail.

Finally, the parameter action, as you would guess, tells Fail2Ban what to with an IP address that

meets the repeat access conditions as set by the findtime and the maxtry parameters. In most cases,

you’d want those addresses to be banned for the duration set by bantime. This action corresponds to

the choice “action ” inside the curly brackets for the action entry shown above. However, if you

want that a notification be also sent to the account set by destemail, you would need to choose

“action mw” for what goes inside the curly brackets. Yet another option for the same is

“action mwl”. With the “action mw” choice, the email notification will include a “whois” report on

the intruding host. And, with “action mwl”, the email notification will include relevant log lines.

20

Computer and Network Security by Avi Kak Lecture 24

� Since, to the best of what I know, DenyHosts continues to be

rather widely deployed, the rest of this section is devoted to

that tool.

� With regard to how DenyHosts works, in addition to entering a

blacklisted IP address in in the /etc/hosts.deny file, the

blacklisted IP addresses are also recorded in in a few more files

elsewhere in your directory system for the purpose of

synchronizing your blacklisted IP addresses with similar such

addresses collected by other hosts in the internet if you have the

synchronization option turned on in the config files — see the

end of this section for the names of these files. As to how may

attempts at breaking in should qualify for blacklisting an IP

address can be set by you in the configuration file of DenyHosts.

� The main config file for DenyHosts is /etc/denyhosts.conf.

[Ordinarily, you would only need to make a small number of changes in the config file for its customization to

your needs. For example, when I used to use DenyHosts on my Linux laptop, I changed the ADMIN EMAIL to

kak@localhost, uncommented the SMTP FROM and SYNC SERVER lines, set PURGE DENY to 1w, BLOCK SERVICE to

ALL, DENY THRESHOLD INVALID to 3, DENY THRESHOLD VALID to 5, SYNC INTERVAL to 1h, SYNC UPLOAD to YES,

and SYNC DOWNLOAD to YES.] DenyHosts makes its log entries in the

/var/log/denyhosts file. You can also do “man denyhosts” to

get more information on the tool. DenyHosts comes with a

synchronization feature that allows it to download the IP

addresses that have been blacklisted elsewhere. In that sense,

the tool has the ability to give you advance protection.

21

Computer and Network Security by Avi Kak Lecture 24

� In the same manner as Fail2Ban, DenyHosts can silently restore

access privileges of a blacklisted IP address after a certain

period of time whose duration is set in the configuration file.

The homepage for DenyHosts is http://denyhosts.sourceforge.net/.

� Shown below is a 45 second segment of the auth.log file after

DenyHosts was fired up. This represents an illegal attempt to

break into moonshine.ecn.purdue.edu from someone at

190.12.41.50. If you enter this IP address in the query window

of http://www.ip2location.com, you will discover that the intruder is

logged into a network owned by an outfit called PUNTONET in

the country of Ecuador.

tried to connect as root:

Apr 25 16:29:03 moonshine sshd[31037]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:03 moonshine sshd[31037]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:04 moonshine sshd[31037]: Failed password for root from 190.12.41.50 port 54042 ssh2

tried to connect as apple:

Apr 25 16:29:08 moonshine sshd[31039]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:08 moonshine sshd[31039]: Invalid user apple from 190.12.41.50

Apr 25 16:29:08 moonshine sshd[31039]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:10 moonshine sshd[31039]: Failed password for invalid user apple from 190.12.41.50 port 54102 ssh2

tried to connect as magazine:

Apr 25 16:29:13 moonshine sshd[31041]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:13 moonshine sshd[31041]: Invalid user magazine from 190.12.41.50

Apr 25 16:29:13 moonshine sshd[31041]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:15 moonshine sshd[31041]: Failed password for invalid user magazine from 190.12.41.50 port 54163 ssh2

tried to connect as sophia:

Apr 25 16:29:18 moonshine sshd[31043]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:18 moonshine sshd[31043]: Invalid user sophia from 190.12.41.50

Apr 25 16:29:18 moonshine sshd[31043]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:20 moonshine sshd[31043]: Failed password for invalid user sophia from 190.12.41.50 port 54227 ssh2

tried to connect as janet:

22

http://denyhosts.sourceforge.net/
http://www.ip2location.com

Computer and Network Security by Avi Kak Lecture 24

Apr 25 16:29:23 moonshine sshd[31045]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:23 moonshine sshd[31045]: Invalid user janet from 190.12.41.50

Apr 25 16:29:23 moonshine sshd[31045]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:25 moonshine sshd[31045]: Failed password for invalid user janet from 190.12.41.50 port 54289 ssh2

tried to connect as taylor:

Apr 25 16:29:28 moonshine sshd[31047]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:28 moonshine sshd[31047]: Invalid user taylor from 190.12.41.50

Apr 25 16:29:28 moonshine sshd[31047]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:30 moonshine sshd[31047]: Failed password for invalid user taylor from 190.12.41.50 port 54351 ssh2

tried to connect as vanessa:

Apr 25 16:29:33 moonshine sshd[31049]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:33 moonshine sshd[31049]: Invalid user vanessa from 190.12.41.50

Apr 25 16:29:33 moonshine sshd[31049]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:34 moonshine sshd[31049]: Failed password for invalid user vanessa from 190.12.41.50 port 54406 ssh2

tried to connect as alyson:

Apr 25 16:29:38 moonshine sshd[31051]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:38 moonshine sshd[31051]: Invalid user alyson from 190.12.41.50

Apr 25 16:29:38 moonshine sshd[31051]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:39 moonshine sshd[31051]: Failed password for invalid user alyson from 190.12.41.50 port 54467 ssh2

tried again to connect as root:

Apr 25 16:29:42 moonshine sshd[31053]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:42 moonshine sshd[31053]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:44 moonshine sshd[31053]: Failed password for root from 190.12.41.50 port 54509 ssh2

tried again to connect as research:

Apr 25 16:29:48 moonshine sshd[31055]: reverse mapping [190.12.41.50] failed - POSSIBLE BREAK-IN ATTEMPT!

Apr 25 16:29:48 moonshine sshd[31055]: Invalid user research from 190.12.41.50

Apr 25 16:29:48 moonshine sshd[31055]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=190.12.41.50

Apr 25 16:29:50 moonshine sshd[31055]: Failed password for invalid user research from 190.12.41.50 port 54581 ssh2

AND FINALLY CAUGHT BY DENYHOSTS:

Apr 25 16:29:50 moonshine sshd[31060]: refused connect from ::ffff:190.12.41.50 (::ffff:190.12.41.50)

� From the segment of the log file shown above, you can see that

the intruder made 10 attempts before getting trapped by

DenyHosts. How many attempts an intruder is allowed to make

before any further connection requests are summarily refused

23

Computer and Network Security by Avi Kak Lecture 24

depends on the choices you make in the

/etc/denyhosts.conf configuration file. I had the following setting

in the config file for the log file segment shown above:

DENY_THRESHOLD_INVALID = 5

DENY_THRESHOLD_VALID = 10

where the first number sets the limit on how many times an

intruder can try to gain entry with usernames that do NOT

exist in the /etc/passwd file and the second sets a similar

limit on trying to gain entry through usernames that actually

do exist. I subsequently changed the former to 3 and the latter

to 5.

