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Goals:

• To review public-key cryptography

• To demonstrate that confidentiality and sender-authentication can be

achieved simultaneously with public-key cryptography

• To review the RSA algorithm for public-key cryptography

• To present the proof of the RSA algorithm

• To go over the computational issues related to RSA

• To discuss the vulnerabilities of RSA

• Perl and Python implementations for generating primes and for
factorizing medium to large sized numbers
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12.1 PUBLIC-KEY CRYPTOGRAPHY

• Public-key cryptography is also known as asymmetric-key

cryptography, to distinguish it from the symmetric-key

cryptography we have studied thus far.

• Encryption and decryption are carried out using two

different keys. The two keys in such a key pair are referred

to as the public key and the private key.

• With public key cryptography, all parties interested in secure

communications publish their public keys.

• As to how exactly the public keys are made available depends

on the protocol.

• In the SSH protocol, for example, each server makes available

through its port 22 the public key it has stored for your login id

on the server. [See Section 12.10 for how an SSHD server acquires the public key

that the server would associate with your login ID so that you can make a password-free

connection with the server. In the context of the security made possible by the SSH

protocol, the public key held by a server is commonly referred to as the server’s host

key.]
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• When a client, such as your laptop, wants to make a connection

with an SSHD server, it sends a connection request to port 22 of

the server machine and the server makes its host key available

automatically. (To repeat what’s in the previous bullet, this

host key would be for your account only at the server.)

• For another example, in the SSL/TLS protocol, an HTTPS web

server makes its public key available through a certificate of the

sort you’ll see in the next lecture.

• Every host making its public key available through the kinds

of mechanisms described above solves one of the most vexing

problems associated with symmetric-key cryptography — the

problem of key distribution.

• In the rest of this section, I’ll present some relatively

straightforward applications of public-key crypto.

• Referring to the top display in Figure 1, let’s say that part A

wants to send a message confidentially to party B. A can

encrypt the message using B’s publicly available key. Such a

message would only be decipherable by B as only B would have

access to the corresponding private key.

• On the other hand, if party A wants to send an authenticated
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Figure 1: This figure shows how public-key cryptography

can be used for confidentiality, for digital signatures, and

for both. (This figure is from Lecture 12 of “Computer and Network Security” by Avi Kak.)
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message to party B, A would encrypt the message with its own

private key. Since this message would only be decipherable with

A’s public key, that would establish the authenticity of the

message — meaning that A was indeed the source of the

message. This is illustrated by the middle communication link

in Figure 1.

• The communication link at the bottom of Figure 1 shows how

public-key encryption can be used to provide both

confidentiality and authentication at the same time.

Note again that confidentiality means that we want to

protect a message from eavesdroppers and authentication

means that the recipient needs a guarantee as to the identity of

the sender.

• In Figure 1, A’s public and private keys are designated PUA

and PRA. B’s public and private keys are designated PUB and

PRB.

• As shown at the bottom of Figure 1, let’s say that A wants to

send a message M to B with both authentication and

confidentiality. The processing steps undertaken by A to convert

M into its encrypted form C that can be placed on the wire are:

C = E (PUB, E (PRA, M))
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where E() stands for encryption. The processing steps

undertaken by B to recover M from C are

M = D (PUA, D (PRB, C))

where D() stands for decryption.

• The sender A encrypting his/her message with its own private

key PRA provides authentication. This step constitutes A

putting his/her digital signature on the message. Instead of

applying the private key to the entire message, a sender may also “sign” a message by

applying his/her private key to just a small block of data that is derived from the

message to be sent. [DID YOU KNOW that you are required to digitally sign the software for your

app before you can market it through the official Android application store Google Play? And did you know

that Apple’s App Store has the same requirement?]

• The sender A further encrypting his/her message with the

receiver’s public key PUB provides confidentiality.

