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Goals:
• Authenticating users and their public keys with certificates signed by
Certificate Authorities (CA)

• Exchanging session keys with public-key cryptography

• X.509 certificates

• Perl and Python code for harvesting RSA moduli from X.509

certificates

• The Diffie-Hellman algorithm for exchanging session keys

• The ElGamal digital signature algorithm

• Can the certificates issued by CAs be forged?
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13.1 USING PUBLIC KEYS TO
EXCHANGE SECRET SESSION KEYS

• From the presentation on RSA cryptography in Lecture 12, you

saw that public key cryptography, at least when using the RSA

algorithm, is not suitable for the encryption of the actual

message content.

• However, public key cryptography fulfills an extremely

important role in the overall design and operation of secure

computer networks: It leads to superior protocols for managing

and distributing secret session keys that can subsequently be

used for the encryption of actual message content using

symmetric-key algorithms such as AES, 3DES, RC4, etc. [although,

not RC4 as much any longer.]

• How exactly public key cryptography should be used for

exchanging a secret session key depends on the application

context for secure communications and the risk factors

associated with a loss of security.

• Party A could, for example, publish their public key in some

publicly accessible place (such as on a web page). Anyone
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wanting to establish a secure communication link with A could

download A’s public key, use it to encrypt a session key, and

send the encrypted key to A. Subsequently, only A will be able

to decrypt and retrieve the session key from what A receives

from B. [You’d think that as long as A does not lose their private key, there is no

danger of anyone else masquerading as A. You might even say that even if someone

were to eavesdrop on the communications received by A, they would not be able

decipher those messages. But think about the following: How would a party B

wanting to send an encrypted message to A be sure that the webpage that claims to

present A’s public key is really authentic? What if it is a fake webpage that was put up

for a short while just so that you could be tricked into parting with some sensitive

information that you think you are sending to A?]

• In general, if two parties A and B are sure about each other’s

identity, can be certain that a third party will not masquerade

as either A or B vis-a-vis the other, they can use a simple and

direct key exchange protocol for exchanging a secret session key.

Such protocols do not require support from any coordinating or

certificating agencies. A direct key exchange protocol is

presented in Section 13.2. [Unfortunately, as you will see, the direct

key exchange protocol is vulnerable to the man-in-the-middle attack.]

• The key exchange protocols are more complex for security that

provides a higher level of either one-sided or mutual

authentication between two communicating parties. These

protocols usually involve Certificate Authorities, as discussed

in Section 13.3.
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13.2 A DIRECT KEY EXCHANGE
PROTOCOL

• If each of the two parties A and B has full confidence that a

message received from the other party is indeed authentic (in the

sense that the sending party is who he/she/it claims to be), the exchange of the secret

session key for a symmetric-key based secure communication

link can be carried out with a simple protocol such as the one

described below:

– Wishing to communicate with B, A generates a

public/private key pair {PUA, PRA} and transmits an

unencrypted message to B consisting of PUA and A’s

identifier, IDA (which can be A’s IP address). Note that

PUA is party A’s public key and PRA the private key.

– Upon receiving the message from A, B generates and stores

a secret session key KS. Next, B responds to A with the

secret session key KS. This response to A is encrypted

with A’s public key PUA. We can express this message from

B to A as E(PUA, KS). Obviously, since only A has access

to the private key PRA, only A can decrypt the message

containing the session key.
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– A decrypts the message received from B with the help of the

private key PRA and retrieves the session key KS.

– A discards both the public and private keys, PUA and

PRA, and B discards PUA.

• Now A and B can communicate confidentially with the help of

the session key KS.

• However, this protocol is vulnerable to the man-in-the-middle

attack by an adversary V who is able to intercept messages

between A and B. This is how this attack takes place:

– When A sends the very first unencrypted message consisting

of PUA and IDA, V intercepts the message. (Therefore, B

never sees this initial message.)

– The adversary V generates its own public/private key pair

{PUV , PRV } and transmits {PUV , IDA} to B. Note that

what V sends to B has A’s identifier in it.

– Assuming that the message received came from A, B

generates the secret key KS, encodes it with PUV , and sends

it back to A.
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– This transmission from B is again intercepted by V , who

for obvious reasons is able to decode the message.

– V now encodes the secret key KS with A’s public key PUA

and sends the encoded message back to A.

– A retrieves the secret key and, not suspecting any foul play,

starts communicating with B using the secret key.

– V can now successfully eavesdrop on all communications

between A and B.
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13.3 CERTIFICATE AUTHORITIES FOR
AUTHENTICATING YOUR PUBLIC KEY

• A certificate issued by a certificate authority (CA)

authenticates your public key. Said simply, a certificate is your

public key signed by the CA’s private key.

• The CAs operate through a strict hierarchical organization in

which the trust can only flow downwards. The CAs at the top

of the hierarchy are known as Root CAs. The CAs below the

root are generally referred to as Intermediate-Level CAs.

Obviously, each root CA sits at the top of a tree-like structure of

intermediate-level CAs. Your computer comes pre-loaded with

the public keys for the root CAs. In a Linux machine, these

certificates typically reside in the directory “/etc/ssl/certs/”.

You can view any of these certificates by executing the

command “openssl x509 -text < cert file name”.

• CA based authentication of a user is based on the assumption

that when a new user applies to a CA for a certificate, the CA

can authenticate the identity of the applicant through other

means.
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• There are three kinds of certificates, depending on the level of

“identity assurance and authentication” that was carried out

with regard to the applicant organization. At the highest level,

you have the Extended Validation (EV) certificates that are

issued only after a rigorous identity verification process for

establishing the legitimacy of the applicant organization. This

process may include verifying that the applicant organization

has a legal and physical existence and the information provided

by the applicant matches what can be gleaned from other

government and other records. This process also includes a

check on whether the applicant has exclusive rights to the

domain specified in the application. When you visit a website

that offers such a certificate to your browser, some part of the

URL window will turn green. It may take several days for a

CA to issue such a certificate. These are the most expensive

certificates.

• At the next lower level of “identity assurance and

authentication”, we have Organization Validation (OV)

certificates. Identity checks are less intense compared to those

carried out for EV certificates. Usually, the existence of the

organization is verified, the name of the domain is verified,

which may be followed by a phone call from the CA.

• At the lowest level of identity and domain validation are the

Domain Validation (DV) certificates. The only check that is

made before such a certificate is issued is that the applicant has
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the right to use a specific domain name. This is done solely on

the basis of the information you provide when applying for a

certificate, by comparing the domain name for which you want a

certificate against the database of the currently existing domain

names, and by checking various internet directories as a check

on the information you have provided. Such certificates are the

least expensive and are normally issued in just a few minutes.

• As mentioned previously, a website offering an EV certificate

will change a part of your URL window to green. In the green

portion, you are likely to see a padlock, a logo and the name

of the organization to which the certificate was issued. The

other two types of certificates, OV and DV, will only show a

padlock in the URL window. [For example, the website

https://engineering.purdue.edu only shows a padlock in the URL window.]

• At the beginning of this section I mentioned that the CAs

operate in a strict hierarchy, with the Root CAs at the top of

the hierarchy, and with the Intermediate-Level CAs forming a

tree structure under the Root CAs. There is a very practical reason

for why Intermediate-Level CAs are needed: As I said earlier, the

public keys for the Root CAs come pre-loaded with your

computer (and also with the browsers). Now consider the

situation that would arise should the private key of a Root CA

become compromised for some reason. The only fix for that

problem would be for you to update your software in order to

replace the now defunct public key for the Root CA. But with
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billions of computers and digital devices around the world, there

must exist hundreds of millions of devices for which the software

is rarely updated if ever at all. You don’t run into this problem

when the private key of an Intermediate-Level CA is

compromised. The affected certificates can now simply be

added to a “Certificate Revocation List” maintained by a

higher-level CA. The affected CA can then proceed to issue

fresh certificates to the affected parties.

• With regard to how a tree of CAs is used for validating a

certificate, consider a certificate issued by a CA that is not just

below the root in the tree of CAs, but somewhere further down

in the tree. Before your browser trusts such a certificate, it will

verify the public key of the next higher level CA that validated

the certificate your browser has received. This process is

recursive until the root certificate that is pre-loaded in your

computer is invoked. In order to save your browser from

having to make repeated requests for the certificates as it goes

up the tree of CAs, the webserver that sent you the certificate

you are specifically interested in may send the whole bundle of

higher level certificates also.
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13.4 USING THE CERTIFICATES FOR
AUTHENTICATION

• At its minimum, a certificate assigned to a user consists of the

user’s public key, the identifier of the key owner, a time stamp

(in the form of a period of validity), etc., the whole block

encrypted with the CA’s private key. Encrypting of the block

with the CA’s private key is referred to as the CA having

signed the certificate. We may therefore express a certificate

issued to party A by

CA = E (PRCA, [T, IDA, PUA])

where PRCA is the private key of the Certificate Authority, T

the expiration date/time for the A’s public key PUA that is

being validated by the CA, and IDA the party A’s identifier.

• Subsequently, when party A presents their certificate to party

B, the latter can verify the legitimacy of the certificate by

decrypting it with the CA’s public key. Successful decryption

authenticates both the certificate supplied by A and A’s public

key.
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• But how does the party B get hold of the public key of the CA

that provider party A with the certificate?

• If the CA happens to be a root CA, its public key is already

stored in your computer. That is, parties A and B in our

example are likely to have immediate access to the public keys

for the root CAs without having to download them from

anywhere.

• If the CA is not a root CA, B will have to authenticate the CA

that signed A’s certificate in just the same manner as when

authenticating A by moving up the hierarchy of the CAs.

• CRITICAL TO WHY CA BASED AUTHENTICATION WORKS: It is

the fact that the public keys of the root CAs are already stored in your

computer. That fact makes the whole thing work with a

reasonable level of reliability.

• To summarize, in addition to obtaining A’s public key for

creating a session key, the process described above also provides

B with authentication for A’s identity since only the real A

could have provided a legitimate certificate with A’s identifier in

it — since, as mentioned in the previous section, the CA will

not issue a certificate containing A’s ID to A unless the CA is

certain about A’s identity. [An important question here is that if a third
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party X manages to steal A’s certificate, can X pose as A vis-a-vis B? Not really,

unless X also manages to steal A’s private key.]

• Having established the certificate’s legitimacy, having

authenticated A, and having acquired A’s public key, B

responds back to A with its own certificate. A processes B’s

certificate in the same manner as B processed A’s certificate. [B

responding back with its own certificate makes for a two-way

authentication. Most of the business transactions in e-commerce utilize

only one-way authentication. To illustrate, before you upload your

credit-card info to Amazon.com, your laptop must make certain that the

website at the other end is truly Amazon.com. There is no need for

Amazon.com to authenticate you or your laptop directly. Obviously,

Amazon.com wants to get paid for the items ordered by you — that’s

something it does not need to worry about after your credit card info is

accepted by the issuer of the card.]

• This exchange results in A and B acquiring authenticated

public keys for each other. The important thing to note here

is that each of the two parties A and B acquires the other

party’s public key not directly but through the other party’s

certificate.

• The upper half of Figure 1 shows this approach to user and

public key authentication. Next, we will explain the protocol

that A and B use to exchange a secret session key. This is done
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with the help of the four messages shown in the bottom half of

the figure.

• Another acronym closely related to CA is RA, which stands for

Registration Authority. RAs act as resellers of certificates for

CAs. That means, instead of directly approaching a particular

CA for signing your certificate, you may approach an RA that

works for the CA. RAs are not to be confused with intermediate

level CAs. An intermediate level CA is a CA that is not the

root CA (see Section 13.5 for what that means) and that issues

a certificate under its own signature. On the other hand, an RA

for a given CA is simply a conduit for obtaining a certificate

signed by that CA. [See Section 13.9 for how, not too long ago, an attacker

compromised the security of an RA working for Comodo, a well-known root CA, and obtained forged

certificates for some prominent domains.]