� Obviously, what values you choose for the two parameters

shown above and other similar parameters in the config file

depends on how much latitude you want to give the legitimate

users of your host with regarding to any accidental mis-entry of

user names and passwords.

� What I show next is an attack by a cleverer intruder. What

this intruder is attempting is not your classic dictionary attack.

The intruder appears to know that he/she will be allowed only a

limited number of attempts (probably from a prior manual

attempt to break in with a number of different login names from

conceivably a different IP address). So the intruder is trying

only the login names that form the various substrings in the

24

Computer and Network Security by Avi Kak Lecture 24

domain name of “moonshine.ecn.purdue.edu”. Note that the

intruder is making only 4 attempts for each login name, one less

than it takes to get disbarred by the config settings shown

previously. To see the source of the attack, enter the IP address

66.135.39.212 in the query window of http://www.ip2location.com and

you will notice that this address belongs to a company called

Zartana based in Brazil. In its description at LinkedIn, this

company claims to be able to deliver 2,000,000 email

messages per hour.

login tried: ecn (Attempt 1 as ecn)

May 5 10:11:23 moonshine sshd[27483]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:23 moonshine sshd[27483]: Invalid user ecn from 66.135.39.212

May 5 10:11:23 moonshine sshd[27483]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:23 moonshine sshd[27483]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:25 moonshine sshd[27483]: Failed password for invalid user ecn from 66.135.39.212 port 33901 ssh2

login tried: ecn (Attempt 2 as ecn)

May 5 10:11:25 moonshine sshd[27485]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:25 moonshine sshd[27485]: Invalid user ecn from 66.135.39.212

May 5 10:11:25 moonshine sshd[27485]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:25 moonshine sshd[27485]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:28 moonshine sshd[27485]: Failed password for invalid user ecn from 66.135.39.212 port 34028 ssh2

login tried: ecn (Attempt 3 as ecn)

May 5 10:11:29 moonshine sshd[27487]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:29 moonshine sshd[27487]: Invalid user ecn from 66.135.39.212

May 5 10:11:29 moonshine sshd[27487]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:29 moonshine sshd[27487]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:31 moonshine sshd[27487]: Failed password for invalid user ecn from 66.135.39.212 port 34163 ssh2

login tried: ecn (Attempt 4 as ecn)

May 5 10:11:32 moonshine sshd[27489]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:32 moonshine sshd[27489]: Invalid user ecn from 66.135.39.212

May 5 10:11:32 moonshine sshd[27489]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:32 moonshine sshd[27489]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:34 moonshine sshd[27489]: Failed password for invalid user ecn from 66.135.39.212 port 34282 ssh2

login tried: moonshine (Attempt 1 as moonshine)

May 5 10:11:35 moonshine sshd[27491]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:35 moonshine sshd[27491]: Invalid user moonshine from 66.135.39.212

May 5 10:11:35 moonshine sshd[27491]: pam_unix(sshd:auth): check pass; user unknown

25

http://www.ip2location.com

Computer and Network Security by Avi Kak Lecture 24

May 5 10:11:35 moonshine sshd[27491]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:37 moonshine sshd[27491]: Failed password for invalid user moonshine from 66.135.39.212 port 34384 ssh2

login tried: moonshine (Attempt 2 as moonshine)

May 5 10:11:37 moonshine sshd[27493]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:37 moonshine sshd[27493]: Invalid user moonshine from 66.135.39.212

May 5 10:11:37 moonshine sshd[27493]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:37 moonshine sshd[27493]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:40 moonshine sshd[27493]: Failed password for invalid user moonshine from 66.135.39.212 port 34514 ssh2

login tried: moonshine (Attempt 3 as moonshine)

May 5 10:11:41 moonshine sshd[27495]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:41 moonshine sshd[27495]: Invalid user moonshine from 66.135.39.212

May 5 10:11:41 moonshine sshd[27495]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:41 moonshine sshd[27495]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:43 moonshine sshd[27495]: Failed password for invalid user moonshine from 66.135.39.212 port 34637 ssh2

login tried: moonshine (Attempt 4 as moonshine)

May 5 10:11:43 moonshine sshd[27497]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:43 moonshine sshd[27497]: Invalid user moonshine from 66.135.39.212

May 5 10:11:43 moonshine sshd[27497]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:43 moonshine sshd[27497]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:46 moonshine sshd[27497]: Failed password for invalid user moonshine from 66.135.39.212 port 34759 ssh2

login tried: purdue (Attempt 1 as purdue)

May 5 10:11:47 moonshine sshd[27499]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:47 moonshine sshd[27499]: Invalid user purdue from 66.135.39.212

May 5 10:11:47 moonshine sshd[27499]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:47 moonshine sshd[27499]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:49 moonshine sshd[27499]: Failed password for invalid user purdue from 66.135.39.212 port 34906 ssh2

login tried: purdue (Attempt 2 as purdue)

May 5 10:11:49 moonshine sshd[27501]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:49 moonshine sshd[27501]: Invalid user purdue from 66.135.39.212

May 5 10:11:49 moonshine sshd[27501]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:49 moonshine sshd[27501]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:52 moonshine sshd[27501]: Failed password for invalid user purdue from 66.135.39.212 port 35030 ssh2

login tried: purdue (Attempt 3 as purdue)

May 5 10:11:52 moonshine sshd[27503]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:52 moonshine sshd[27503]: Invalid user purdue from 66.135.39.212

May 5 10:11:52 moonshine sshd[27503]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:52 moonshine sshd[27503]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

May 5 10:11:54 moonshine sshd[27503]: Failed password for invalid user purdue from 66.135.39.212 port 35189 ssh2

login tried: purdue (Attempt 4 as purdue)

May 5 10:11:55 moonshine sshd[27505]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.39.212] failed - POSSIBLE

May 5 10:11:55 moonshine sshd[27505]: Invalid user purdue from 66.135.39.212

May 5 10:11:55 moonshine sshd[27505]: pam_unix(sshd:auth): check pass; user unknown

May 5 10:11:55 moonshine sshd[27505]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=66.135.39.212

26

Computer and Network Security by Avi Kak Lecture 24

May 5 10:11:58 moonshine sshd[27505]: Failed password for invalid user purdue from 66.135.39.212 port 35321 ssh2

FINALLY TRAPPED BY DENYHOSTS

27

Computer and Network Security by Avi Kak Lecture 24

Back to TOC

24.4 Cracking Passwords with Hash Chains
and Rainbow Tables

� As you have seen in the earlier sections of this lecture, a

dictionary attack means trying out one password at a time to

break into a machine. Password cracking, on the other hand,

means that you have already broken into a machine and

somehow gotten hold of the document where all the password

hashes are stored. (This document is usually referred to as the

System Password File.) Now you want to map the password

hashes back to the character strings that are the passwords as

entered by the users.