• Of course, the price paid for achieving confidentiality and

authentication at the same time is that now the message must

be processed four times in all for encryption/decryption. The

message goes through two encryptions at the sender’s place and

two decryptions at the receiver’s place. Each of these four steps

involves separately the computationally complex

public-key algorithm.
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• IMPORTANT: Note that public-key cryptography does not

make obsolete the more traditional symmetric-key

cryptography. Because of the greater computational overhead

associated with public-key crypto systems, symmetric-key

systems continue to be widely used for content encryption.

However, public-key encryption has proved indispensable for key

management, for distributing the keys needed for the more

traditional symmetric key encryption/decryption of the content,

for digital signature applications, etc.
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12.2: THE RIVEST-SHAMIR-ADLEMAN
(RSA) ALGORITHM FOR PUBLIC-KEY
CRYPTOGRAPHY — THE BASIC IDEA

• The RSA algorithm is named after Ron Rivest, Adi Shamir,

and Leonard Adleman. The public-key cryptography that was

made possible by this algorithm was foundational to the

e-commerce revolution that followed.

• The starting point for learning the RSA algorithm is Euler’s

Theorem that was presented in Section 11.4 of Lecture 11. To

recap, that theorem states that for every positive integer n and

every a that is coprime to n, the following must be true

aφ(n) ≡ 1 (mod n)

where, as defined in Section 11.3 of Lecture 11, φ(n) is the

totient of n.

• An immediate consequence of this theorem is that, when a

and n are relatively prime, the exponents will behave modulo

the totient φ(n) in exponentiated forms like ak mod n.
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• That is, if a and n are relatively prime, the following must be

true for some k1 and k2:

ak ≡ ak1·φ(n)+k2 ≡ ak1·φ(n)ak2 ≡ ak2 (mod n)

• For example, consider a = 4 in arithmetic modulo 15. The

totient of 15 is 8. (Since 15 = 3× 5, we have

φ(15) = 2× 4 = 8.) You can easily verify the following:

47 · 44 mod 15 = 4(7+4) mod 8 mod 15 = 43 mod 15 = 64 mod 15 = 4

(43)5 mod 15 = 4(3×5) mod 8 mod 15 = 47 mod 15 = 4

Note that in both cases the base of the exponent, 4, is coprime

to the modulus 15.

• The relationship shown above has some incredible

ramifications that point to practical possibilities: To see what I

mean, say that M is an integer that represents a message (note

that any bit string in the memory of a computer represents

some integer, no matter how large). Let’s now conjure up two

integers e and d that are each other’s multiplicative inverses

modulo the totient φ(n). Assume again that M is coprime to

the modulus n. Since the exponents of M are going to behave

modulo the totient φ(n), the following must be true
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M e×d ≡M e×d (mod φ(n)) ≡M (mod n)

• The result shown above, which follows directly from Euler’s

theorem, requires that M and n be coprime. However, as will

be shown in Section 12.2.3, when n is a product of two primes

p and q, this result applies to all M , 0 ≤M < n. In what

follows, let’s now see how this idea can be used for message

encryption and decryption.

• Considering arithmetic modulo n, let’s say that e is an integer

that is coprime to the totient φ(n) of n. Further, say that d is

the multiplicative inverse of e modulo φ(n). These definitions of

the various symbols are listed below for convenience:

n = a modulus for modular arithmetic

φ(n) = the totient of n

e = an integer that is relatively prime to φ(n)

[This guarantees that e will possess a

multiplicative inverse modulo φ(n)]

d = an integer that is the multiplicative

11
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inverse of e modulo φ(n)

• Now suppose we are given an integer M , 0 ≤M < n, that

represents our message, then we can transform M into another

integer C that will represent our ciphertext by the following

modulo exponentiation:

C = M e mod n

• We can recover back M from C by the following modulo

operation

M = Cd mod n

since

(M e)d (mod n) = M ed (mod φ(n)) ≡ M (mod n)
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12.2.1 The RSA Algorithm — Putting to
Use the Basic Idea

• The basic idea described in the previous subsection can be used

to create a confidential communication channel in the manner

described here.

• An individual A who wishes to receive messages confidentially

will use the pair of integers {e, n} as his/her public key. At the
same time, this individual can use the pair of integers {d, n} as
the private key. The definitions of n, e, and d are as in the

previous subsection.