• As mentioned earlier in this section, in most practical situations

involving e-commerce, what actually transpires between a client,

such as your laptop, and an e-commerce website like

Amazon.com is less elaborate than what is shown in the figure

on page 17. That is for two reasons: (1) It is highly likely that a

client will not possess a certificate; and (2) while it is important

for your laptop to authenticate Amazon.com, the company does

not really care as to who you are as long as your credit-card

information proves to be valid. Therefore, a typical connection

with an e-commerce website will involve only one-way

authentication. Your laptop will request Amazon.com’s
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certificate, verify its validity, use the Amazon.com’s verified

public key to encrypt a session key, and, finally, transmit the

encrypted session key to the Amazon.com’s website.
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Figure 1: Messages exchanged between two parties for ac-

quiring each other’s CA authenticated public keys. (This figure

is from Lecture 13 of “Computer and Network Security” by Avi Kak.)
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13.4.1 Using Authenticated Public Keys to
Exchange a Secret Session Key

• Having acquired the public keys (and having cached them for

future use), the two parties A and B then proceed to exchange

a secret session key.

• The bottom half of Figure 1 shows the messages exchanged for

establishing the secret key.

• A uses B’s public key PUB to encrypt a message that contains

A’s identifier IDA and a nonce N1 as a transaction identifier. A

sends this encrypted message to B. This message can be

expressed as

E (PUB, [N1, IDA])

• B responds back with a message encrypted using A’s public key

PUA, the message containing A’s nonce N1 and new nonce N2

from B to A. The structure of this message can be expressed as

E (PUA, [N1, N2])
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Since only B could have decrypted the first message from A to

B, the presence of the nonce N1 in this response from B further

assures A that the responding party is actually B (since only B

could have decrypted the original message containing the nonce

N1).

• A now selects a secret session key KS and sends B the following

message

M = E (PUB, E (PRA, KS))

Note that A encrypts the secret key KS with their own private

key PRA before further encrypting it with B’s public key PUB.

Encryption with A’s private key makes it possible for B to

authenticate the sender of the secret key. Of course, the further

encryption with B’s public key means that only B will be

able to read it.

• B decrypts the message first with its own private key PRB and

then recovers the secret key by applying another round of

decryption using A public key PUA.
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13.5 THE X.509 CERTIFICATE FORMAT
STANDARD FOR PUBLIC KEY

INFRASTRUCTURE (PKI)

• The set of standards related to the creation, distribution, use,

and revocation of digital certificates is referred to as the

Public Key Infrastructure (PKI). [In addition to PKI, another

acronym that you will see frequently in the present context is PKCS, which, as

previously mentioned in Section 12.6 of Lecture 12, stands for Public Key

Cryptography Systems. If you search for information on the web, you will frequently

see references to documents and protocols under the tag PKCS#N where N is usually

a small integer. As stated in Lecture 12, these documents were produced by the RSA

corporation that has been responsible for many of the PKI standards. Several of these

documents eventually became IETF standards under the names that begin with RFC

followed by a number. IETF stands for the Internet Engineering Task Force. A large

number of standards that regulate the workings of the internet are IETF documents.

Check them out at the http://www.ietf.org web page and find out about how the

internet standardization process works.]

• X.509 is one of the PKI standards. Besides other things, it is

this standard that specifies the format of digital certificates.

The X.509 standard is described in the IETF document RFC

5280 (also see its recent update in RFC 6818). [Just googling a string like

“rfc5280” will take you directly to the source of such documents.]

20
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• The X.509 standard is based on a strict hierarchical

organization of the CAs in which the trust can only flow

downwards. As mentioned previously at the beginning of

Section 13.3, the CAs at the top of the hierarchy are known as

root CAs. The CAs below the root are generally referred to as

intermediate-level CAs.

• In order to verify the credentials of a particular CA as the issuer

of a certificate, you approach the higher level CA for the needed

verification. Obviously, this approach for establishing trust

assumes that the root level CA must always be trusted

implicitly.

• IMPORTANT: The public keys of the root CAs, of which

VeriSign, Comodo, and so on, are examples, are incorporated

in your browser software and other applications that require

networking so that the root-level verification is not subject to

network-based man-in-the-middle attacks. This also enables

quick local authentication at the root level. In Linux machines,

you’ll find the root CA certificates in “/etc/ssl/certs/”. [By the

way, the status of the root CAs is verified annually by designated agencies. For

example, Comodo’s annual status as a root CA is verified annually by the global

accounting firm KPMG. Again as a side note, Comodo owns 11 root keys. VeriSign is

apparently the largest owner of root keys; it owns 13 root keys.]

• For web-based applications, a certificate that cannot be
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authenticated by going up the chain of CAs all the way up to

a root CA generates a warning popup from the browser.

• The format of an X.509 certificate is shown in Figure 2. The

different fields of this certificate are described below:

– Version Number: This describes the version of the X.509

standard to which the certificate corresponds. We are now

on the third version of this standard. Since the entry in this

field is zero based, so you’d see 2 in this field for the

certificates that correspond to the latest version of the

standard.

– Serial Number: This is the serial number assigned to a

certificate by the CA.

– Signature Algorithm ID: This is the name of the digital

signature algorithm used to sign the certificate. The

signature itself is placed in the last field of the certificate.

– Issuer Name: This is the name of the Certificate

Authority that issued this certificate.

– Validity Period: This field states the time period during

which the certificate is valid. The period is defined with two
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Signature Algorithm ID

Issuer Name

Serial Number

Version Number

Validity Period

Subject Name

Signature

Extensions

Issuer Unique ID

Subject Unique ID

Subject Public Key

X.509 Certificate Format

optional

Figure 2: The different fields of an X.509 certificate. (This

figure is from Lecture 13 of “Computer and Network Security” by Avi Kak.)
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date-times, a not before date-time and a not after

date-time.

– Subject Name: This field identifiers the

individual/organization to which the certificate was issued.

In other words, this field names the entity that wants to use

this certificate to authenticate the public key that is in the

next field.

– Subject Public Key: This field presents the public key

that is meant to be authenticated by this certificate. This

field also names the algorithm used for public-key generation.

– Issuer Unique Identifier: (optional) With the help of

this identifier, two or more different CA’s can operate as

logically a single CA. The Issuer Name field will be distinct

for each such CA but they will share the same value for the

Issuer Unique Identifier.

– Subject Unique Identifier: (optional) With the help of

this identifier, two or more different certificate holders can

act as a single logical entity. Each holder will have a different

value for the Subject Name field but they will share the

same value for the Subject Unique Identifier field.

– Extensions: (optional) This field allows a CA to add
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additional private information to a certificate.

– Signature: This field contains the digital signature by the

issuing CA for the certificate. This signature is obtained by

first computing a message digest of the rest of the fields

with a hashing algorithm like SHA-1 (See Lecture 15) and

then encrypting it with the CA’s private key. Authenticity

of the contents of the certificate can be verified by using

CA’s public key to retrieve the message digest and then by

comparing this digest with one computed from the rest of

the fields.

• The digital representation of an X.509 certificate, described in

RFC 5280, is created by first using the following ASN.1

representation to generate a byte stream for the certificate and

converting the bytestream into a printable form with Base64

encoding. [As mentioned in Section 12.8 of Lecture 12, ASN stands for Abstract

Syntax Notation and the ASN.1 standard, along with its transfer encoding DER (for

Distinguished Encoding Rules), accomplishes the same thing in binary format for

complex data structures that the XML standard does in textual format.] Shown

below is the ASN.1 representation of an X.509 certificate:

Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,

signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,

serialNumber CertificateSerialNumber,

signature AlgorithmIdentifier,

issuer Name,

validity Validity,
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subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3

subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3

extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version MUST be v3

}

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

notBefore Time,

notAfter Time }

Time ::= CHOICE {

utcTime UTCTime,

generalTime GeneralizedTime }

UniqueIdentifier ::= BIT STRING

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING

-- contains the DER encoding of an ASN.1 value

-- corresponding to the extension type identified

-- by extnID

• It is the hash of the bytestream that corresponds to what is

stored for the field TBSCertificate that is encrypted by the

CA’s private key for the digital signature that then becomes the

value of the signatureValue field. You may read

TBSCertificate as the “To Be Signed” potion of what

appears in the final certificate. As to what algorithms are used

for hashing and for encryption with the CA’s private key, that is
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identified by the value of the field signatureAlgorithm.

• Using the Base64 representation (see Lecture 2), an X.509

certificate is commonly stored in a printable form according to

the RFC 1421 standard. In its printable form, a certificate will

normally be bounded by the first string shown below at the

beginning and the second at the end.

-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----

Shown below is an example of a certificate in Base64

representation and it resides in a file whose name carries the

“.pem” suffix. The programming problem in Section 13.9 has

more to say about the PEM format for representing keys and

certificates.
-----BEGIN CERTIFICATE-----

MIIDJzCCApCgAwIBAgIBATANBgkqhkiG9w0BAQQFADCBzjELMAkGA1UEBhMCWkEx

FTATBgNVBAgTDFdlc3Rlcm4gQ2FwZTESMBAGA1UEBxMJQ2FwZSBUb3duMR0wGwYD

VQQKExRUaGF3dGUgQ29uc3VsdGluZyBjYzEoMCYGA1UECxMfQ2VydGlmaWNhdGlv

biBTZXJ2aWNlcyBEaXZpc2lvbjEhMB8GA1UEAxMYVGhhd3RlIFByZW1pdW0gU2Vy

dmVyIENBMSgwJgYJKoZIhvcNAQkBFhlwcmVtaXVtLXNlcnZlckB0aGF3dGUuY29t

MB4XDTk2MDgwMTAwMDAwMFoXDTIwMTIzMTIzNTk1OVowgc4xCzAJBgNVBAYTAlpB

MRUwEwYDVQQIEwxXZXN0ZXJuIENhcGUxEjAQBgNVBAcTCUNhcGUgVG93bjEdMBsG

A1UEChMUVGhhd3RlIENvbnN1bHRpbmcgY2MxKDAmBgNVBAsTH0NlcnRpZmljYXRp

b24gU2VydmljZXMgRGl2aXNpb24xITAfBgNVBAMTGFRoYXd0ZSBQcmVtaXVtIFNl

cnZlciBDQTEoMCYGCSqGSIb3DQEJARYZcHJlbWl1bS1zZXJ2ZXJAdGhhd3RlLmNv

bTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA0jY2aovXwlue2oFBYo847kkE

VdbQ7xwblRZH7xhINTpS9CtqBo87L+pW46+GjZ4X9560ZXUCTe/LCaIhUdib0GfQ

ug2SBhRz1JPLlyoAnFxODLz6FVL88kRu2hFKbgifLy3j+ao6hnO2RlNYyIkFvYMR

uHM/qgeN9EJN50CdHDcCAwEAAaMTMBEwDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG

9w0BAQQFAAOBgQAmSCwWwlj66BZ0DKqqX1Q/8tfJeGBeXm43YyJ3Nn6yF8Q0ufUI

hfzJATj/Tb7yFkJD57taRvvBxhEf8UqwKEbJw8RCfbz6q1lu1bdRiBHjpIUZa4JM

pAwSremkrj/xw0llmozFyD4lt5SZu5IycQfwhl7tUCemDaYj+bvLpgcUQg==

-----END CERTIFICATE-----
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• Ordinarily you would request a CA for a certificate for your

public key. But that does not prevent you from generating your

own certificates for testing purposes. If you have Ubuntu

installed on your machine, try out the following command:

openssl req -new -newkey rsa:1024 -days 365 -nodes -x509 -keyout test.pem -out test.cert

where the first argument req to openssl is for generating an

X509 certificate, the rest of the arguments being

self-explanatory. This command will deposit a new private key

for you in the file test.pem and the certificate in the file

test.cert. [By the way, OpenSSL, the open-source library that supports the command openssl

used above, is an amazingly useful library in C that implements the SSL/TLS protocol (that we will take up

in greater depth in Lecture 20). It contains production-quality code for virtually anything you would ever

want to do with cryptography — symmetric-key cryptography, public-key cryptography, hashing, certificate

generation, etc. Check it out at www.openssl.org. If you are running Ubuntu and you have OpenSSL

installed, do man openssl to see all the things that you can do with the command shown above as you give

it different arguments.] When you invoke the above command, it will

ask you for information related to you and your organization. It

is not necessary to supply the information that you are

prompted for, though.