� You might ask that if a specific feature of a hashing function is

its one-way property — that it maps a string to a hash but you

are not supposed to be able to construct an inverse-map from

the hash to the string — how is password cracking possible at

all? Note that, strictly speaking, this one-way property applies

only to hash functions such as those that belong to the officially

sanctioned SHA family. In the past, the hash functions used for

password security have not always been the sort of hash

functions discussed in Lecture 15, as you will soon see in what

follows in this section.

28

Computer and Network Security by Avi Kak Lecture 24

� The following two facts have given much impetus to the

development of password cracking methods during the last

twenty years: (1) The older versions of the Microsoft

Windows platform used an extremely weak method for

hashing passwords; and (2) The ubiquity of the Windows

machines all around the world.

� The password hashing used in the older versions of the Windows

platform is known as the LM Hash where LM stands for LAN

Manager. This hashing function is so weak that a password can

be cracked — meaning that the ASCII string for the password

can be inferred from its hash value — in just a few seconds

through the rainbow table attack that I’ll describe later in this

section. An open-source tool called Ophcrack, co-developed by

the inventor of the rainbow tables, can crack such a password

hash in about 13.6 seconds 99.9% of the time using a rainbow

table of size roughly 1 GB. [The developers of Ophcrack claim that they

can also crack the hashes generated by the NTLM Hash algorithm used in the more

recent Windows machines. Note that the most recent Microsoft applications have

moved on to NTLMv2 and Kerberos based protocols for user authentication.]

� Since the LM Hash has served as such a magnet for the

development of password cracking algorithms, it is educational

to review it. For the LM Hash algorithm, a password is limited

to a maximum of 14 ASCII characters and zero-padded to 14 if

shorter than that. Any lowercase characters in the password are

converted to uppercase. Subsequently, this 14-character string is

29

Computer and Network Security by Avi Kak Lecture 24

divided into two 7-character substrings, with the 56 bits of each

substring used as a key to the DES algorithm to encrypt the

8-character plaintext string KGS!@#$%. Each half produces a

64-bit ciphertext and two ciphertext bit streams are simply

concatenated together to create a 128-bit pattern that is stored

as the password “hash” by the LM Hash algorithm. [In case you

are wondering about the plaintext KGS!@#$%, its first three letters, KGS, are

believed to stand for “Key of Glen and Steve” and the next five characters are what

you get by pressing Shift 12345 on your keyboard.]

� In addition to the cryptographic weakness inherent to DES,

there are several vulnerabilities that are specific to the LM Hash

algorithm itself. For one, it is easy to guess if the original

password string was no longer than 7 characters since in all such

cases the second half the input string is all zeros and it results

in the predictable DES encryption given by the hex

0xAAD3B435B51404EE. Another source of great weakness in LM

Hash is that the two halves of the hash value can be attacked

separately since there were calculated independently.

Additionally, ordinarily each character of the 14 character string

would be one of 95 printable characters. However, since LM

Hash converts lowercase to uppercase, that means that each

character can only be one of 69 values. Therefore, the total

number of distinct hash values for each 7-character part of the

password is 697 ≈ 243, not a very large number for modern

desktops. [In general, if the size of the alphabet is k and you want to construct strings of length n

from the alphabet, the total number of distinct strings you’ll able to construct is k
n — since you will have k

30

Computer and Network Security by Avi Kak Lecture 24

choices at each of the n positions in a string. In this collection of size k
n, every string is of length n. Now

suppose we also accept strings of length n− 1, then you will get an additional kn−1 strings, and so on. What

that implies is that the total number of password strings (of all possible printable ASCII characters) of length

7 or less is given by 697 + 696 + 695 + 694 + 693 + 692 + 69.]

� As mentioned at the beginning of this section, password

cracking means that an adversary has somehow gotten hold of

the document where all the password hashes are stored and is

now trying to figure out the actual passwords from those

hashes. In a Linux machine, the root-readable-only document

where all the hashes are stored is /etc/shadow. [In a Windows

machine, the passwords, I believe, are stored in the

C:\Windows\System32\config\SAM document. This file, however, may not be

directly readable while your machine is up and running. There is an Offline NT

Password Tool available at http://pogostick.net/~pnh/ntpasswd/ that, ordinarily

meant for resetting your password on a Windows machine, can also be used to read

the SAM file where the password hashes are stored.]

� That brings us to the question of how to actually reverse-map

a password hash to the actual password entered by a user.

Now that disk storage is so cheap, a straightforward answer to

this question is to construct a hash for all possible character

combinations and to then store these <password, hash> values

(in the form of <hash, password> pairs) in a giant disk-based

hash-table database of the sort that are now made available by

all major computing languages. [In Linux/Unix platforms, such

disk-based hash tables are accessed through what are known as DBM libraries. The

31

http://pogostick.net/~pnh/ntpasswd/

Computer and Network Security by Avi Kak Lecture 24

Perl module DB File and the Python module bsddb provide very convenient

interfaces to this type of disk storage. See Chapter 16 of my book Scripting with

Objects for further information on how to use such disk-based storage.] Let’s

say you want to construct this type of a lookup table for

attacking the LM Hash password file. As mentioned earlier, you

are likely to attack each of the two halves of the password hash

separately and, for each half, you have 697 ≈ 243 different

possible strings to search through. Since 243 is roughly 9× 1012

(which, colloquially speaking, is nine trillion) and, assuming for the sake of a

simple argument that we can store the inverse mapping from

the password hash values to the passwords in the form of a

hashtable with no collisions, we would only need to store the

seven bytes for each ASCII string. At runtime, when we seek

the password P associated with a password hash C, the

hashtable access function would convert C into the memory

address where P is stored. [Information in hashtables is stored in buckets. Ideally, each

bucket would hold a single <key,value> pair, where the key would be the hash of a password and the value

the password itself. For a disk-based hash table for LM password cracking, each key C would require 8 bytes

and each P 7 bytes. Therefore, each <key,value> pair would require a total of 15 bytes. This implies the

hash table would require 15× 9× 1012 bytes of storage — that is 135 terabytes of disk storage. Considering

that RAID array storage is now under $50/terabyte at some of the vendors, creating a full lookup table for

attacking the LM Hash passwords is not that out of the question any longer.]