• Another party B wishing to send a message M to A

confidentially will encrypt M using A’s public key {e, n} to
create ciphertext C. Subsequently, only A will be able to

decrypt C using his/her private key {d, n}.

• If the plaintext message M is too long, B may choose to use

RSA as a block cipher for encrypting the message meant for

A. As explained by my toy example in Section 12.4, when RSA

is used as a block cipher, the block size is likely to be half the

number of bits required to represent the modulus n. If the
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modulus required, say, 1024 bits for its representation, message

encryption would be based on 512-bit blocks. [While, in principle,

RSA can certainly be used as a block cipher, in practice, on account of its

excessive computational overhead, it is more likely to be used just for

server authentication and for exchanging a secret session key. A session

key generated with the help of RSA-based encryption can subsequently be

used for content encryption using symmetric-key cryptography based on,

say, AES.]

• The important theoretical question here is as to what conditions

if any must be satisfied by the modulus n for this

M → C →M transformation to work?

14
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12.2.2 How to Choose the Modulus for the
RSA Algorithm

• With the definitions of d and e as presented in Section 12.2, the

modulus n must be selected in such a manner that the following

is guaranteed:
(

M e)d
)

≡ M ed ≡ M (mod n)

We want this guarantee because C = M e mod m is the

encrypted form of the message integer M and decryption is

carried out by Cd mod n.

• While the above property is always true as long as M and n are

relatively prime, it was shown by Rivest, Shamir, and Adleman

that the above property holds for all M if n is a product of two

prime numbers:

n = p× q for some prime p and prime q (1)

• The above factorization is needed because the proof of the

algorithm, presented in the next subsection, depends on the

following two properties of primes and coprimes:
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1. If two integers p and q are coprimes (meaning, relatively

prime to each other), the following equivalence holds for any

two integers a and b:

{a ≡ b (mod p) and a ≡ b (mod q)} ⇔ {a ≡ b (mod pq)}
(2)

This equivalence follows from the fact a ≡ b

(mod p) implies a− b = k1p for some integer k1. But

since we also have a ≡ b (mod q) implying a− b = k2q,

it must be the case that k1 = k3 × q for some k3.

Therefore, we can write a− b = k3 × p× q, which

establishes the equivalence. (Note that this argument breaks

down if p and q have common factors other than 1.) [We will

use this property to arrive at Equation (11) shown in the next subsection from the

partial results in Equations (9) and (10) presented in the same subsection.]

2. In addition to needing p and q to be coprimes, we also

want p and q to be individually primes. It is only

when p and q are individually prime that we can decompose

the totient of n into the product of the totients of p and q.

That is

φ(n) = φ(p)× φ(q) = (p− 1)× (q − 1) (3)

See Section 11.3 of Lecture 11 for a proof of this. [We will use

this property to go from Equation (5) to Equation (6) in the next subsection.]
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• So that the cipher cannot be broken by an exhaustive search for

the prime factors of the modulus n, it is important that both p

and q be very large primes. Finding the prime factors of a

large integer is computationally harder than determining its

primality.

• We also need to ensure that n is not factorizable by one of the

modern integer factorization algorithms. More on that later in

these notes.
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12.2.3: Proof of the RSA Algorithm

• We already know through Euler’s theorem that when the

modulus n and the message integer M are coprimes, then, in

arithmetic modulo n, the exponents behave modulo the totient

of n.

• Now we want to prove that when the modulus n is a product of

two primes p and q, it is always the case for all integers

0 ≤M ≤ n that M e×d ≡M (mod n) where e and d are each

other’s MIs modulo φ(n). [The specific derivational steps presented

below do not impose the constraint that the message integer M be limited

to 0 ≤M < n. However, should it be the case that M ≥ n, what would be

returned by the operation Me×dmod n would be the remainder of M in Zn.

Let’s just say that the message integer is given by M = n. For this value of

M , the value returned by Me×dmod n would be 0, which is not a very

useful thing to happen.]