• You can also use OpenSSL to make your own organization a

CA. Visit http://sandbox.rulemaker.net/ngps/m2/howto.ca.html to find out how

you can do it.

• Shown on the next page is the X.509 certificate that belongs to
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the InCommon root CA (https://www.incommon.org/). InCommon is

used by several universities and research organizations in the US

for data encryption for web servers. The certificate shown below

can be downloaded from

https://www.incommon.org/cert/repository/InCommonServerCA.txt.

• To see the role played by the InCommon’s certificate shown on

the next page, let’s say the web browser in your computer

requests a page from the engineering.purdue.edu web server that I

use for hosting my computer and network security lecture notes.

This server supplies all its content using the TLS/SSL protocol,

meaning that all interactions with this server are encrypted. In

order to create an encrypted session with the server, your

browser first downloads engineering.purdue.edu’s certificate —

which is signed by InCommon — and then authenticates it

through InCommons’s public key that is supplied by their own

certificate shown on the next page. IMPORTANT: Note that

InCommon is an intermediate level CA whose own certificate is

signed by a root CA called AddTrust. Being a root CA,

AddTrust’s public key (in the form of a self-signed certificate)

comes preloaded in your computer and resides in the directory

“/etc/ssl/certs/”. As mentioned earlier in this lecture, you can

view any of these certificates by executing the command “openssl

x509 -text < cert file name”. Being preloaded in your computer,

the acquisition of AddTrust’s public key is NOT vulnerable to

man-in-the-middle attack. The web browser running in your

computer and the engineering.purdue.edu’s web server use the
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SSL/TLS protocol to create a session that cannot be

eavesdropped on. For that, your browser first downloads the

engineering.purdue.edu’s certificate as already mentioned. From the

URL provided in this certificate to the InCommon web site,

your browser next downloads the InCommon’s certificate that is

shown below. Next, it verifies InCommon’s certificate using the

pre-stored AddTrust certificate in the directory /etc/ssl/certs/.

Subsequently, it uses the public key in the authenticated

InCommon’s certificate to authenticate the public key in

engineering.purdue.edu’s certificate. Shown below is InCommon’s

certificate:
Certificate:

Data:

Version: 3 (0x2)

Serial Number:

7f:71:c1:d3:a2:26:b0:d2:b1:13:f3:e6:81:67:64:3e

Signature Algorithm: sha1WithRSAEncryption

Issuer: C=SE, O=AddTrust AB, OU=AddTrust External TTP Network, CN=AddTrust External CA Root

Validity

Not Before: Dec 7 00:00:00 2010 GMT

Not After : May 30 10:48:38 2020 GMT

Subject: C=US, O=Internet2, OU=InCommon, CN=InCommon Server CA

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (2048 bit)

Modulus (2048 bit):

00:97:7c:c7:c8:fe:b3:e9:20:6a:a3:a4:4f:8e:8e:

34:56:06:b3:7a:6c:aa:10:9b:48:61:2b:36:90:69:

e3:34:0a:47:a7:bb:7b:de:aa:6a:fb:eb:82:95:8f:

ca:1d:7f:af:75:a6:a8:4c:da:20:67:61:1a:0d:86:

c1:ca:c1:87:af:ac:4e:e4:de:62:1b:2f:9d:b1:98:

af:c6:01:fb:17:70:db:ac:14:59:ec:6f:3f:33:7f:

a6:98:0b:e4:e2:38:af:f5:7f:85:6d:0e:74:04:9d:

f6:27:86:c7:9b:8f:e7:71:2a:08:f4:03:02:40:63:

24:7d:40:57:8f:54:e0:54:7e:b6:13:48:61:f1:de:

ce:0e:bd:b6:fa:4d:98:b2:d9:0d:8d:79:a6:e0:aa:

cd:0c:91:9a:a5:df:ab:73:bb:ca:14:78:5c:47:29:

a1:ca:c5:ba:9f:c7:da:60:f7:ff:e7:7f:f2:d9:da:

a1:2d:0f:49:16:a7:d3:00:92:cf:8a:47:d9:4d:f8:

d5:95:66:d3:74:f9:80:63:00:4f:4c:84:16:1f:b3:

f5:24:1f:a1:4e:de:e8:95:d6:b2:0b:09:8b:2c:6b:

c7:5c:2f:8c:63:c9:99:cb:52:b1:62:7b:73:01:62:

7f:63:6c:d8:68:a0:ee:6a:a8:8d:1f:29:f3:d0:18:

ac:ad

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Authority Key Identifier:

keyid:AD:BD:98:7A:34:B4:26:F7:FA:C4:26:54:EF:03:BD:E0:24:CB:54:1A

X509v3 Subject Key Identifier:
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48:4F:5A:FA:2F:4A:9A:5E:E0:50:F3:6B:7B:55:A5:DE:F5:BE:34:5D

X509v3 Key Usage: critical

Certificate Sign, CRL Sign

X509v3 Basic Constraints: critical

CA:TRUE, pathlen:0

X509v3 Certificate Policies:

Policy: X509v3 Any Policy

X509v3 CRL Distribution Points:

URI:http://crl.usertrust.com/AddTrustExternalCARoot.crl

Authority Information Access:

CA Issuers - URI:http://crt.usertrust.com/AddTrustExternalCARoot.p7c

CA Issuers - URI:http://crt.usertrust.com/AddTrustUTNSGCCA.crt

OCSP - URI:http://ocsp.usertrust.com

Signature Algorithm: sha1WithRSAEncryption

93:66:21:80:74:45:85:4b:c2:ab:ce:32:b0:29:fe:dd:df:d6:

24:5b:bf:03:6a:6f:50:3e:0e:1b:b3:0d:88:a3:5b:ee:c4:a4:

12:3b:56:ef:06:7f:cf:7f:21:95:56:3b:41:31:fe:e1:aa:93:

d2:95:f3:95:0d:3c:47:ab:ca:5c:26:ad:3e:f1:f9:8c:34:6e:

11:be:f4:67:e3:02:49:f9:a6:7c:7b:64:25:dd:17:46:f2:50:

e3:e3:0a:21:3a:49:24:cd:c6:84:65:68:67:68:b0:45:2d:47:

99:cd:9c:ab:86:29:11:72:dc:d6:9c:36:43:74:f3:d4:97:9e:

56:a0:fe:5f:40:58:d2:d5:d7:7e:7c:c5:8e:1a:b2:04:5c:92:

66:0e:85:ad:2e:06:ce:c8:a3:d8:eb:14:27:91:de:cf:17:30:

81:53:b6:66:12:ad:37:e4:f5:ef:96:5c:20:0e:36:e9:ac:62:

7d:19:81:8a:f5:90:61:a6:49:ab:ce:3c:df:e6:ca:64:ee:82:

65:39:45:95:16:ba:41:06:00:98:ba:0c:56:61:e4:c6:c6:86:

01:cf:66:a9:22:29:02:d6:3d:cf:c4:2a:8d:99:de:fb:09:14:

9e:0e:d1:d5:c6:d7:81:dd:ad:24:ab:ac:07:05:e2:1d:68:c3:

70:66:5f:d3

-----BEGIN CERTIFICATE-----

MIIEwzCCA6ugAwIBAgIQf3HB06ImsNKxE/PmgWdkPjANBgkqhkiG9w0BAQUFADBv

MQswCQYDVQQGEwJTRTEUMBIGA1UEChMLQWRkVHJ1c3QgQUIxJjAkBgNVBAsTHUFk

ZFRydXN0IEV4dGVybmFsIFRUUCBOZXR3b3JrMSIwIAYDVQQDExlBZGRUcnVzdCBF

eHRlcm5hbCBDQSBSb290MB4XDTEwMTIwNzAwMDAwMFoXDTIwMDUzMDEwNDgzOFow

UTELMAkGA1UEBhMCVVMxEjAQBgNVBAoTCUludGVybmV0MjERMA8GA1UECxMISW5D

b21tb24xGzAZBgNVBAMTEkluQ29tbW9uIFNlcnZlciBDQTCCASIwDQYJKoZIhvcN

AQEBBQADggEPADCCAQoCggEBAJd8x8j+s+kgaqOkT46ONFYGs3psqhCbSGErNpBp

4zQKR6e7e96qavvrgpWPyh1/r3WmqEzaIGdhGg2GwcrBh6+sTuTeYhsvnbGYr8YB

+xdw26wUWexvPzN/ppgL5OI4r/V/hW0OdASd9ieGx5uP53EqCPQDAkBjJH1AV49U

4FR+thNIYfHezg69tvpNmLLZDY15puCqzQyRmqXfq3O7yhR4XEcpocrFup/H2mD3

/+d/8tnaoS0PSRan0wCSz4pH2U341ZVm03T5gGMAT0yEFh+z9SQfoU7e6JXWsgsJ

iyxrx1wvjGPJmctSsWJ7cwFif2Ns2Gig7mqojR8p89AYrK0CAwEAAaOCAXcwggFz

MB8GA1UdIwQYMBaAFK29mHo0tCb3+sQmVO8DveAky1QaMB0GA1UdDgQWBBRIT1r6

L0qaXuBQ82t7VaXe9b40XTAOBgNVHQ8BAf8EBAMCAQYwEgYDVR0TAQH/BAgwBgEB

/wIBADARBgNVHSAECjAIMAYGBFUdIAAwRAYDVR0fBD0wOzA5oDegNYYzaHR0cDov

L2NybC51c2VydHJ1c3QuY29tL0FkZFRydXN0RXh0ZXJuYWxDQVJvb3QuY3JsMIGz

BggrBgEFBQcBAQSBpjCBozA/BggrBgEFBQcwAoYzaHR0cDovL2NydC51c2VydHJ1

c3QuY29tL0FkZFRydXN0RXh0ZXJuYWxDQVJvb3QucDdjMDkGCCsGAQUFBzAChi1o

dHRwOi8vY3J0LnVzZXJ0cnVzdC5jb20vQWRkVHJ1c3RVVE5TR0NDQS5jcnQwJQYI

KwYBBQUHMAGGGWh0dHA6Ly9vY3NwLnVzZXJ0cnVzdC5jb20wDQYJKoZIhvcNAQEF

BQADggEBAJNmIYB0RYVLwqvOMrAp/t3f1iRbvwNqb1A+DhuzDYijW+7EpBI7Vu8G

f89/IZVWO0Ex/uGqk9KV85UNPEerylwmrT7x+Yw0bhG+9GfjAkn5pnx7ZCXdF0by

UOPjCiE6SSTNxoRlaGdosEUtR5nNnKuGKRFy3NacNkN089SXnlag/l9AWNLV1358

xY4asgRckmYOha0uBs7Io9jrFCeR3s8XMIFTtmYSrTfk9e+WXCAONumsYn0ZgYr1

kGGmSavOPN/mymTugmU5RZUWukEGAJi6DFZh5MbGhgHPZqkiKQLWPc/EKo2Z3vsJ

FJ4O0dXG14HdrSSrrAcF4h1ow3BmX9M=

-----END CERTIFICATE-----
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• Since all valid certificates are cached by your browser, if you

previously visited the engineering.purdue.edu domain, the

InCommon certificate I showed above is probably already in

your computer. You can check whether or not that’s the case

through your browser’s certificate viewer tool. For FireFox, you

can get to the certificate viewer by clicking on the “edit” button

in the menu bar of the browser and by further clicking as shown

below:

Preferences -->

Advanced -->

Certificates -->

"View Certificates" button -->

"Authorities" to view the CA certificates -->

Scroll down to "AddTrust AB" -->

Further scroll down to "InCommon Server CA"

where the last item will show up only if you previously visited

the engineering.purdue.edu domain. Assuming it is there, when you

double-click on the last item, you will see a popup with two

buttons. The left button leads you to general information

regarding the root CA and the right button shows the details

regarding the root certificate through a tree structure. When

you click on “Subject’s public key”, you will see the modulus

and the public exponent used by this root. In the general

information provided by the left button, you will notice that the

serial number of the root certificate matches that of the root

certificate that I downloaded directly from InCommon’s web

site and that is reproduced above.