� If the size of the disk space mentioned above seems large, you

can reduce the space needed considerably if you assume that

random juxtapositions of the characters are unlikely to exist in

a password. You can construct lookup tables whose sizes are

only a few gigabytes by just using concatenations of meaningful

32

Computer and Network Security by Avi Kak Lecture 24

word fragments. If the passwords are short enough, such lookup

tables can be deadly effective in instantly revealing a user’s

password string.

� When a password hash is attacked by looking up a table of

previously computed hashes, we refer to that as the

lookup-table attack (in order to distinguish it from the rainbow

table attack I’ll address next). Note that an adversary may not

even have to compute the hashes for a lookup-table attack. You

can acquire such lookup tables either for direct download or on

physical media from various vendors on the internet. Ostensibly,

this is legitimate business as it allows network administrators to

test the strength of the user passwords. But, obviously, nothing

prevents bad guys from using these tables to crack password

hashes.

� If you still believe that the disk storage needed for a lookup

table attack is much too large for the sort of password hashes

you want to attack, or if your goal is to attack (or, say, to

attempt attacking) longer passwords, you are going to need the

rainbow tables.

� The idea of rainbow tables was invented by Phillipe Oecshlin

and is described in his paper “Making a Faster Cryptanalytic

Time-Memory Trade-Off” that appeared in Lecture Notes in

Computer Science in 2003.

33

Computer and Network Security by Avi Kak Lecture 24

� In order to understand how a rainbow table is constructed, you

have to first understand what is meant by a hash chain and how

such chains allow you to trade time for memory. That is, in

comparison with the memory required for constructing a hash

for every possible password (and then using it subsequently as a

lookup table to determine the password that goes with a hash),

hash chains requires reduced memory but at the cost of having

to spend more time to get to the password (most of the time).

� Fundamental to the notion of a hash chain is a reduction

function. A reduction function maps a hash to a character

string that looks like a password. There is nothing

extraordinary about a reduction function. You could, for

example, take the last few bytes of the hash and create any sort

of a mapping from those bytes into the space of all possible

passwords. Any mapping that more or less uniformly samples

the space of all possible passwords is a good enough mapping.

We can certainly expect that a reduction function may map

more than one hash to the same password. As it turns out, it is

a good thing when a reduction function does that.

� Let p be the plaintext password and c be its hash. Let the hash

function that takes us from p to c be denoted H(.). So we have

c = H(p). Let’s now envision a reduction function R(.) that

when applied to c yields a string that looks like a plaintext. Let

p′ be the plaintext that results from applying the reduction

function to c. So we can write p′ = R(c).

34

Computer and Network Security by Avi Kak Lecture 24

� Given the pair of functions H() and R() as defined above,

starting from some randomly chosen plaintext p1 from the space

of all passwords, we can now construct a hash chain in the

following manner:

p1 −→ c1=H(p1) −→ p2=R(c1) −→ c2=H(p2) −→ p3=R(c2) −→ c3=H(p3) −→ p4=R(c3) −→ · · ·

We will specify the length of the chain by the parameter k.

Each link in this chain would consist of one application of the

hash function H() and one application of the reduction function

R(). We store in a table just the starting plaintext p1 and the

ending plaintext pk.

starting point endpoint

plaintext also plaintext
after k steps of R(H(pk))

p11 p1
k

p2
1

p2
k

p3
1

p3
k

· · · · · ·

� Let’s say that a password cracker wants to use the above table

to crack a given hash C. The cracker creates a chain — let’s

refer to as the test hash chain — by first applying R() to C get

q1 = R(C), and then applying H() to q1 to get d1 = H(q1), and

so on. The test chain will now look like:
q1=R(C) −→ d1=H(q1) −→ q2=R(d1) −→ d2=H(q2) −→ q3=R(d2) −→ · · ·

If any of plaintext passwords in this chain — meaning if any of

q1, q2, · · · — match any of the endpoints in the second column

35

Computer and Network Security by Avi Kak Lecture 24

of the table shown above, then there is a high probability that

the password that the cracker is looking for is in the chain

corresponding to that row.

� In other words, if the plaintext string qm for some value of m in

the test hash chain generated from the hash C matches, say, the

endpoint entry pik in the second column of the table, the cracker

can expect with a high probability that the password associated

with C is in the chain that corresponds to the ith row of the

table. The starting point in this row is given by pi1. The cracker

will now regenerate the chain for the ith row of the table. The

regenerated chain will look like:

pi1 −→ ci1=H(pi1) −→ pi2 = R(ci1) −→ ci2=H(pi2) −→ · · · · · · −→ cik−1=H(pik−1) −→ pik=R(cik−1)

With a significant probability, the cracker will find that his hash

C matches one of the hashes in this chain. [Note that the hash C

that the cracker wants to crack can be anywhere in the chain.] Once a match

is found, the password that the cracker is looking for is the

plaintext that immediately precedes C in the chain.

� That leads to the question of how long to grow the test chain

starting with C as we look for plaintext matches with the

endpoints in the table. The answer is that if the test hash chain

was grown through k steps, which is the same number of steps

used in the hash chain table, and if no plaintext matched with

any of the endpoints, then the password that the cracker is

looking for does NOT exist in any of the chains stored in the

table.

36

Computer and Network Security by Avi Kak Lecture 24

� Additionally, let’s say that as we grow the test hash chain one

step at a time starting with the hash C to be cracked, we run

into a qm that matches one of the endpoints in our table, but we

are unable to find C in the chain for that row. In such an event,

we continue to grow the test chain and look for another qn that

matches one the endpoints in the table. But, obviously, we do

NOT grow the test hash chain beyond the k steps.

� When we run into a qm that matches one of the endpoints in

the table but when the chain for that row does not contain the

hash C we are trying to crack, we refer to that as a false alarm.

� Ideally, the hash chain table should have the property that the

passwords stored implicitly in all the chains should span (to the

maximum extent possible) the space of all possible passwords.

This is for the obvious reason that if a legitimate password is

neither a starting point, nor an endpoint, and nor in the interior

of any of the chains, then there would be no way to get to this

password from its hash. Said another way, if a password is NOT

reduced to during the construction of the hash chain table, then

that password cannot be inferred from its hash.

� Whether or not the requirement mentioned above can be met in

practice depends much on the reduction function R(). Note

that any choice for R() will map multiple hashes to the same

password string. So it is possible for two chains to contain the

same password string. Say Chain 1 contains a specific password

37

Computer and Network Security by Avi Kak Lecture 24

at step i and Chain 2 has the same password at step j with

i 6= j. Now the two chains will traverse the same transitions

even though their endpoints will be different. The endpoints

will be different because the number of remaining steps in the

two chains in the two chains is not the same. Because the

endpoints will be different, Chain 1 and Chain 2 will occupy two

different rows in the table even though the passwords stored

implicitly in the two chains show significant overlap. When two

different chains in a table overlap in this manner, we refer to

that as a collision. This overlap cannot be detected because we

only store the starting points and the endpoints for the chains.