• Using the definitions of d and e as presented in Section 12.2,

since the integer d is the multiplicative inverse of the integer e

modulo the totient φ(n), we obviously have

e× d ≡ 1 (mod φ(n)) (4)
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This implies that there must exist an integer k so that

e× d − 1 ≡ 0 (mod φ(n))

= k × φ(n) (5)

• It must then obviously be the case that φ(n) is a divisor of the

expression e× d − 1. But since φ(n) = φ(p)× φ(q), the

totients φ(p) and φ(q) must also individually be divisors of

e× d − 1. That is

φ(p) | (e× d − 1) and φ(q) | (e× d − 1) (6)

The notation ‘|’ to indicate that its left argument is a divisor of

the right argument was first introduced at the end of Section 5.1

in Lecture 5.

• Focusing on the first of these assertions, since φ(p) is a divisor

of e× d − 1, we can write

e× d − 1 = k1φ(p) = k1(p − 1) (7)

for some integer k1.
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• Therefore, we can write for any integer M :

M e×d mod p = M e×d − 1 + 1 mod p = Mk1(p − 1)×M mod p

(8)

• Now we have two possibilities to consider: Since p is a prime, it

must be the case that either M and p are coprimes or that M is

a multiple of p.

– Let’s first consider the case when M and p are coprimes. By

Fermat’s Little Theorem (presented in Section 11.2 of

Lecture 11), since p is a prime, we have

M p − 1 ≡ 1 (mod p)

Since this conclusion obviously extends to any power of the

left hand side, we can write

Mk1(p − 1) ≡ 1 (mod p)

Substituting this result in Equation (8), we get

M e×d mod p = M mod p (9)
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– Now let’s consider the case when the integer M is a multiple

of the prime p. Now obviously, M mod p = 0. This will

also be true for M raised to any power. That is,

Mk mod p = 0 for any integer k. Therefore, Equation (9)

will continue to be true even in this case.

• From the second assertion in Equation (6), we can draw an

identical conclusion regarding the other factor q of the modulus

n:

M e×d mod q = M mod q (10)

• We established in Section 12.2.2 that, when p and q are

coprimes, for any integers a and b if we have a ≡ b

(mod p) and a ≡ b (mod q), then it must also be the case

that a ≡ b (mod pq). Applying this conclusion to the partial

results shown in Equations (9) and (10), we get

M e×d mod n = M mod n (11)
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12.3 COMPUTATIONAL STEPS FOR KEY
GENERATION IN RSA CRYPTOGRAPHY

• The computational steps for key generation are

1. Generate two different primes p and q

2. Calculate the modulus n = p× q

3. Calculate the totient φ(n) = (p− 1)× (q − 1)

4. Select for public exponent an integer e such that

1 < e < φ(n) and gcd(φ(n), e) = 1

5. Calculate for the private exponent a value for d such that

d = e−1 mod φ(n)

6. Public Key = [e, n]

7. Private Key = [d, n]

• The next three subsections elaborate on these computational

steps.
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12.3.1 Computational Steps for Selecting the
Primes p and q in RSA Cryptography

• You first decide what size (in terms of the number of bits) you

want for the modulus integer n. Let’s say that your

implementation of RSA requires a modulus of size B bits.

• To generate the prime integer p;

– Using a high-quality random number generator (See Lecture

10 on random number generation), you first generate a

random number of size B/2 bits.

– You set the lowest bit of the integer generated by the above

step; this ensures that the number will be odd.

– You also set the two highest bits of the integer; this

ensures that the highest bits of n will be set. (See Section

12.4 for an explanation of why you need to set the first two

bits.)

– Using the Miller-Rabin algorithm described in Lecture 11,

you now check to see if the resulting integer is prime. If not,

you increment the integer by 2 and check again. This
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becomes the value of p.

• You do the same thing for selecting q. You start with a

randomly generated number of size B/2 bits, and so on.

• In the unlikely event that p = q, you throw away your random

number generator and acquire a new one.