• If you want to view the root CA certificates that have been

deposited in your browser by different internet service provides
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(after they were verified by your browser), in the fifth action

item in the indented list of actions shown above, click on

“Servers”.
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Back to TOC

13.5.1 Harvesting RSA Moduli From X.509
Certificates — Perl and Python Code

• As you now know from Section 12.8 of Lecture 12, if an attacker

can somehow obtain two different moduli used for RSA

cryptography from anywhere in the internet, and if it should

happen that these moduli share a common factor, then the

attacker can quickly determine the second factor in both the

moduli and thus compromise the security of both hosts. What

that means is that harvesting RSA moduli from the internet is a

useful activity for network security research.

• Shown in this section is a script that you can use to harvest the

moduli and the public exponents used in the X.509 SSL/TLS

certificates around the world.

• The script uses gnutls-cli as a command-line SSL/TSL client

to make a connection with the remote host on its port 443. On

Linux/Ubuntu platforms, this utility is a part of the gnutls-bin

package that you can download with the Synaptic Package

Manager. [Port 443 is to the HTTPS protocol what port 80 is to the HTTP protocol. Secure

web servers, such as those used by websites that require you to upload your credit-card information,

must use the HTTPS protocol so that they can be authenticated by your computer before you upload

your credit card information. HTTPS stands for “HTTP Secure,” as you’d guess. The HTTPS
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protocol depends on X.509 certificates for the authentication of at least the server by the client and,

sometimes, the authentication for both endpoints of a communication link.]

• With regard to the code in the script, the main point to note

that since the IP addresses are selected purely randomly, a

destination IP address is highly unlikely to be hosting an

HTTPS server. So it is important to check that the port 443 is

open at the destination and your computer can make a TCP

connection with that port.

• Subsequent to making a successful connection, the script calls

on the gnutls-cli client to download all the certificates

offered by the remote host. It is common for large web sites to

offer multiple certificates. The script then uses openssl

commands to process each certificate for the extraction of the

modulus and public key as stored in the certificate.

• For geographically distant hosts, the results you get will depend

much on the value given to the Timeout option in the call to

the socket constructor. You may want to experiment with larger

values if the modulus yield is poor.

• The script as presented has the $NHOSTS set to 200, meaning

that it will randomly select 200 hosts from the space of all IP

addresses. You can change this value to whatever you want.
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• Note that the moduli harvested are dumped cumulatively in a

file named Dumpfile.txt. If you are just playing with this

code, you may want to empty that file every once in a while.

#!/usr/bin/env perl

### ModulusHarvestor.pl

### Author: Avi Kak (kak@purdue.edu)

### Date: April 22, 2014

### Modified: February 23, 2016

## The script can be used in following two different modes:

##

## --- With no command-line args. In this case, the script scans the internet

## with randomly synthesized IP addresses and, when it finds a site with its

## port 443 open, it grabs the certificate(s) offered by that site and

## extracts the various certificate parameters (modulus, public exponent,

## etc.) from the certificate(s).

##

## --- With just one command-line arg, which must be an IPv4 address. In this

## case, the script will try to connect with that address on its port 443 and

## download the certificate offered by it. So as not to waste your time, it

## is best if you use an IP address that does offer an HTTPS service. You can

## check that with a simple port scanner like ’port_scan.pl’ we will cover in

## Lecture 16.

## The basic purpose of this script is to harvest RSA moduli used for public keys in

## SSL/TLS certificates. Recent research has demonstrated that if two different

## moduli share a common factor, they can both be factored easily, thus compromising

## the security of both.

## For harvesting moduli, the script first randomly selects $NHOSTS number of hosts

## from the space of all possible IP addresses and tries to download their X.509

## certificates using a GnuTLS client. It subsequently extracts the modulus and

## public key used in the certificates using openssl commands. These are finally

## dumped into a file called Dumpfile.txt.

use IO::Socket; #(A1)

use Math::BigInt; #(A2)

use strict;

use warnings;

our $debug = 1; #(A3)

our $mark1 = "-----BEGIN CERTIFICATE-----"; #(A4)

our $mark2 = "-----END CERTIFICATE-----"; #(A5)

our $dumpfile = "Dumpfile.txt"; #(A6)

open DUMP, ">> $dumpfile"; #(A7)

our @ip_addresses_to_scan; #(A8)
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unless (@ARGV) { #(B1)

our $NHOSTS = 200; #(B2)

@ip_addresses_to_scan = @{get_fresh_ipaddresses($NHOSTS)}; #(B3)

} elsif (@ARGV == 1) { #(B4)

@ip_addresses_to_scan = ($ARGV[0]); #(B5)

} else { #(B6)

die "You cannot call $0 with more than one command-line argument\n"; #(B7)

}

foreach my $ip_address (@ip_addresses_to_scan) { #(C1)

print "\nTrying IP address: $ip_address\n\n\n"; #(C2)

my $sock = IO::Socket::INET->new(PeerAddr => $ip_address, #(C3)

PeerPort => 443, #(C4)

Timeout => "0.1", #(C5)

Proto => ’tcp’); #(C6)

if ($sock) { #(C7)

print DUMP "$ip_address\n\n"; #(C8)

# The --print-cert option outputs the certificate in PEM format.

# The --insecure option says not to insist on validating the certificate

my $output = ‘gnutls-cli --insecure --print-cert $ip_address < /dev/null‘;

#(C9)

my @certificates = $output =~ /$mark1(.+?)$mark2/gs; #(C10)

my $howmany_certs = @certificates; #(C11)

print "Found $howmany_certs certificates\n\n" if $debug; #(C12)

foreach my $i (1..@certificates) { #(C13)

print "Certificate $i:\n\n" if $debug; #(C14)

print "$certificates[$i-1]\n\n" if $debug; #(C15)

open FILE, ">__temp.cert"; #(C16)

print FILE "$mark1$certificates[$i-1]$mark2\n"; #(C17)

my $cert_text = ‘openssl x509 -text < __temp.cert‘; #(C18)

print "$cert_text\n\n\n" if $debug; #(C19)

my @all_lines = split /\s+/, $cert_text; #(C20)

$cert_text = join ’’, grep $_, @all_lines; #(C21)

my @params = $cert_text =~ /Modulus:(.+?)Exponent:(\d+)/gs; #(C22)

my $modulus ="0x" . join ’’, split /:/, $params[0]; #(C23)

if ($debug) { #(C24)

print "Modulus: \n"; #(C25)

print Math::BigInt->new($modulus)->as_int(); #(C26)

print "\n\n"; #(C27)

print "Public exponent: $params[1]\n"; #(C28)

print "\n\n\n";

}

print DUMP "Modulus:\n"; #(C29)

print DUMP Math::BigInt->new($modulus)->as_int(); #(C30)

print DUMP "\n\nPublic Exponent: $params[1]\n\n\n"; #(C31)

unlink "__temp.cert"; #(C32)

}

print DUMP "\n\n\n"; #(C33)

}

}

## This subroutine was borrowed from the AbraWorm.pl code in Lecture 22.

sub get_fresh_ipaddresses { #(D1)

my $howmany = shift || 0; #(D2)
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return 0 unless $howmany; #(D3)

my @ipaddresses; #(D4)

foreach my $i (0..$howmany-1) { #(D5)

my ($first,$second,$third,$fourth) =

map {1 + int(rand($_))} (223,223,223,223); #(D6)

push @ipaddresses, "$first\.$second\.$third\.$fourth"; #(D7)

}

return \@ipaddresses; #(D8)

}

• As mentioned in the comment block of the script, you can call

this script with a single command-line argument if you want to

see what exactly the script outputs without becoming

overwhelmed by the output produced for a large number of

certificates from many different websites. For example, if you

make the call

ModulusHarvestor.pl 170.149.159.130

you will see the various parameters for all three certificates

offered by nyt.com, which is the main website for The New York

Times.

• However, when you call the script without any command-line

args, you are likely to see an output like

Trying IP address: 165.157.50.192

Trying IP address: 157.156.164.166

Trying IP address: 134.52.117.53

Trying IP address: 27.99.72.169

Trying IP address: 82.162.146.185
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Trying IP address: 92.127.112.199

...

...

Whenever the script finds an IP address that offers HTTPS

service, it will download its certificate, extract the certificate

parameters, and dump the information in the file Dumpfile.txt.

• Shown below is a Python version of the script. Whereas in line

(W) of the Perl script we used backticks to capture the

certificates that were written by the gnutls-cli() call to the

standard output, in the Python code shown below we do the

same in line (Y) by first calling subprocess.Popen() to create a

child process and then calling communicate() on the child

process to capture whatever is written by the child process to

its standard output.

• Another call to subprocess.Popen() in the script shown below is

in line (l) for invoking openssl x509 -text command to create

a text version of the certificate. In the Python version of the

script shown earlier, the same thing was done with backticks in

line (f) of that script.

#!/usr/bin/env python

### ModulusHarvestor.py

### Author: Avi Kak (kak@purdue.edu)

### Date: February 24, 2016
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## The script can be used in following two different modes:

##

## --- With no command-line args. In this case, the script scans the internet

## with randomly synthesized IP addresses and, when it finds a site with its

## port 443 open, it grabs the certificate(s) offered by that site and

## extracts the various certificate parameters (modulus, public exponent,

## etc.) from the certificate(s).

##

## --- With just one command-line arg, which must be an IPv4 address. In this

## case, the script will try to connect with that address on its port 443 and

## download the certificate offered by it. So as not to waste your time, it

## is best if you use an IP address that does offer an HTTPS service. You can

## check that with a simple port scanner like ’port_scan.pl’ we will cover in

## Lecture 16.

## The basic purpose of this script is to harvest RSA moduli used for public keys in

## SSL/TLS certificates. Recent research has demonstrated that if two different

## moduli share a common factor, they can both be factored easily, thus compromising

## the security of both.

## For harvesting moduli, the script first randomly selects $NHOSTS number of hosts

## from the space of all possible IP addresses and tries to download their X.509

## certificates using a GnuTLS client. It subsequently extracts the modulus and

## public key used in the certificates using openssl commands. These are finally

## dumped into a file called Dumpfile.txt.

import sys

import socket

import subprocess

import random

import re

import os

debug = 1

mark1 = "-----BEGIN CERTIFICATE-----" #(A)

mark2 = "-----END CERTIFICATE-----" #(B)

dumpfile = "Dumpfile.txt" #(C)

DUMP = open( dumpfile, ’w’) #(D)

ip_addresses_to_scan = [] #(E)

## This subroutine was borrowed from the AbraWorm.py code in Lecture 22.

def get_fresh_ipaddresses(howmany): #(F)

if howmany == 0: return 0 #(G)

ipaddresses = [] #(H)

for i in range(howmany):

first,second,third,fourth = list(map(lambda x: random.randint(1, x),

[223] * 4)) #(I)

ipaddresses.append( "%s.%s.%s.%s" % (first,second,third,fourth) ) #(J)

return ipaddresses #(K)

if __name__ == ’__main__’:

if len(sys.argv) == 1: #(L)