Nonetheless, such implicit overlaps can significantly reduce the

ability of a hash chain table to crack a hash because of the

reduced overall sampling of the space of all the passwords.

� It is this overlap between the hash chains — also referred to as

the merging of the chains — that places an upperbound on the

size of a hash chain table. Ordinarily, you would want to

construct a hash chain table for a large number of randomly

selected starting points in the space of all passwords. But, as

the size of the table grows, the table becomes more and more

inefficient on account of chain merging. Before the invention of

rainbow tables, this problem was taken care of by constructing a

number of hash chain tables, each with a different reduction

function R().

� With rainbow tables, instead of constructing a number of hash

38

Computer and Network Security by Avi Kak Lecture 24

chain tables with different reduction functions to overcome the

problem of chain merging, you now construct a single hash

chain table, but now you use k different reduction functions,

{R1(), R2(), · · · , Rk()}, for each of the k steps in the

construction of a chain. For a collision to now occur, the

password that is reduced to must be the output of the same

reduction function — an event with much lower probability

than was the case with hash-chain tables as presented above.

This also takes care of one more problem with the old-style

hash-chain tables. You see, in hash-chain tables as explained

above, there is always a possibility that you will encounter a

loop as you grow a chain. Since a reduction function is

intentionally many-to-one, there is always a chance that the

password that is reduced to will be the same at two different

places in a chain. [Obviously, this can also happen in a test hash

chain.] As with chain collisions, such loops reduce the efficiency

of a hash chain table. However, when you use different

reduction functions for the successive reduction steps in a chain,

you are less likely to run into loops.

� Using k different reduction functions in growing a hash chain

calls for a change in the lookup procedure. By lookup we mean

querying the hash chain table with the hash C that you want to

crack. The lookup consists of first applying the last of the

reduction functions Rk() to obtain, say, q1 = Rk(C) and then

checking whether q1 is an endpoint in the rainbow table. If not,

we grow the test chain by calculating q2 = Rk−1(H(q1)) and

39

Computer and Network Security by Avi Kak Lecture 24

search for q2 as an endpoint in the table. If a matching endpoint

cannot be found for q2, we grow the test chain by one more step

by calculating q3 = Rk−2(H(q2)); and so on.

� There are several websites that provide pre-computed rainbow

tables for different hash functions. When the hashing function is

MD5 and for password strings that go up to 8 characters, you

can obtain the pre-computed rainbow tables from

http://www.freerainbowtables.com/en/tables2/

And here is a website devoted to GPU accelerated

implementation of rainbow table attacks:

http://project-rainbowcrack.com/

40

http://www.freerainbowtables.com/en/tables2/
http://project-rainbowcrack.com/

Computer and Network Security by Avi Kak Lecture 24

Back to TOC

24.5 Password Hashing Schemes

� Now that you know about password cracking, the very first

thing you need to become aware of is the fact that there do

not yet exist any tools for cracking passwords that are hashed

with state-of-the-art password hashing schemes that use

variable “salts” and variable “rounds”. As to what is meant by

“salt” and “round” will become clear from the presentation in

this section. An example of such a state-of-the-art password

hashing scheme is sha512 crypt. I’ll have more to say about this

scheme later in this section.

� Before launching into how modern password hashing schemes

work, I do want to mention the wrong impression created by the

following sort of statements one often runs into: “Passwords

are stored as hash values,” “Hash values for passwords that

are not sufficiently long,” etc. Taken at their face value, such

statements seem to imply that when a user provides a password,

it is straightforwardly supplied to a hashing function, such as

those described in Lecture 15, and the result stored somewhere

in the system. This may have been true for some of the older

methods for creating password hashes, nothing could be

farther from the truth for the state-of-the-art schemes for

converting user-entered passwords into their hashes.

41

Computer and Network Security by Avi Kak Lecture 24

� The main reason why you cannot just directly apply an

algorithm such as SHA-512 to a user-entered password string is

because the resulting hash values would still be crackable despite

the fact that hash function itself is cryptographically secure and

possesses the one-way property defined in Lecture 15. [To

explain this issue, let’s say there are no constraints placed on the lengths

of the passwords chosen by the users. Assume for the sake of argument

that the passwords used by some folks have only six characters in them

and they all consist of lowercase letters. Total number of such passwords

that can be composed with exactly six characters is only 266 = 308915776.

Given a hash of such a password, even when that hash is produced by, say,

the cryptographically secure SHA-512 algorithm, it would be trivial to

construct a lookup table for all such hashes and acquire the password in

less time than it takes to blink an eye. Now imagine an intruder who has

no desire to crack all the passwords in, say, the /etc/shadow file maintained

by the network administrator. All that the intruder wants is to break into

just a couple of accounts where he/she can install his own software. For

such an intruder, just being able to crack short passwords is good enough.]

� To make it virtually impossible to carry out the sort of attack

described in red above, all modern password hashing schemes

combine a user’s password string with a number of random bits

that are known as the salt. Before I explain what salt is and

why it makes it virtually impossible to crack a password — even

the short ones — let’s look at how the hash value of a password

is actually stored in /etc/shadow: [If you execute ‘man shadow’, you will

realize that each line in the file /etc/shadow consists of 9 colon-separated field. The

42

Computer and Network Security by Avi Kak Lecture 24

first field is always the username; the second field is the password hash that is shown

below; the third field the date of last password change; the fourth field the number of

days the user must wait before he/she is allowed to change the password; the fifth the

number of days after which the user will be forced to change the password; and so on.

Shown below is what is stored in the second field — the password hash field — for

some user.]

6rounds=40000$ZVzZ72hf$Tf19cHUK0g.nf.I/Bpn5jd3jokKMEAIHssRW2OEUGfneuTUzkhNmGv9iDhjfeDpJtqOyGjtSeXSq8

� What is shown above, although nominally referred to as a

password hash, is in actuality the MCF (Modular Crypt

Format) representation of a password hash. With MCF, a

password hash looks either like
$<identifier>$rounds=<number-of-rounds>$<salt>$<password-hash>

or, when the “number of rounds” is set to its default value 5000,

like
$<identifier>$<salt>$<password-hash>

Therefore, in the example shown above, what is stored for the

password hash in /etc/shadow for a user consists of:
identifier: 6

number of rounds: 40000

salt: ZVzZ72hf

actual hash value: Tf19cHUK0g.nf.I/Bpn5jd3jokKMEAIHssRW2OEUGfneuTUzkhNmGv9iDhjfeDpJtqOyGjtSeXSq8