• For greater security, instead of incrementing by 2 when the

Miller-Rabin test fails, you generate a new random number.
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12.3.2 Choosing a Value for the Public
Exponent e

• Recall that encryption consists of raising the message integer M

to the power of the public exponent e modulo n. This step is

referred to as modular exponentiation.

• The mathematical requirement on e is that gcd(e, φ(n)) = 1,

since otherwise e will not have a multiplicative inverse mod

φ(n). Since n = p× q, this requirement is equivalent to the

two requirements gcd(e, φ(p)) = 1 and gcd(e, φ(q)) = 1. In

other words, we want gcd(e, p− 1) = 1 and

gcd(e, q − 1) = 1.

• For computational ease, one typically chooses a value for e that

is prime, has as few bits as possible equal to 1 for fast

multiplication, and, at the same time, that is cryptographically

secure in the sense described in the next bullet. Typical values

for e are 3, 17, and 65537 (= 216 + 1). Each of these values has

only two bits set, which makes for fast modular

exponentiation. But don’t forget the basic requirement on e

that it must be relatively prime to p− 1 and q − 1

simultaneously. Whereas p is prime, p− 1 definitely is not

since it is even. The same goes for q− 1. So even if you wanted
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to, you may not be able to use a small integer like 3 for e.

• Small values for e, such as 3, are considered cryptographically

insecure. Let’s say a sender A sends the same message M to

three different receivers using their respective public keys that

have the same e = 3 but different values of n. Let these values

of n be denoted n1, n2, and n3. Let’s assume that an attacker

can intercept all three transmissions. The attacker will see three

ciphertext messages: C1 = M 3 mod n1, C2 = M 3 mod n2,

and C3 = M 3 mod n3. Assuming that n1, n2, and n3 are

relatively prime on a pairwise basis, the attacker can use the

Chinese Remainder Theorem (CRT) of Section 11.7 of Lecture

11 to reconstruct M 3 modulo N = n1 × n2 × n3. (This assumes that

M3 < n1n2n3, which is bound to be true since M < n1, M < n2, and M < n3.) Having

reconstructed M 3, all that the attacker has to do is to figure out

the cube-root of M 3 to recover M . Finding cube-roots of even

large integers is not that hard. (The Homework Problems section includes a

programming assignment that focuses on this issue.)

• Having selected a value for e, it is best to double check that we

indeed have gcd(e, p− 1) = 1 and gcd(e, q − 1) = 1 (since

we want e to be coprime to φ(n), meaning that we want e to be

coprime to p− 1 and q − 1 separately). Note that even if we

chose a prime for e, that would NOT mean that such an e

would necessarily be coprime to p− 1 and q − 1. Consider, for

example, e = 3 and for p and q let us say we have the primes

p = 1297 and q = 1301. In this case, p− 1 = 1296 and

26



Computer and Network Security by Avi Kak Lecture 12

q − 1 = 1300. Obviously, e = 3 is NOT coprime to p− 1.

Therefore, this e will not be coprime to the totient of the

modulus n = p× q, implying that for these e and n there will

NOT exist the private exponent d.

• If either p or q is found to not meet the above mentioned

conditions on the relative primality of φ(p) and φ(q) vis-a-vis e,

you must discard the calculated p and/or q and start over. (It

is faster to build this test into the selection algorithm for p and

q.) When e is a prime and greater then 2, a much faster way to

satisfy the two conditions is to ensure

p mod e 6= 1

q mod e 6= 1

• To summarize the point made above, you give priority to using

a particular value for e – such as a value like 65537 that has

only two bits set. Having made a choice for the encryption

integer e, you now find the primes p and q that, besides

satisfying all other requirements on these two numbers, also

satisfy the conditions that the chosen e would be coprime to the

totients φ(p) and φ(q).
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12.3.3: Calculating the Private Exponent d

• Once we have settled on a value for the public exponent e, the

next step is to calculate the private exponent d from e and the

modulus n.

• Recall that d× e ≡ 1 (mod φ(n)). We can also write this as

d = e−1 mod φ(n)

Calculating ‘e−1 mod φ(n)’ is referred to as modular

inversion.