40



Computer and Network Security by Avi Kak Lecture 13

NHOSTS = 200 #(M)

ip_addresses_to_scan = get_fresh_ipaddresses(NHOSTS) #(N)

elif len(sys.argv) == 2:

ip_addresses_to_scan.append(sys.argv[1]) #(O)

else:

sys.exit("You cannot call %s with more than one command-line argument"

% sys.argv[0]) #(P)

for ip_address in ip_addresses_to_scan: #(Q)

print("\nTrying IP address: %s\n\n\n" % ip_address) #(R)

try:

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) #(S)

sock.settimeout(0.1) #(T)

sock.connect((ip_address, 443)) #(U)

except: #(V)

continue #(W)

DUMP.write("%s\n\n" % ip_address) #(X)

proc = subprocess.Popen([’gnutls-cli --insecure --print-cert ’ + \

ip_address + ’ < /dev/null’], stdout=subprocess.PIPE, shell=True) #(Y)

(output,err) = proc.communicate() #(Z)

regex = mark1 + r’(.+?)’ + mark2 #(a)

certificates = re.findall( regex, output, re.DOTALL ) #(b)

howmany_certs = len(certificates) #(c)

if debug: print "Found %s certificates\n\n" % howmany_certs #(d)

for i in range(1, len(certificates)+1): #(e)

if debug:

print "Certificate %s:\n\n" % i #(f)

print str(certificates[i-1]) + "\n\n" #(g)

FILE = open("__temp.cert", ’w’) #(i)

FILE.write(mark1 + str(certificates[i-1]) + mark2 + "\n") #(j)

FILE.close() #(k)

proc2 = subprocess.Popen([’openssl x509 -text < __temp.cert’],

stdout=subprocess.PIPE, shell=True) #(l)

(cert_text, err) = proc2.communicate() #(m)

if debug: print cert_text + "\n\n\n" #(n)

all_lines = filter(None, re.split(r’\s+’, cert_text) ) #(o)

cert_text = ’’.join(all_lines) #(p)

params = re.findall(r’Modulus:(.+?)Exponent:(\d+)’, cert_text,

re.DOTALL) #(q)

modulus = "0x" + ’’.join( re.split(r’:’, params[0][0] ) ) #(r)

if debug:

print "Modulus:" #(s)

print int(modulus, 16) #(t)

print "\n"

print "Public exponent: %s\n" % params[0][1] #(u)

print "\n\n\n";

DUMP.write( "Modulus:\n" ) #(v)

DUMP.write( modulus ) #(w)

DUMP.write("\n\nPublic Exponent: %s\n\n\n" % params[0][1]) #(x)

os.unlink( "__temp.cert") #(y)

DUMP.write("\n\n\n")

• Don’t forget to look at the contents of the file Dumpfile.txt in
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the directory in which you run the scripts shown in this section

for the certificates and the RSA moduli extracted from

randomly selected URLs around the world.
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Back to TOC

13.6 THE DIFFIE-HELLMAN
ALGORITHM FOR GENERATING A
SHARED SECRET SESSION KEY

• The previous approach for establishing a secret key (that could

subsequently be used for communication using conventional

encryption) assumed an RSA based approach for the exchange

of the secret key. As was pointed out in Section 12.6 of Lecture

12, creating session keys in this manner makes them vulnerable

to a man-in-the-middle attack in which an eavesdropper stores

away the information exchanged between two parties with the

hope that should he somehow acquire the private keys of the

parties involved at a future date, he’ll be able to figure out the

secret session key at that time.

• When the authenticity of two parties can be established by

other means (say, by the RSA algorithm), another approach for

creating a shared secret key is based on the Diffie-Hellman Key

Exchange algorithm. (See the note about the DHE-RSA

algorithm at the end of Section 12.6 of Lecture 12.)

• Two parties A and B using this algorithm for creating a shared

secret key first agree on a large prime number p and an

element g of Z∗
p that generates a large-order cyclic subgroup
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of the multiplicative group Z∗
p . [First note that the starting point for

understanding the DH algorithm is NOT the finite field Zp that you are so familiar

with, but the multiplicative group Z∗

p that you know only cursorily from its definition in

Section 11.8 of Lecture 11. Before enlightening you further about Z∗

p , let me mention again that

the order of a group is the cardinality of the group, meaning the number of elements in the

group. We can also talk about the order of an element in a group: the order of an element

a ∈ G is the smallest value t such that

at ≡ a ◦ a ◦ . . . (t times) . . . ◦ a = group identity element where ◦ is the group operator. Now

let’s talk about the notation Z∗

p . The notion of Z∗

p is based on the observation that for

prime p, the set {1, 2, 3, · · · , p− 1} constitutes a group with the group operator being

modulo p multiplication. (Note that unlike what was the case with the field Zp, we have no desire to map all the integers into the

groupZ∗

p . That is, only the 16 integers 1 through 16 exist in Z∗

17
. On the other hand, every integer exists in Z17. The integers 17, for instance, is

the same thing as 0 in Z17. The same integer is simply outside the scope of Z∗

17
. More technically speaking, the field Zp is a set of equivalence

classes: each element a of Zp stands for all the integers whose modulo p value equals a. On the other hand, the group Z∗

p is merely a set of p − 1

integers 1 through p − 1.) Z∗

p is also frequently referred to as a multiplicative group of order p− 1 with 1

being the group identity element. As it turns out Z∗

p is a cyclic group for certain values of

p. Z∗

p is a cyclic group if all the elements of Z∗

p can be expressed as gi mod p for all i = 0, 1, 2, · · ·

and for some element g ∈ Z∗

p . For illustration, Z∗

17 is a cyclic group with g = 3. That is, if you

compute 3i mod 17 for all i = 0, 1, 2, · · ·, you will get the 16 numbers in the multiplicative group

Z∗

17. Let’s now focus on the cyclic subgroups of Z∗

p . A subset of Z∗

p forms a cyclic subgroup if the

group operator continues to be modulo p multiplication and if all of the elements of the subgroup can

be generated through the powers of one of the elements of the subgroup. In other words, for a subset

of Z∗

p to constitute a cyclic subgroup, it must be possible to generate all of the elements of the subset

by gi mod p for all i = 0, 1, 2, · · · for some g element in the subset. Again going back to the example

of p = 17, if we use 2 as a generator element, we get the cyclic subgroup {1, 2, 4, 8, 16, 15, 13, 9} whose

order is 8. All of the elements in this subgroup are given by 2i mod 17 for all i = 0, 1, 2, · · ·. In

general, if M is the order of a cyclic subgroup of Z∗

p , M will be a divisor of p− 1. (This is known

as Lagrange’s Theorem in Group Theory.) Also note that within each order-M cyclic
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subgroup of Z∗

p , we have gM = 1 if g is the generator for that subgroup. In order words, using the

terminology of Section 11.8 of Lecture 11, g is the primitive element of the cyclic subgroup generated

by it. More commonly, though, g is called the generator of the multiplicative subgroup that is

generated by raising g to all possible power. We are specifically interested in those cyclic

subgroups of Z∗

p whose order M is large. More specifically, we want to choose for the

DH protocol a g so that the order M is a large prime factor of p− 1.]

• With n being the order of the generator g, the triple of

numbers (p, g, n) is made public. Recall from the small-font

explanation in the previous bullet that the generator g must be

such that it results in a large-sized cyclic subgroup of the

multiplicative group Z∗
p . The order of g is the size n of the

cyclic subgroup it generates. The security of the DH protocol

depends to a great deal on the size n of the cyclic subgroup.

[Suppose p = 17. What would you choose for the generator g? Would g = 2 be a good answer? Or would you

rather use 3 or 5 for g? Use your command-line interactive Python to execute “for i in range(17): print

g**i % 17” for different choices for g to see which choices give you the largest cyclic subgroups of Z∗

17.

Obviously, the largest possible value for the size of any subgroup of Z∗

17 is 16, which is the size of Z∗

17 itself.]

• The triple of numbers (p, g, n) may be used for several runs of

the protocol. These three numbers may even stay the same for a

large number of users for a long period of time. [A typical value used

for g is 2, as stated in RFC 2412 “OAKLEY Key Determination Protocol”, but may be larger.

Obviously, the choices for g and p must yield a large value for the order n, the size of the

generated cyclic subgroup of Z∗

p . This RFC defines the protocol that is used for exchanging the

relevant information between two hosts for establishing a secret session key according to the

Diffie-Hellman algorithm.]
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• Subsequently, A and B use the algorithm described below to

calculate their public keys that are then made available by each

party to the other. We will denote A’s and B’s private keys

by XA and XB. And their public keys by YA and YB. In

other words, X stands for private and Y for public.

– A selects a random number XA, 1 ≤ XA < n, for its private key.
[Should it happen that the chosen g can generate the entire multiplicative group Z∗

p , the private key XA

is chosen from the set {2, . . . , p− 2}. Note that p− 1 is excluded from the set since gp−1 = 1 by FLT.]

– A then calculates a public key integer YA that is guaranteed to

exist:

YA = gXA mod p

A makes the public key YA available to B.

– Similarly, B selects a natural random number XB, 1 ≤ XB < n,
for its private key. [Should it happen that the chosen g can generate the entire

multiplicative group Z∗

p , the private key XB is chosen from the set {2, . . . , p− 2} as for the case of A.]

– B then calculates a public key integer YB that is guaranteed to

exist:

YB = gXB mod p

B makes the public key YB available to A.

– A now calculates the secret key K from its private key XA and B’s
public key YB:

K = (YB)
XA mod p (1)
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– B carries out a similar calculation for locally generating the shared
secret key K from their private key XB and A’s public key YA:

K = (YA)
XB mod p (2)

– The following equalities demonstrate that the secret key K in both

the equation Eq. (1) and Eq. (2) will be the same:

K as calculated by A = (YB)
XA mod p

= (gXB mod p)XA mod p

= (gXB)XA mod p

= gXBXA mod p

= (gXA)XB mod p

= (gXA mod p)XB mod p

= (YA)
XB mod p

= K as calculated by B

• To illustrate the Diffie-Hellman key exchange with a silly little

example, consider the case when the prime p is 17 and the

primitive root g is 2. So we start with the multiplicative group

Z∗

17 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}. Let’s now choose g = 2

for the root element and see what cyclic subgroup of Z∗
17 is

generated by this root element. Just by calculating 2i mod 17

for all i = 0, 1, 2, 3, · · ·, we can see that the cyclic subgroup is

given by {1, 2, 4, 8, 16, 15, 13, 9} where I have intentionally

shown the elements in the order of the consecutive powers of 2.

However, as you well know, the order of appearance in a set is

unimportant. Since the size of this subgroup is 8, we have n = 8
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for this example. Let’s say that party A chooses XA = 5 as a

number between 1 and 8 as its private key. A’s public key would

be given by YA = 2XA mod 17 = 25 mod 17 = 15. And let’s

assume that party B chooses XB = 7 as a number between 1

and 8 as its private key. Party B’s public key would be given by

YB = 2XB mod 17 = 27 mod 17 = 9. The secret session key as

calculated by A: KA = Y
XA
B mod 17 = 95 mod 17 = 8. And

the secret session key as calculated by B:

KB = Y
XB
A mod 17 = 157 mod 17 = 8.

• A seemingly magical thing about the DH protocol is that an

eavesdropper having access to the public keys for both A and B

would still not be able to figure out the secret key K.

• Another seemingly magical thing about this protocol is that it

allows two parties A and B to create a shared secret K without

either party having to send it directly to the other.

• The DH protocol is also referred to as the ephemeral secret

key agreement protocol because, typically, the secret key K is

used only once. [At least that is the mode in which the DH protocol is used in

the Transport Layer Security (TLS) protocol that we will talk about in Lecture 20.]

• A well-known variant of the Diffie-Hellman protocol is known as

the ElGamal protocol in which A’s public key YA remains fixed

(and publicly available) over a long period of time. Party B
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encrypts their message M by calculating M ×K mod p where

K is the same as defined earlier. [That is, party B can directly encrypt the

message M without having to resort to a block cipher for content encryption. For reasons of

computational efficiency, this works well only when M is small (as is likely to be the case if you are

encrypting the hash value of a document).] The decryption by A consists of

dividing the received ciphertext by K modulo p. This

mechanism is useful in some implementations of anonymous

client connections.