� The “identifier” shown above refers to the Password Hashing

Scheme. Note that there is more to a password hashing scheme

than just a hashing algorithm. Of course, as you would guess,

all modern password hashing schemes use a hashing algorithm

43

Computer and Network Security by Avi Kak Lecture 24

and it is commonly the case that the name of a password

hashing scheme includes a mnemonic for the hash algorithm

used by scheme. Also, the name of a password hashing scheme

typically ends in the substring “crypt,” as illustrated by the

table shown below that shows the identifiers used for today’s

more important password hashing schemes:

Password Hashing Scheme Identifier

md5 crypt 1
bcrypt 2
bcrypt 2a
bcrypt 2x
bcrypt 2y
bsd nthash 3
sha256 crypt 5
sha512 crypt 6
sun md5 crypt md5
sha1 crypt sha1

Note again that, except for bsd nthash, the names of all the

Password Hashing Schemes mentioned above end in the

substring “crypt”. [The bcrypt password hashing scheme is used in

Unix/Solaris systems. The underlying hashing algorithm in bcrypt is based on the

Blowfish cipher I mentioned in Section 3.2 of Lecture 3 as a variant of DES. The

password hash output by bcrypt omits the separator character ‘$’.] The table I

have shown above is reproduced from

http://packages.python.org/passlib/modular_crypt_format.html. As mentioned there,

MCF is not an official standard, but a commonly used format

today for storing password hashes.

� Getting back to the /etc/shadow entry for a password shown on

44

http://packages.python.org/passlib/modular_crypt_format.html

Computer and Network Security by Avi Kak Lecture 24

page 43, you can now tell that the password hash shown at the

bottom of that page was generated by the sha512 crypt

password hashing scheme.

� Let’s now examine the second field of the /etc/shadow entry for

the password hash shown earlier in this section. This entry says:

rounds=40000. As you will soon see, modern password hashing

schemes hash a password (along with its salt – whose meaning

will soon be explained) multiple times. You might ask: To what

purpose? You are even more likely to raise this question after

you realize that an intruder who has stolen the /etc/shadow or

an equivalent file can see the number of rounds applied by the

password hashing scheme. So, in order to crack a password

hash, the intruder could use the same number of rounds. Note

that the intruder already has access to the password hashing

scheme used since they are all in the public domain. For the

answer to this very reasonable question, read on.

� By hashing a multiple number of times, you make it that

much harder to crack a password through any sort of a table

lookup, rainbow or otherwise, especially if the number of

rounds is randomly chosen for each user account. Even though

some state-of-the-art password hashing schemes can generate a

password hash with any number of rounds, most password

hashes are computed with a default value for the number of

rounds — 5000. The reason for that is that the protection

provided by salts is considered to be strong enough to thwart

45

Computer and Network Security by Avi Kak Lecture 24

any lookup-table based attacks for several more years to come.

But should computers become even more powerful and should

massive disk storage become even more inexpensive, the

additional protection made possible a variable number of rounds

would certainly be put to greater use. [There is also a

minimum and a maximum on the number of rounds. The

minimum is 1000 and maximum is 999,999,999. Specifying a

value below 1000 would cause 1000 to be used for the number

of rounds and specifying a value of 1 billion or greater would

cause 999,999,999 to be used for the number of rounds.]

� That takes us to the third part of what is stored for a password

hash in its MCF representation in the second field of a file like

/etc/shadow — the salt. A salt is simply a randomly chosen bit

pattern that is combined with the actual password before it is

hashed by a hashing algorithm. The salt used in the

/etc/shadow entry shown earlier is ZVzZ72hf. These are eight

Base64 characters, each standing for six bits. Therefore, this

salt consists of a 48-bit word that will be combined with the

user’s password before hashing.

� Assume that my password is as simple as, say, the ASCII string

“avikak”. This password consists of only 6 characters. Assuming

these to be ASCII characters and using 8-bit encoding for each

character from the ASCII table (despite the fact that the MSB

for all the printable characters in the ASCII table is 0), my

actual password consists of a bit stream that contains 48 bits.

46

Computer and Network Security by Avi Kak Lecture 24

Using the same salt as shown above, I may prepend the 48 bits

of the salt to the 48 bits of the password “avikak” to form a 96

bit input to the hashing function. In actual practice, a password

hashing scheme is likely to create a repetitive concatenation of

the salt bits and the password bits to form a bit pattern that is

hashed. The precise nature of this concatenation and repetition

depends on the password hashing scheme used.

� If, as a system admin, I use a different salt for each different

username, it would be impossible for an adversary to use a

precomputed table of any sort for inferring the passwords from

their hash values. Obviously, the intruder who stole the

/etc/shadow file knows the salt used for each username.

Nonetheless, he/she would not be able to use precomputed

rainbow tables available on the web for cracking the passwords.

And it would simply take much too long (possibly years) for the

intruder to create his/her own rainbow tables that accounts for

every possible value of the salt.

� In general, if you use an n-bit salt, the size of storage needed for

password cracking through table lookup goes up by 2n. So a

48-bit salt results in the size of this storage for mounting a

lookup type attack going up by a factor 248. Typically, up to 16

Base64 characters are used for salt — that makes for a

maximum of 96 bits of salt — with the result 296 variability in

the hash value of a given password string.

47

Computer and Network Security by Avi Kak Lecture 24

� Note that a side benefit of using a random value for salt is

that it makes less likely that any two usernames will have the

same password hash associated with them. In any enterprise

level system, there is always a chance that multiple people will

use the same mnemonic string as a password. So without salt,

one could end up with a number of people with exactly the

same password hash for a set of different usernames. Imagine

what a bonanza that would be for an intruder who wants to

take over as many user accounts as possible with minimal work.

� The password hash shown earlier is in the Base64 representation

for the bit patterns for both the salt and for the actual hash. It

is important to keep in mind, however, that the Base64

representations as used in a password hash may NOT

correspond to the MIME-compatible Base64 encoding you have

seen in these lecture notes so far. In the Base64 encoding used

in password hashes, all you are guaranteed is that the encoding

is being carried out by converting 6-bit binary strings into

printable ASCII characters, but that the mapping used in this

conversation may differ from one password hashing scheme to

another. [The Python library passlib provides the MIME-standard Base64

encoding through passlib.utils.BASE64 CHARS. For Base64 encodings as used in

sha512 crypt, sha256 crypt, md5 crypt, the same library provides the encoding

through passlib.utils.HASH64 CHARS, etc.] The Base64 encodings as

used by password hashing schemes are also known as Hash64

encodings.

48

Computer and Network Security by Avi Kak Lecture 24

� Now that you know about the purpose of salts and rounds in

password hashing schemes, it’s time to become familiar with the

logic of an actual password hashing scheme. Your goal should

be to understand how a hashing algorithm is used in a password

hashing scheme. Toward that end, I recommend that you read

the specification document for the sha512 crypt password

hashing scheme: “Unix crypt using SHA-256 and SHA-512” by

Ulrich Drepper that is available at

http://www.akkadia.org/drepper/SHA-crypt.txt.