• Since d is the multiplicative inverse of e modulo φ(n), we can

use the Extended Euclid’s Algorithm (see Section 5.6 of Lecture

5) for calculating d. Recall that we know the value for

φ(n) since it is equal to (p− 1)× (q − 1).

• Note that the main source of security in RSA is keeping p and

q secret and therefore also keeping φ(n) secret. It is important

to realize that knowing either will reveal the other. That is, if

you know the factors p and q, you can calculate φ(n) by
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multiplying p− 1 with q − 1. And if you know φ(n) and n, you

can calculate the factors p and q readily.

• Here is another reason for why it is critical to keep φ(n) secret:

Assuming otherwise, your adversary would obviously know your

public exponent e from your public key. It would be trivial for

the adversary to use the Extended Euclid’s Algorithm to figure

out your private exponent d by finding the multiplicative inverse

of e modulo φ(n).
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12.4 A TOY EXAMPLE THAT
ILLUSTRATES HOW TO SET n, e, d FOR A
BLOCK CIPHER APPLICATION OF RSA

• As alluded to briefly at the end of Section 12.2.1, you are

unlikely to use RSA as a block cipher for general content

encryption. As mentioned in Section 12.12, for the moduli

needed in today’s computing environments, the computational

overhead associated with RSA is much too high for it to be

suitable for content encryption. Nevertheless, RSA (along with

ECC to be presented in Lecture 14) plays a critical role in

practically all modern protocols for establishing secure

communication links between clients and servers. These

protocols depend on RSA (and ECC) for clients and servers to

authenticate each other — as you’ll see in Lecture 13. In

addition, RSA may also be used for generating session keys.

Despite the fact that you are not likely to use RSA for content

encryption, it’s nonetheless educational to reflect on how it

could be used for that purpose in the form of a block cipher.

• For the sake of illustrating how you’d use RSA as a block cipher,

let’s try to design a 16-bit RSA cipher for block encryption of

disk files. A 16-bit RSA cipher means that our modulus will

span 16 bits. [Again, in the context of RSA, an N-bit cipher means that the
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modulus is of size N bits and NOT that the block size is N bits. This is contrary to

not-so-uncommon usage of the phrase “N-bit block cipher” meaning a cipher that

encrypts N-bit blocks at a time as a plaintext source is scanned for encryption.]

• With the modulus size set to 16 bits, we are faced with the

important question of what to use for the size of bit blocks for

conversion into ciphertext as we scan a disk file. Since our

message integer M must be smaller than the modulus n,

obviously our block size cannot equal the modulus size. This

requires that we use a smaller block size, say 8 bits, and, as

mentioned in the next bullet, use padding to fill the rest of the

16 bits. As it turns out, padding is an extremely important part

of RSA ciphers. In addition to the need for padding as

explained here, padding is also needed to make the cipher

resistant to certain vulnerabilities that are described in Section

12.7 of this lecture.

• In the rest of the discussion in this section, I’ll assume that

whereas the modulus n will span 16 bits for the toy example,

the block size will be smaller than 16 bits, say, only 8 bits. I’ll

further assume that, as a disk file is scanned 8 bits at a time,

each such bit block is padded on the left with zeros to make it

16 bits wide. I’ll refer to this padded bit block as our message

integer M .

• So my first job is to find a modulus n whose size is 16 bits.
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Recall that n must be a product of two primes p and q.

Assuming that we want these two primes to be roughly the

same size, let’s allocate 8 bits to p and 8 bits to q.

• So the issue now is how to find a prime suitable for our 8-bit

representation. Following the prescription given in Section

12.3.1, we could fire up a random number generator, set its first

two bits and the last bit, and then test the resulting number for

its primality with the Miller-Rabin algorithm presented in

Lecture 11. But we don’t need to go to all that trouble for our

toy example. Let’s use the simpler approach described below.