• The security of the Diffie-Hellman algorithm is based on the

fact that whereas it is relatively easy to compute the powers of

an integer in a finite field, it is extremely hard to compute the

discrete logarithms. (See Section 11.8 of Lecture 11 for what is

meant by a discrete logarithm).

• That is, whereas the following can be calculated readily

YA = gXA mod p

by A in order to determine their public key, for a adversary to

figure out the private keys XA or XB from a knowledge of all of

the publicly available information {p, g, n, YA, YB}, the

adversary would have to carry out the following sort of a

discrete logarithm calculation

XA = d logg,p YA

49



Computer and Network Security by Avi Kak Lecture 13

for which there does not exist an efficient algorithm. The

difficulty of determining the secret shared key K from the

publicly available p, g, n, YA, and YB is sometimes referred to

as the Computational Diffie-Hellman Assumption.

• Even if you accept the security of DH on the basis of the

difficulty of solving the discrete logarithm problem, the DH

protocol possesses a number of vulnerabilities. If interested, see

the publication “Security Issues in the Diffie-Hellman Key

Agreement Protocol” by Raymond and Stiglic for a list of these

vulnerabilities.

• One of the most serious vulnerabilities of DH is to the

man-in-the-middle attack. Let’s say there is an adversary who

can intercept — as opposed to merely eavesdrop on — the

messages between A and B. The adversary intercepts the

public key YA that is sent by A to B and replaces it with Y
′

A.

The adversary does the same to the public key YB that is sent

by B to A — it gets replaced by Y
′

B. The secret key generated

by A will now be different from the key generated by B, but

both these keys will be known to adversary. Unless A and B

each authenticates the other party independently, neither will

realize that they are using different session keys. (What makes

this attack scenario worse is that the adversary has the freedom to

change the content of the message received from A before it is

encrypted again for B using the key that B knows.)
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• Because of the vulnerability to the man-in-the-middle attack,

use of the DH protocol should be preceded by sender

authentication. When DH is used with sender authentication,

the resulting overall protocol is sometimes referred to as

authenticated DH.

• In authenticated DH, each party acquires a certificate for the

other party. The DH public key that each party sends to the

other party is digitally signed by the sender using the private

key that corresponds to the public key on the sender’s

certificate. [A reader might ask that if the two parties are going to use certificates anyway, why

not fall back on the “traditional” approach of having one of the parties encrypt a session key with the other

party’s public key, since, subsequently, only the other party would be able to retrieve the session key through

decryption with their private key. While that point is valid, DH does give you additional security because it

creates a shared secret without any transmission of the secret between the two parties.]
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Back to TOC

13.7 THE ElGamal ALGORITHM FOR
DIGITAL SIGNATURES

• Typically, when you say you have digitally signed a document,

it means that you first calculated a hash of the document (using

one of the methods described in Lecture 15), you then

encrypted the hash with your private key, and you made this

encrypted block available (as your signature) along with the

document. When a party wants to verify that the document is

authentic, they use your public key to extract the hash of the

document from the encrypted block, and compare this hash

with the hash their computer calculates directly from the

document. [Earlier you saw an example of this in Section 13.4 when we talked

about how a CA signs a certificate.]

• Although the above description is what is generally meant by a

digital signature, there does exist a somewhat more elaborate

Digital Signature Algorithm that has been promulgated as a

standard by NIST. The standard itself is referred to as the

Digital Signature Standard (DSS). It is based on the famous

ElGamal algorithm for constructing the digital signature of a

document. In what follows, we present without proof the main

steps of this algorithm.
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• Let’s say that you would like to sign the documents you make

available to others on the internet. As with all public key

cryptography systems, the first thing you’d need to do is to

create a public key – private key pair. You will execute the

following steps for this:

– Select a large prime p and then randomly select two

numbers, denoted g and X , less than p. You will make the

numbers p and g publicly available and you will treat X as

your private key.

– Next you calculate your public key Y by

Y = gX mod p

Obviously, you will also make publicly available your public

key Y (along with g and p).

– In addition, you will generate a one-time random number K

such that 0 < K < p− 1 and gcd(K, p− 1) = 1. [Note that K

is coprime to p− 1, which is an even integer since p is a prime.] You are going to

need K for constructing a digital signature. By one-time we

mean that you will discard K after each use. That is, each

digital signature you create will be with a different K. Even

though you use each K only once, you must not let anyone

else get hold of this number, since otherwise they will be able

53



Computer and Network Security by Avi Kak Lecture 13

to figure out your private key from the signature and from

all the other information you must make public. For the

logic of how an adversary can figure out your private key if

you use the same K on different documents, see Section

14.13 of Lecture 14.

– Now you are ready to construct a digital signature of a

document. Let M be the integer that represents whatever it

is you want to sign. Typically, M will be the output of a

hashing function applied to the document. See Lecture 15 on

hashing functions.

– The digital signature you construct for M will consist of two

parts that we will denote sig1 and sig2.

– You construct sig1 by

sig1 = gK mod p

and you construct sig2 by

sig2 = K−1 × (M − X × sig1) mod (p− 1)

where K−1 is the multiplicative inverse of K modulo p− 1

that can be obtained with the Extended Euclid’s Algorithm

(See Sections 5.6 and 5.7 of Lecture 5).
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– As mentioned, sig1 and sig2 taken together constitute your

digital signature of M .

• Let’s say you have sent the message M along with your

signature (sig1, sig2) to some recipient and the recipient wishes

to make sure that he/she is not receiving a modified message.

The recipient can verify the authenticity of M by checking the

following equality

Y sig1 × sig1
sig2 ≡ gM (mod p)

• Since the random number K is specific to each signature, the

ElGamal algorithm give you the ability to create one-time

signatures. Let’s say you use your laptop to sign a document

today with this algorithm. If your laptop were to be stolen

tomorrow, the thief would not be able to recreate that signature

even if he/she gained access to your private key X .

• The Digital Signature Standard is described in the document

FIPS 186-3 that can be downloaded from:

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

• An aside: Taher ElGamal (also written Taher El Gamal)

played a central role in the development of the SSL (Secure

Socket Layer) protocol in his capacity as the Chief Scientist

55

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf


Computer and Network Security by Avi Kak Lecture 13

of Netscape Communications in the late 1990’s. SSL [and

its later cousin TLS (for Transport Layer Security)] forms

the security backbone for a large number of protocols, as you

will see later in this course.
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Back to TOC

13.8 ON SOLVING THE DISCRETE
LOGARITHM PROBLEM

• Obviously, if an adversary can solve the following equation

gs = k mod p (3)

for s for given values of g and k, the Diffie-Hellman encryption

will be broken. As mentioned earlier, solving this equation for s

is the famous discrete logarithm problem.

• One obvious way to solve the discrete logarithm problem is by

brute force. This involves calculating gi for i = 0, 1, 2, .... until a

solution is found. The computational complexity of this is

proportional to p. If p requires an n bit representation, then the

complexity, being proportional to 2n, grows exponentially

with the size of p in bits.

• A slightly more efficient way to solve the discrete logarithm

problem is by the baby-step giant-step method:

– Compute, sort, and store the m elements g0, g1, g2, . . ., gm

in a table. Since the exponents increase by 1 as you go from
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one row to another in this table, this constitutes baby

steps.

– Now compute k
gm

and check to see if it is in the above table.

If not, compute k
g2m

and check to see if it is in the table. If

not, repeat until you find a j so that k
gjm

is in the table.

Let’s say that from the table we find

k

gjm
= gi (4)

for some j and i. Dividing k by successively larger powers of

gm constitute the giant steps.

– The above equation implies that the solution s we are

looking for must satisfy

s = jm + i

– The time complexity of this algorithm is O(p/m) and the

memory requirement O(m). The product of the two is

O(p) = O(2n), which is still exponential in n, the size of p.

• A second approach to solving the discrete logarithm problem is

known as the Pollard− ρ method. [ Source: van Tilborg, NAW, Sept.

2001 ]
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– This method is based on the assumption that g can serve as

the generator of a subgroup of prime order q within Zp.

That means that the set {g0, g1, . . .} would form a subgroup

within the set Zp.

– Another concept that the Pollard− ρ method is based on

can be explained as follows: Let f be a random mapping

function from a finite set A to itself. Now starting from a

randomly selected a0 ∈ A, define a sequence {ai}i≥0

recursively by

ai+1 = f(ai)

The sequence a0, a1, a2, . . ., will eventually cycle because A

was assumed to be finite. It has been shown that the average

length of the cycle and the length of the beginning segment

until the cycle starts are both given by
√

π|A|/8.

– The Pollard− ρ method uses the mapping

f : Zq × Zq × Zq → Zq × Zq × Zq as given by

f(x, u, v) =



























(x2, 2u, 2v), if x ≡ 0 (mod 3),

(kx, u, v + 1), if x ≡ 1 (mod 3),

(gx, u + 1, v), if x ≡ 2 (mod 3)

The sequence {(xi, ui, vi)}i≥0 is defined recursively by

(x0, u0, v0) = (1, 0, 0),

(xi+1, ui+1, vi+1) = f(xi, ui, vi)
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– The recursion shown above generates the sequence

xi = guikvi for all i ≥ 0. [This fact can be verified by induction. Assume

for a moment that x ≡ 0 (mod 3). Now

gui+1kvi+1 = g2uik2vi = (guikvi)2 = (xi)
2 = xi+1. ]

– Assume that we can find an xi such that x2i = xi. When

that happens, gu2ikv2i = guikvi. Substituting in this our

original equation k = gs, we have gu2igsv2i = guigsvi. From

this, it is almost always the case that we can write the

following solution for s [ Source: van Tilborg, NAW, 2001 ]:

s =
u2i − ui
vi − v2i

mod (q − 1)

To find an index i such that x2i = xi, it is not necessary to

list all values of the sequence xi. If for a given i, xi 6= x2i, we

calculate xi+1, ui+1, vi+1 = f(xi, ui, vi) and

x2i+2, u2i+2, v2i+2 = f(f(x2i, u2i, v2i)) and compare their first

coordinates again.

– The time complexity of the Pollard− ρ method is O(2n/2)

if it takes n bits to represent the prime integer p.

• Two other methods for solving the discrete logarithm problem

are the Pollard− λ method and the Index-Calculus method.
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13.9 How Diffie-Hellman May Fail in Practice

• The title of this section was inspired by the title of a wonderful

2015 publication entitled “Imperfect Forward Secrecy: How

Diffie-Hellman Fails in Practice” by David Adrian,

Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,

Matthew Green, J. Alex Halderman, Nadia Heninger, Drew

Springall, Emmanuel Thome, Luke Valenta, Benjamin

VanderSloot, Eric Wustrow, Santiago Zanella-Beguelin, and

Paul Zimmerman. Googling the title of this publication will

take you straight to a download site.

• To appreciate the issues raised by the authors, first realize that

it can be computationally cumbersome to find the primes with

the desirable properties for use with the Diffie-Hellman

algorithm. At the least, the primes must yield multiplicative

subgroups of large order. They must also possess several other

properties that are reproduced below from the RFC 2412

document.

• For reasons mentioned above, most applications (SSH, VPN,

Tor, etc.) use the DHE parameters mentioned in RFC 2412

“OAKLEY Key Determination Protocol” that governs the

exchange of messages between two hosts for establishing a

61



Computer and Network Security by Avi Kak Lecture 13

session key with the Diffie-Hellman algorithm. This RFC

recommends “safe” primes of length 768 bits (Oakley Group 1),

1024 bits (Oakley Group 2), and 1536 bits (Oakley Group

5). [The word “group” in “Oakley Group n” for different n refers to a Z∗

p multiplicative group with a prime

modulus p and a generator element g that is typically 2. Note that even if multiple hosts use the same

multiplicative group, that does not automatically mean that their DH security is compromised. An adversary

eavesdropping on a communication link will see the parameters (p, g) and the public key Y . If a good random

number generator is used for choosing the private key X, the value of Y will be different for different links.