� The sha512 crypt password hashing scheme is a SHA-512 based

culmination of a series of password hashing schemes that owe

their origin to old Unix crypt() function. [Just for historical

interest, do “man crypt” on your Linux machine to find out more about

the now ancient crypt() function. It creates a password hash by encrypting

a constant string of all zeros with the DES algorithm with the key being

the user-supplied password. The 56-bit DES key is constructed by taking

the lowest 7 bits of the first 8 characters of the password entered by the

user. For obvious reasons, crypt() is not considered secure any more.] It

is interesting to contrast how password hashing used to be

carried out in the old crypt() function with how it is carried out

in sha512 crypt. To give the reader just a flavor of what is done

to the user supplied password string for the computation of its

hash, a scheme such as sha512 crypt first creates multiple

replications of a concatenation of the user-supplied password

string, the salt, followed again by the password string, the

number of such concatenations used being the number 64-byte

49

http://www.akkadia.org/drepper/SHA-crypt.txt

Computer and Network Security by Avi Kak Lecture 24

blocks in the original password string (with provision for the

password length modulo 64).

� Python’s library for a large number of password hashing

schemes is called passlib. It can both create password hashes

and verify a user-entered password. This is the library you

would want to use if you wanted to create a multi-user

application with a Python frontend for password based security.

The following URLs are useful for accessing passlib’s API and

other documentation:

http://pythonhosted.org/passlib/password_hash_api.html

http://packages.python.org/passlib/contents.html

� The names of all password hashing schemes in passlib end in

the suffix “ crypt”. And all such schemes define the following

two methods

encrypt()

verify()

the first for generating a password hash and the second for

verifying a user-entered password against its hash in the

memory. For example, suppose my password was “avikak”

(which, by the way, it is not; so don’t get any ideas about

breaking into my machine). If I call

hash = passlib.hash.sha512_crypt.encrypt("avikak")

print hash

I’ll get the following output for the password hash:

50

http://pythonhosted.org/passlib/password_hash_api.html
http://packages.python.org/passlib/contents.html

Computer and Network Security by Avi Kak Lecture 24

6rounds=40000$zJ1zd4BOmLiJCrRA$t96c5xt7cwlXxw7xr3d8ltpHp3sjH.kCJxn2EcHyizt791qtSJyL3cI3bi/jlLeY6VrZMt0.zDzZiN5eohX/J1

As you can see, passlib uses a default of 40,000 rounds and 16

Base64 characters for the salt. On the other hand, if I want to

set the number of rounds to the more universal default of 5000,

I can call

hash = passlib.hash.sha512_crypt.encrypt(‘‘avikak’’, rounds=5000)

print hash

I get the following for the password hash:
6ABd0TbzfFDtm3gde$ePE12Bl8AFVXP.0H5gPyCTOeXGwXO.zxflR/9U05dQ27ILAbHMiXOEjVLcB3Rio/8wI7mBIVfoKo7ZJKYbILW0

Note that this password hash does not explicitly mention the

number of rounds because the number 5000 is universally

acknowledged to be the default value for this parameter. Here

are some additional examples of calls to the passlib library for

creating password hashes:
print passlib.hash.sha512_crypt.encrypt(‘‘avikak’’, rounds=5000, salt_size=8)

print passlib.hash.sha512_crypt.encrypt(‘‘avikak’’, rounds=5000, salt="ZVzZ72hf")

print passlib.hash.sha512_crypt.encrypt(‘‘avikak’’, rounds=40000, salt="ZVzZ72hf")

51

Computer and Network Security by Avi Kak Lecture 24

Back to TOC

24.6 Federated Identity Management

� User authentication is becoming increasingly distributed. It is

now common for websites to grant you access to some or all of

their resources based on your login credentials at Twitter,

Facebook, Google, etc.

� Let’s say you have a small business that provides some sort of a

service to the paying customers. When the customers log in and

supply their identity credentials, how should you authenticate

them? In the old days, your only option was to run your own

password manager. However, there can be significant costs

associated with that. Perhaps the biggest issue related to

running your authentication server is the security of the user ID

data in the server. You can easily imagine the consequences of

someone breaking into your system and stealing the user ID

data — it could ruin your business. [There is another issue here that is also

important: If every organization did its own authentication of the user credentials, just imagine how many

different username/password combinations a user would need to keep track of. In general, an informed user

would not want all his/her usernames and passwords at the different sites to be the same for security reasons.]

� But now there is an alternative: As a small-business owner, you

can use an Identity Provider (IDP) to authenticate the users

when they log in. You have surely been to websites where you

52

Computer and Network Security by Avi Kak Lecture 24

could log in with your Google or Facebook or Twitter

credentials. Those websites were using these popular social

media companies as Identity Providers. An IDP typically has a

special website for the benefit of small businesses that shows

how their identity verification services can be used.

� So if user authentication is to be entrusted to a third party,

what should be the rules of interaction between the three

parties involved: (1) the user; (2) the service provider; and (3)

the identity provider?

� The following three frameworks/protocols provide answers to

the question posed above:

OAuth : Focusing on the version 2.0 of OAuth, it is an authorization

framework that specifies how a server or a website in the internet
can accept a user’s login credentials on behalf of another server or

website. For example, assuming that the website for a restaurant
has a password protected page for some of its more private services,

it may ask you to login with your Twitter credentials by clicking on
a button. As explained later in this section, clicking on that button
causes the user’s browser to be redirected to Twitter’s login page

where you would be asked to enter your ID credentials. The identity
credentials you enter in that page would go directly to a Twitter

server for their authentication. And, after they are authenticated,
the Twitter server would issue an “authorization ticket” to the

restaurant web server for accepting you as a verified customer. All
these communications would be governed by the OAuth 2.0

framework. An important aspect of this scenario is that the identity

53

Computer and Network Security by Avi Kak Lecture 24

provider (in this case, Twitter) does not have to share the user login
credentials with the service provider (the restaurant). The OAuth

2.0 standard is described in the document RFC 6749.

OpenID : Whereas the OAuth framework deals primarily with the
interaction between two web entities for the purpose of one entity

supplying login credentials based authorization to the other for
accepting a user, the processing and the verification of the identity

credentials supplied by a user and how some of that information
would be sent back to the service provider would typically be

handled by the OpenID protocol.

SAML : SAML (Security Assertion Markup Language) is the oldest of
the three frameworks/protocols listed here. It is used by large

enterprises to implementation SSO (Single Sign-On) that allows for
a single log-in by a user at a given site to access the other sites and

services run by the enterprise.