• Let’s assume that we have an as yet imaginary 8-bit word for p

whose first two and the last bit are set. And assume that the

same is true for q. So both p and q have the following bit

patterns:

bits of p : 11−− −−− 1

bits of q : 11−− −−− 1

where ’−’ denotes the bit that has yet to be determined. As you

can verify quickly from the three bits that are set, such an 8-bit

integer will have a minimum decimal value of 193. [Here is a

reason for why you need to manually set the first two bits: Assume for a moment that

you set only the first bit. Now it is theoretically possible for the smallest values for p
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and q to be not much greater than 27. So the product p× q could get to be as small as

214, which obviously does not span the full 16 bit range desired for n. When you set

the first two bits, now the smallest values for p and q will be lower-bounded by

27 + 26. So the product p× q will be lower-bounded by 214 + 2× 213 +212, which itself

is lower-bounded by 2× 214 = 215, which corresponds to the full 16-bit span. With

regard to the setting of the last bit of p and q, that is to ensure that p and q will be

odd.]

• So the question reduces to whether there exist two primes

(hopefully different) whose decimal values exceed 193 but are

less than 255. If you carry out a Google search with a string like

“first 1000 primes,” you will discover that there exist many

candidates for such primes. Let’s select the following two

p = 197

q = 211

which gives us for the modulus n = 197× 211 = 41567. The bit

pattern for the chosen p, q, and modulus n are:

bits of p : 0Xc5 = 1100 0101

bits of q : 0Xd3 = 1101 0011

bits of n : 0Xa25f = 1010 0010 0101 1111

As you can see, for a 16-bit RSA cipher, we have a
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modulus that requires 16 bits for its representation.

• Now let’s try to select appropriate values for e and d.

• For e we want an integer that is relatively prime to the totient

φ(n) = 196× 210 = 41160. Such an e will also be relatively

prime to 196 and 210, the totients of p and q respectively. Since

it is preferable to select a small integer for e, we could try e = 3.

But that does not work since 3 is not relatively prime to 210.

The value e = 5 does not work for the same reason. Let’s try

e = 17 because it is a small number and because it has only

two bits set.

• With e set to 17, we must now choose d as the multiplicative

inverse of e modulo 41160. Using the Bezout’s identity based

calculations described in Section 5.6 of Lecture 5, we write

gcd(17, 41160) |

= gcd(41160, 17) | residue 17 = 0 x 41160 + 1 x 17

= gcd(17, 3) | residue 3 = 1 x 41160 - 2421 x 17

= gcd(3,2) | residue 2 = -5 x 3 + 1 x 17

| = -5x(1 x 41160 - 2421 x 17) + 1 x 17

| = 12106 x 17 - 5 x 41160

= gcd(2,1) | residue 1 = 1x3 - 1 x 2

| = 1x(41160 - 2421x17)

| - 1x(12106x17 -5x41160)

| = 6 x 41160 - 14527 x 17

| = 6 x 41160 + 26633 x 17

where the last equality for the residue 1 uses the fact that the

additive inverse of 14527 modulo 41160 is 26633. [If you don’t like

working out the multiplicative inverse by hand as shown above, you can use the
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Python script FindMI.py presented in Section 5.7 of Lecture 5. Another option would

be to use the multiplicative inverse() method of the BitVector class.]

• The Bezout’s identity shown above tells us that the

multiplicative inverse of 17 modulo 41160 is 26633. You can

verify this fact by showing 17× 26633 mod 41160 = 1 on your

calculator.

• Our 16-bit block cipher based on RSA therefore has the

following numbers for n, e, and d:

n = 41567

e = 17

d = 26633

Of course, as you would expect, this block cipher would have no

security since it would take no time at all for an adversary to

factorize n into its components p and q.
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12.5: MODULAR EXPONENTIATION
FOR ENCRYPTION AND DECRYPTION

• As mentioned already, for encryption, the message integer M is

raised to the power e modulo n. That gives us the ciphertext

integer C. Decryption consists of raising C to the power d

modulo n.

• The exponentiation operation for encryption can be carried out

efficiently by simply choosing an appropriate e. (Note that the

only condition on e is that it be coprime to φ(n).) As mentioned

previously, typical choices for e are 3, 17, 35, 65537, etc. All

these integers have only a small number of bits set.