To figure out X from Y would require solving the discrete log problem X = dlogg,pY . When the prime p is

large, solving the problem for one Y would not automatically result in a solution for a different Y . However,

when p is insufficiently large, all bets are off.]

• For example, for Oakley Group 1, RFC 2412 recommends the

following decimal value for a 768-bit prime:

155251809230070893513091813125848175563133404943451431320235

119490296623994910210725866945387659164244291000768028886422

915080371891804634263272761303128298374438082089019628850917

0691316593175367469551763119843371637221007210577919

and the generator element g = 2 to go with this prime. And for

Oakley Group 2, the RFC 2412 recommends the following

decimal value for a 1024-bit prime:

179769313486231590770839156793787453197860296048756011706444

423684197180216158519368947833795864925541502180565485980503

646440548199239100050792877003355816639229553136239076508735

759914822574862575007425302077447712589550957937778424442426

617334727629299387668709205606050270810842907692932019128194

with the generator g again being 2. [The following properties of the primes shown

here are reproduced from RFC 2412: The high order 64 bits for both the primes shown here are forced to be

1s. This helps the classical remainder algorithm, because the trial quotient digit can always be taken as the

high order word of the dividend, possibly +1. The low order 64 bits are forced to 1. This helps the
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Montgomery-style remainder algorithms, because the multiplier digit can always be taken to be the low order

word of the dividend. The middle bits are taken from the binary expansion of π. This guarantees that they

are effectively random, while avoiding any suspicion that the primes have secretly been selected to be weak.

Additionally, because both primes are based on pi, there is a large section of overlap in the hexadecimal

representations of the two primes. The primes are chosen to be Sophie Germain primes (i.e., (P − 1)/2 is also

prime), to have the maximum strength against the square-root attack on the discrete logarithm

problem. The starting trial numbers were repeatedly incremented by 264 until suitable primes

were located. Because these two primes are congruent to 7 (mod 8), 2 is a quadratic residue of each prime.

All powers of 2 will also be quadratic residues. This prevents an opponent from learning the low order bit of

the Diffie-Hellman exponent (AKA the subgroup confinement problem). Using 2 as a generator is efficient for

some modular exponentiation algorithms. The RFC gives credit to Richard Schroeppel for work related to

the establishing these primes as possessing the good properties mentioned here.]

• The basic weakness of DH lies in fact that a large number of

servers use the same set of DH parameters as mentioned above.

As the paper says, this “dramatically reduces the cost of

large-scale attacks, bringing some within range of feasibility

today.” An adversary can carry out a large number of

precomputations for these choices of the primes for solving the

discrete log problem in order to figure out the private keys from

the public keys.

• While the Oakley groups for the DH parameters are still

considered safe — especially those that involve large sized

primes — there is a basic flaw in the TLS protocol that allows

some legacy servers to offer 512-bit primes. The authors were

able to calculate the discrete logs in about a minute for two
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commonly used such primes.

• The authors state that solving the discrete-log problem for

768-bit primes is now within reach for academic researchers and

for 1024-bit primes within reach for state-level attackers.
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13.10 CAN THE CERTIFICATES ISSUED
BY A CA BE FORGED?

• The short answer is yes.

• In mid-2008, it was shown by a group of security researchers

(Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen

Lenstra, David Molnar, Dag Arne Osvik, and Benne de Weger)

how the weak collision resistance property of the MD5 hashing

function could be exploited to construct a forged

certificate. [Lecture 15 talks about hashing functions and their collision resistance

properties.] They acquired some real certificates from a root CA

and then proceeded to attach the CA’s signature to a different

public-key embedded in a digital document whose MD5

signature was the same as that in one of the legal certificates.

This exploit is described in detail at

http://www.win.tue.nl/hashclash/rogue-ca/. [What made

this exploit particularly potent was that the researchers created a rogue certificate for an intermediate level

CA. Subsequently, the rogue CA thus brought into existence could have issued its own rogue certificates to

any number of end users. Most of the world’s browsers would not have found any problems with those

end-user rogue certificates since the browsers would have been able to validate them against the rogue

intermediate CA certificate that was forged by the researchers and, that certificate, in turn, would have been

validated by the root CA in the usual manner. As mentioned earlier in this lecture, the public keys of the

Root CAs, of which VeriSign, Comodo, etc., are examples, are incorporated in your browser software so that
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the root-level verification is not subject to network-based man-in-the-middle attacks.]

• Another way to obtain forged certificates came to light on

March 11, 2011. An attacker breached the account of an Italian

reseller of the Comodo-signed certificates. [As mentioned earlier, Comodo is

a large root CA; it owns 11 root public keys. Some of the Comodo root keys should already be programmed

into your web browser, in keeping with the explanation presented earlier in this

lecture.] Apparently, the reseller used cleartext-based password

authentication for folks filling out CSR (Certificate Signing

Request) forms. The attacker used this weakness to break into

the reseller’s account and created for himself a new user account

with authorization to issue Comodo certificates. The attacker

then proceeded to create Comodo-signed forged certificates for

the domains: mail.goggle.com, www.google.com,

login. yahoo.com, login.skype.com,

addons.mozilla.org, and login.live.com. Technically

speaking, these certificates were forged because the attacker

held the private keys corresponding to the public keys signed

by the Comodo’s private key. This would have allowed the

attacker to act like Google, Yahoo, Skype, etc. This

unauthorized issuance of certificates was discovered within

hours and these certificates revoked immediately. [A CA can revoke a

certificate by adding its serial number to its CRL (Certificate Revocation List). Before the browser software

validates a certificate downloaded from web server, its serial number is checked with the CRL maintained by

the signer of the certificate.] This exploit is described at

http://blogs.comodo.com/it-security/data-security/the-recent-ra-compromise/
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• Let’s now address the question of what harm an attacker may

bring to bear on the organizations whose certificate the attacker

has forged.

• Let’s say the attacker has created or obtained a forged

certificate for the domain www.citibank.com. [As mentioned in the

previous bullet, this means that the attacker has the private key for what is supposedly CitiBank’s public key

that is signed in the certificate.] The attacker then proceeds to create a

Citibank look-alike web site and attaches the forged certificate

with this rogue site. The problem now for the attacker is that

unless the client traffic can be directed to this rogue website, no

harm will come from the forged certificate.

• In order to direct client traffic to his rogue website, the attacker

would need to poison the DNS cache likely to be used by the

client applications. (See Lecture 17 on how that can be done.)

As a result of the scare that was caused by Dan Kaminsky when

he demonstrated how vulnerable DNS servers were to cache

poisoning exploits, a majority of the world’s DNS servers have

been patched and are protected against such exploits. So the

odds are against the attacker succeeding with cache poisoning

— unless the attacker has ISP and/or state level cooperation.

• Another way the attacker could direct unsuspecting users to his

rogue webserver would be through a phishing attack. As

mentioned in Section 17.15 of Lecture 17, phishing is online
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fraud that attempts to steal sensitive information such as

usernames, passwords, and credit card numbers. A common

way to do this is to display familiar strings like

www.amazon.com or www.paypal.com in the browser window

while their actual URL links are to rogue web servers.

• Note that it is easy to make yourself a “fake” root

CA with the help of the opensource library called

OpenSSL For example, you can run the following command to

create a self-signed “Root CA Certificate”: [All root CA certificates are

self-signed for obvious reasons.]:

openssl req -new -x509 -keyout private/CAkey.pem -out CAcert.pem -days 365

that deposits the root CA certificate in a file named CA.pem

and the corresponding private key in a file called CAkey.pem in

the directory private. Subsequently, all you have to do is to

somehow get innocent parties to add this certificate to the

collection of root certificates already in their computers. (You

might be able to do that with a social engineering attack as

described in Lecture 30.) Next you can set up an e-commerce

business that uses certificates signed by you in your capacity as

a root CA. Now all you have to do is to lure customers to your

e-commerce website with deals they cannot resist. Should there

be folks who take the bait and upload their credit card

information to your website, just imagine how quickly you could

become rich — assuming that the law does not get any wind of

your deeds.
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13.11: HOMEWORK PROBLEMS

1. Let’s say the browser in your laptop wants to download a page

from the engineering.purdue.edu domain. Since the web server for

this domain runs under the HTTPS protocol, your browser must

engage in what is known as SSL handshaking with the server for

the purpose of creating a secret session key that can be used for

content encryption by both the web server and your browser.

[We will cover SSL handshaking as used in the HTTPS protocol in Lecture 20. For now just assume that this

handshaking requires authenticating a certificate-supplied public key with the public key of the applicable CA

and then using the authenticated public key for encrypting a message that can only be deciphered with the

private key that corresponds to the authenticated public key.] Let’s say you have not

provided your laptop with a public key, let alone a

certificate. [This is indeed the case for most of the users of of web services.] Given this

scenario, which end of the connection between your browser and

the web server for engineering.purdue.edu do you believe will

generate a session key and send it over to the other side?

2. Would your answer to the previous question change if I

mentioned that the secret session key would be generated

through the Diffie-Hellman algorithm after your laptop has

authenticated engineering.purdue.edu’s public key?

3. What is man-in-the-middle attack?
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4. What is the Diffie-Hellman algorithm for creating a secret

session key?

5. Difficulty of breaking RSA cipher is because of the difficulty of

factorizing large numbers. To what do we owe the difficulty of

breaking the Diffie-Hellman cipher?

6. Programming Assignment 1:

The main goal of this assignment is to extract the number

parameters used in RSA keys that are stored in PEM formatted

files that may either be key files or certificate files. [The name of the

PEM format stands for “Privacy Enhanced Mail.” It is the format used by OpenSSL to represent

public keys, private keys, digital signatures, and certificates. PEM is basically the same thing as

the Base64 format that you are already familiar with, except for the addition of the

header and the footer lines.] You may be interested in extracting the

number parameters n and e from a public key in order to check

if the modulus n is factorizable or has previously been factored

by someone else. Many folks still use 1024-bit RSA despite the

fact that moduli of this size have been factorized successfully.

We will proceed in the following manner for this homework:

In Section 13.4, we talked about using the following command

from the OpenSSL library to generate an X509 certificate for

testing purposes. That command is reproduced below:

openssl req -new -newkey rsa:1024 -days 365 -nodes -x509 -keyout test.pem -out test.cert
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As mentioned in Section 13.4, this outputs two files, test.pem

and test.cert, the former containing a new private key for

1024-bit RSA and the latter an X509 certificate that contains

the public key and a self-signed version of the same. (You should

already know about the format of an X509 certificate from Section 13.4. You also know about the

format of an RSA private key from Section 12.8 of Lecture 12.) To verify that the

certificate file test.cert contains all the goodies, you can

invoke

openssl verify test.cert

This command will print out a message saying this is a

self-signed certificate. If you want to see in text form in your

terminal window the contents of the certificate, execute the

following:

openssl x509 -in test.cert -text -noout

As you will see, this will also display in the terminal window

any information you supplied about yourself and your

organization during the certificate creation process. But you

will notice that your public key (that corresponds to the private

key in the test.pem file) as well the signature are in Base64

encoded form. Let’s say you are interested in extracting the

number parameters that went into the public key stored in the

certificate file test.cert and the private key that is in the file

test.pem. How does one do that? — Which brings

us to the main point of this programming exercise

as described below.

In order to see the specific parameters used in the public key
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stored in the certificate test.cert and the private key file

test .pem, let’s first generate for practice purposes a new pair

of keys as follows:

openssl genrsa -out my_private_key.pem 1024

openssl rsa -in my_private_key.pem -pubout > my_public_key.pem

where the first command generates a private key and the second

puts out the corresponding public key.