� In what follows, I’ll start with an example of how Twitter uses

the OAuth framework to allow its identity servers to be used by

other service providers for user authentication. This example is

from Twitter’s webpage at

https://developer.twitter.com/en/docs/basics/authentication/guides/log-in-with-twitter

� As shown in the figure that follows, there are three steps

involved in how Twitter allows a service provider to use its

identity verification server. The first step takes place when you

as a user clicks on the login button at the webpage of the service

provider (let’s say it’s a restaurant). That click by you sends an

54

https://developer.twitter.com/en/docs/basics/authentication/guides/log-in-with-twitter

Computer and Network Security by Avi Kak Lecture 24

OAuth request token to the Twitter server. After Twitter

verifies that the request is from a business that it has agreed to

provide identity services for, it sends back to the restaurant’s

web server the 200-OK status code (which implies success

followed by content creation by the sending party in the HTTP

protocol), an outh token along with an outh token secret

using the SSL/TLS protocol for confidentiality.

� Step 2 is initiated with the user’s browser receiving a URL

redirect, which corresponds to the browser receiving the HTTP

status code “302 Found”. As shown in the Step 2 figure, this

takes the user to a Twitter login page for entering the identity

credentials. If successfully verified, the user’s browser receives a

second URL redirect to the login verification page. And that

concludes Step 2.

� Subsequently, in Step 3, after the login credentials supplied by

55

Computer and Network Security by Avi Kak Lecture 24

the user are authenticated, the user’s browser receives one final

browser redirect that takes the user to the restaurant’s

access-controlled webpage that the user wanted to visit in the

first place. But the success of that redirection is subject to the

service provider (the restaurant’s web server) receiving an access

token shown in the figure for Step 3. The access token received

from Twitter also contains information regarding the user

(name, location, etc.) for the benefit of the service provider as

shown in the Step 3 figure.

� As explained above, OAuth is about a designated 3rd party

e-commerce server (like Twitter) authorizing the service

provider (like a restaurant) to accept the user as a legitimate

client. That’s why OAuth is referred to as an Authorization

Framework. OAuth is more about the interaction between the

identity provider’s server and the service provider’s website than

about the identity verification itself. That takes us to the

second of the three frameworks/protocols mentioned previously

in this section about federated identity management — the

OpenID protocol. Version 2 of OAuth uses OpenID as the user

authentication layer in the form of “OpenID Connect (OIDC)”.

You can think of OIDC as a specific implementation of OpenID

that provides an ID token to encode the user’s identity which is

subsequently delivered to the service provider. More generally,

though, OIDC is considered to be a “profile” of OpenID.

� That brings us to the third of the federated identity

56

Computer and Network Security by Avi Kak Lecture 24

management protocols mentioned previously: SAML. This is

the oldest of the three frameworks/protocols and was meant to

do together what OAuth and OpenID do separately. While

mobile applications that require user authentication to be

carried out by a 3rd party server have generally switched over to

OAuth and OpenID, larger enterprises are continuing to use

SAML for what’s known as SSO (Single Sign-On) that requires

a user to log in only once for the different e-services within the

enterprise. Specific to SAML is the use of what the protocol

refers to as an “assertion” that is a digitally signed XML

document whose different tags stand for the issuer that

authenticated the identity, attributes related to the user who

was authenticated, etc.

� Before ending this section, I want to say a few words about a

potential security vulnerability in OAuth. Imagine a rogue

business masquerading as a restaurant that wants to steal user

login credentials. Now recall the URL redirects I mentioned in

my explanation of OAuth using the Twitter example.

Remember, when you clicked on the login button on the

restaurant’s webpage, that was supposed to take your browser

to a Twitter log-in page through a URL redirect received from

Twitter. Now imagine the situation in which the restaurant’s

web server traps the outgoing call when you click on that

button and redirects your browser to a log-in page that looks

deceptively like the real Twitter login page. You can easily

imagine the rest of such a security exploit.

57

Computer and Network Security by Avi Kak Lecture 24

Back to TOC

24.7 HOMEWORK PROBLEMS

1. As you now know, Fail2Ban protects your computer by updating

the iptables based firewall rules. In Section 24.3, when I showed

an example of these rules, it was based on the assumption that

initially all the chains in at least the filter table of the firewall

were empty. I also did not show an example of the rules after an

IP address is banned. Install Fail2Ban in your computer and

construct a demonstration that illustrates the modification to

the firewall rules after one or more IP addresses are banned.

2. As mentioned in Section 24.3, by default the Fail2Ban tool

monitors only the /var/log/auth.log file for repeated attempts

at breaking into a computer through the SSH port 22. It can,

however, be made to monitor any of the other log files such as

/var/log/apache/access.log for access to your HTTPD server,

/var/log/mysqld.log for access to your database server mysqld,

/var/log/squid/access.log for access to your Squid proxy

server, /var/log/named/security.log for access to your bind9

based DNS sever, etc. In order to appreciate the full versatility

of Fail2Ban, create your own server application — based on,

say, the server scripts you have seen elsewhere in these lecture

notes. Make sure that your server application has associated

with it an access log in which the server makes different kinds of

entries depending on how a client is interacting with the server.

58

Computer and Network Security by Avi Kak Lecture 24

Now create a filter to recognize some particular type of such

client interactions. And when a client is found to engage in such

an interaction with the server, either trigger a ban on the client

IP address or, at the least, get Fail2Ban to send you an email to

that effect. Look at the regex based filters in the directory

/etc/fail2ban/filters.d/ to get ideas on how you can set up

your filter.

3. A very educational library for learning about the different

password hashing schemes is Apache’s Common Codec library.

Here is a link to the Apache Commons repository for all kinds of

functionality in Java: http://commons.apache.org/ and here is a link

http://commons.apache.org/proper/commons-codec/apidocs/ specifically to

the Digest package of the Codec library that contains the Java

class Sha2Crypt that implements various SHA-2 based password

hashing schemes. In particular, you will find it educational if

you look at the implementation of the Sha2Crypt class. This

implementation mirrors on a step-by-step basis the previously

mentioned specification of sha512 crypt by Ulrich Drepper at

http://www.akkadia.org/drepper/SHA-crypt.txt. As one might

expect, the defaults with respect to the salts, the rounds, etc.,

in the Python based passlib and in the Java based Sha2Crypt

are not the same. The goal of this homework is to become

familiar with the defaults in the two implementations of Ulrich

Drepper’s specification of sha512 crypt so that they produce the

same password hashes for a given password string. That is,

either by default or by specific mention, you want the two

59

http://commons.apache.org/
http://commons.apache.org/proper/commons-codec/apidocs/
http://www.akkadia.org/drepper/SHA-crypt.txt

Computer and Network Security by Avi Kak Lecture 24

implementations to use the same number of rounds and the

same salts.

60