If you want to extract the number parameters from a PEM file

containing a private key, the following will do the job:

openssl rsa -text < my_private_key.pem

The command that does the same for a public key is

openssl rsa -text -pubin < my_public_key.pem

Both of the above commands will show the number parameters

as colon-delimited hex strings. If you want the modulus to be

displayed as a single continuous hex string, you can execute:

openssl rsa -text -pubin -modulus < my_public_key.pem

You have surely noticed that all of our invocations to print out

the number parameters above used the rsa as the first option

to the openssl command. That makes sense because all of

those calls were on files containing RSA keys. If you want to

look inside an X509 certificate at a level that prints out the

number information in the form of hex strings (and without

Base64 encoding), try
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openssl x509 -text < test.cert

After you have become comfortable with these openssl

commands, output the modulus and the public exponent that

you can extract from the certificate file test.cert. Feed this

modulus into the web site http://www.factordb.com to see if they

can supply you with the prime factors of the modulus.

As you can see, the OpenSSL library is extremely useful. In

addition to visiting http://www.openssl.org, you may also want to

visit http://www.madboa.com/geek/openssl for a nicely organized page

that shows how you can use OpenSSL commands for

accomplishing different things.

7. Programming Assignment 2:

The goal of this homework is to “play” with: (1) the public key

used by a web server running under the HTTPS protocol, (2)

the public key of the CA used by the web server for

authenticating its own public key, and (3) the digital signature

placed at the end of the certificate supplied by the web server.

Another goal is to become familiar with viewing certificates

through the Certificate Viewer in your browser.

Point your web browser to a page in the engineering.purdue.edu

domain and click on the lock symbol that you will see at the left

side of the one-line URL window at the top of the browser

window. You should see a popup that (1) tells you that you are

running an encrypted session with the server; (2) gives you the
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name of the CA that issued the certificate for the domain of the

URL; and (3) shows you a button that you can click on for

further information regarding the certificate. When you click on

the button, you should see another popup for “View

Certificate”. Clicking on this button takes to what’s known as a

Certificate Viewer. The Certificate Viewer should show two

panels, one that gives you general information regarding the

certificate and the other that gives you all of the fields in

engineering.purdue.edu’s X.509 certificate. Click on “Subject’s

Public Key” to see the modulus and the public exponent in the

public key used by this domain. Finally, click on the

“Certificate Signature Value” to see the value produced by

encrypting the SHA-1 hash of the relevant certificate fields with

CA’s private key. [We will cover hash functions in general and SHA-1 in particular in Lecture

15.] If we represent this signature by C, then Ce mod n should

give you the 20-byte SHA-1 hash of what is stored for the

TBSCertificate field in the ASN.1 representation of an X.509

certificate that was shown earlier in Section 13.4.

Now compare the 20 byte SHA-1 hash you obtain with the

value you will find on the “General” panel of the Certificate

Viewer. The two values will turn out not to be same. Why?

The n and e values I mentioned above are the modulus and the

public exponent as used by the CA. To get these values, you

must invoke the Certificate Viewer directly in your browser. For

FireFox, this you can do with the “Preferences → Advanced →

View Certificates” options that you can access through the

“Edit” menu button at the top of the browser window. Now go
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to the CA’s own certificate and, through mouse actions similar

to those already described, extract the n and e values you need.

[This homework problem may also alert you to a security vulnerability in your browser. You may be able to

view any passwords you previously stored in your browser in clear text. For example, the same popup that

gives me the button “View Certificate” also has a button for “View Saved Passwords”.]

8. This problem focuses on verifying certificates. Let’s say that our

goal is to explicitly verify the certificate made available by the

engineering.purdue.edu that I use for hosting my lecture notes.

Obviously, the very first thing you’d need to do is to get hold of

the certificate document itself. To get the document, when you

are on the “Details” panel of the Certificate Viewer mentioned

in the previous problem, click on the “Export” button. This will

deposit a Base-64 encoded certificate in a directory of your

choice. The name of this certificate file will be

engineering.purdue.edu.crt

You can read this file with “cat engineering.purdue.edu.crt” to see

the following in your terminal window:

-----BEGIN CERTIFICATE-----

MIIFoTCCBImgAwIBAgIQITA/w6Nfe9hoVhW/LVjRYjANBgkqhkiG9w0BAQUFADBR

MQswCQYDVQQGEwJVUzESMBAGA1UEChMJSW50ZXJuZXQyMREwDwYDVQQLEwhJbkNv

bW1vbjEbMBkGA1UEAxMSSW5Db21tb24gU2VydmVyIENBMB4XDTEzMDEwOTAwMDAw

MFoXDTE2MDEwOTIzNTk1OVowggEFMQswCQYDVQQGEwJVUzEOMAwGA1UEERMFNDc5

MDcxEDAOBgNVBAgTB0luZGlhbmExFzAVBgNVBAcTDldlc3QgTGFmYXlldHRlMSAw

HgYDVQQJExc0NjUgTm9ydGh3ZXN0ZXJuIEF2ZW51ZTE1MDMGA1UECRMsRWxlY3Ry

aWNhbCBhbmQgQ29tcHV0ZXIgRW5naW5lZXJpbmcgQnVpbGRpbmcxGjAYBgNVBAoT

EVB1cmR1ZSBVbml2ZXJzaXR5MSUwIwYDVQQLExxFbmdpbmVlcmluZyBDb21wdXRl

ciBOZXR3b3JrMR8wHQYDVQQDExZlbmdpbmVlcmluZy5wdXJkdWUuZWR1MIIBIjAN

BgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEApTxPMFDWtsNPaeYl4OG9472rOTkL

GQ9kBSlWKFeAd63FAZ/QGuaVbRX1gXgdqsdZljy4YM5mc1zLOUsbLkKvwAhmqMbG

Ep60D/q9lq+LXNngnT8JSkRn92pmaggA7TJ2rURlUJbSXeUXEyHxeifFwXPdOJCb

jdXt7EaV7rBmfSOjiNLktbbj4ernZWEBLlFwOa1JPQxAVwrvekYOT5RDAVQP2sD3

k6HOkyGQEDlCnWUkqlURvRsBmW8Iv5lMHKyNHl16UPtblZYpJiuc7fewLl0rU9Wc

E5C8IFwtNCs4GGsZP7xmwzcGYS01cohbQCFDG6gJBklE8n5en3UEo13vxQIDAQAB
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o4IBvTCCAbkwHwYDVR0jBBgwFoAUSE9a+i9Kml7gUPNre1Wl3vW+NF0wHQYDVR0O

BBYEFFtlqE6NBraWgs7VSceSlGEgPvO7MA4GA1UdDwEB/wQEAwIFoDAMBgNVHRMB

Af8EAjAAMB0GA1UdJQQWMBQGCCsGAQUFBwMBBggrBgEFBQcDAjBnBgNVHSAEYDBe

MFIGDCsGAQQBriMBBAMBATBCMEAGCCsGAQUFBwIBFjRodHRwczovL3d3dy5pbmNv

bW1vbi5vcmcvY2VydC9yZXBvc2l0b3J5L2Nwc19zc2wucGRmMAgGBmeBDAECAjA9

BgNVHR8ENjA0MDKgMKAuhixodHRwOi8vY3JsLmluY29tbW9uLm9yZy9JbkNvbW1v

blNlcnZlckNBLmNybDBvBggrBgEFBQcBAQRjMGEwOQYIKwYBBQUHMAKGLWh0dHA6

Ly9jZXJ0LmluY29tbW9uLm9yZy9JbkNvbW1vblNlcnZlckNBLmNydDAkBggrBgEF

BQcwAYYYaHR0cDovL29jc3AuaW5jb21tb24ub3JnMCEGA1UdEQQaMBiCFmVuZ2lu

ZWVyaW5nLnB1cmR1ZS5lZHUwDQYJKoZIhvcNAQEFBQADggEBAJE7Um53QPZPnCS3

sS+LK3aS+ufhLfE/8Dkg2mhVVZCBujijXajglpDncyWEqCxtfuiclgJPgyyiqycW

q+ahr7dThzFotHqpTgQu7sdvzCxDIWP2qRV28LhCmNbRTWGcWGytGLwx66l2oTDg

dgUSmfyefzlx6c/Cx4cBxyRaPj6ulRiDGoX7bAiKMo6wZ2rBf5ogqyAHWHoJEVah

UrMESl2VoNx8D67rfvs4kMiSEA6A2xdtQv1jnsrIlIaeSKmQYcAvMX/Dr0JQKKGJ

FzTDkbDblWiRxm2SXk5FmLblzqtmS2jNDaVqu0F8NsVmovE30q7jmSAo96hj2As7

DrCP2vM=

-----END CERTIFICATE-----

Since the certificate shown above is Base-64 encoded, you are

not able to see any of its fields. To actually see the contents of

the certificate, execute the following command

openssl x509 -in engineering.purdue.edu.crt -text -noout

This will output all of the certificate fields to your terminal

window. If you wish, you can direct the output into a text file.

As mentioned in Section 13.4, the digital signature you’ll see at

the bottom is the output of encrypting the hash of the data in

all of the certificate fields with CA’s private key. As the

certificate itself mentions, the CA used the SHA-1 algorithm for

hashing; this is something we will take up in Lecture 15. Now

execute the following command to verify this certificate

openssl verify -CAfile InCommonServerCA.crt engineering.purdue.edu.crt

where I have assumed that you downloaded the CA’s public key

into the file InCommonServerCA.crt in accordance with the discussion

in Section 13.4. In general, if the non-root CA certificates in

your computer are stored in a directory that you know about,
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you can also invoke the following command for certificate

verification:

openssl verify -CApath directory_to_ca_certs engineering.purdue.edu.crt

I should also mention that all of the root SSL certificates that

your machine knows about are stored in the directory

/etc/ssl/certs/

The openssl tools should already know about this location. So if

you are trying to verify a certificate that was signed by a root

CA directly, you can use the following command line for

verification:

openssl verify InCommonServerCA.crt

where, as you already know, InCommonServerCA.crt is the certificate

for the intermediate level CA InCommon. This certificate, as

mentioned previously, is signed by the root CA AddTrust.

9. Digital certificates started out as a promising solution to the

problem of identity fraud in web-based interactions. The idea at

the beginning was that the CAs would verify that the requester

of a certificate was a valid individual or entity. However, over

the years, that idea has mostly fallen by the wayside. The CAs

now issue certificates to anyone requesting them for a fee, the

only identity verification carried out being the validity of the IP

address from which you supply the required information. As a

result, as matters stand today, all that a digital certificate in a

protocol such as HTTPS ensures is that you are running an

77



Computer and Network Security by Avi Kak Lecture 13

encrypted session with the web server, but you cannot be 100%

certain about the true identity of the party at the other end.

The fact that a digital certificate cannot ordinarily be banked

on to establish trust in the identity of a web service provider is

an important issue in e-commerce applications where you are

asked to supply credit card, financial, and, sometimes, personal

information. To meet the need for a greater degree of identity

trust, a new type of an X.509 certificate was recently created

that is known as Extended Validation Certificate (EV). An EV

certificate also conforms to the X.509 standard. However, a CA

will subject an entity to a higher proof of identity before issuing

this type of a certificate. Your browser identifies an EV

certificate through the object identifier (OID) number that is

placed in the extensions field in the ASN.1 representation of a

certificate that was shown in Section 13.4.

The goal of this homework is for you to verify that, in terms of

structure and content layout, there is no difference between a

regular X.509 certificate, as, for example, supplied by the

domain engineering.purdue.edu and an EV certificate, as, for

example, supplied by the domain http://www.paypal.com. Download

the certificates from these two or other similar web sites, create

their readable textual representations using the openssl

commands that you are already familiar with, and then

compare them. [When you point your browser to a web site that supplies an EV certificate, its

presentation in the URL window will change. In FireFox, the color of the lock symbol along with the name of

the web site will turn green.]
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