• Modular exponentiation for decryption, meaning the calculation

of Cd mod n, is an entirely different matter since we are not

free to choose d. The value of d is determined completely by e

and n. Typically, d is of roughly the same size as the modulus n

and n will usually be a humongous integer.

• Computation of Cd mod n can be speeded up by using the

Chinese Remainder Theorem (CRT) (see Section 11.7 of Lecture 11 for

CRT). Since the party doing the decryption knows the prime
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factors p and q of the modulus n, we can first carry out the

easier exponentiations:

Vp = Cd mod p

Vq = Cd mod q

• To apply CRT as explained in Section 11.7 of Lecture 11, we

must also calculate the quantities

Xp = q × (q−1 mod p)

Xq = p× (p−1 mod q)

Applying CRT, we get

Cd mod n = (VpXp + VqXq) mod n

• Further speedup can be obtained by using Fermat’s Little

Theorem (presented in Section 11.2 of Lecture 11) that says

that if a and p are coprimes then ap−1 mod p = 1.

• To see how Fermat’s Little Theorem (FLT) can be used to

speed up the calculation of Vp and Vq: Vp requires Cd mod p.

Since p is prime, obviously C and p will be coprimes. We can

therefore write
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Vp = Cd mod p = Cu×(p−1) + v mod p = Cv mod p

for some u and v. Since v < d, it’ll be faster to compute

Cv mod p than Cd mod p.

• When you use FLT in conjunction with CRT, you can calculate

Cd (mod n) in roughly quarter of the time it takes

otherwise. [First note, as stated earlier in Section 12.3.1, both p and q are of the order of n/2 where n

is the modulus. Since Vp = Cd (mod p) = Cd mod(p−1) (mod p), and since d is of the order of n and

d mod(p− 1) of the order of p (which itself is of the order of n/2), it should take no more than half the

number of multiplications to calculate Vp compared to the number of multiplications needed for calculating

Cd (mod n) directly. The same would be true for calculating Vq . As a result, the total number of

multiplications required for both Vp and Vq would be the same as in the direct calculation of Cd (mod n).

Note, however, the intermediate results in the modular exponentiation needed for Vp would never exceed p

(and the same would never exceed q for Vq). Since integer multiplication takes time that is proportional to

the square of the size of the bit fields involved, each multiplication involved in the calculation of Vp and Vq

would take only one-quarter of the time it takes for each multiplication in computing Cd (mod n) directly.]

• While the speedup achieved with CRT is impressive indeed, it comes at a

cost: It makes the calculation of Cd (mod n) vulnerable to different types of

Side Channel Attacks, such as the Fault Injection Attack and the Timing

Attack. In the Fault Injection attack, for example, you can get a processor

to reveal the values of the prime factors p and q just by deliberately

causing the processor to miscalculate the value of either Vp or Vq (but not

both). See Lecture 32 on “Security Vulnerabilities of Mobile Devices” for

further information regarding these attacks.
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12.5.1 An Algorithm for Modular
Exponentiation

• After we have simplified the problem of modular exponentiation

considerably by using CRT and Fermat’s Little Theorem as

discussed in the previous subsection, we are still left with having

to calculate:

AB mod n

for some integers A, B, and for some modulus n.

• What is interesting is that even for small values for A and B,

the value of AB can be enormous. Even when A and B consist

of only a couple of digits, as in 711, the result can still be a very

large number. For example, 711 equals 1, 977, 326, 743, a

number with 10 decimal digits. Now just imagine what would

happen if, as would be the case in cryptography, A has 256

binary digits (that is 77 decimal digits) and B has 65537 binary

digits. Even when B has only 2 digits (say, B = 17), when A

has 77 decimal digits, AB will have 1304 decimal digits.

• The calculation of AB can be speeded up by realizing that if B

can be expressed as a sum of smaller parts, then the result is a
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product of smaller exponentiations. We can use the following

binary representation for the exponent B:

B ≡ bkbk−1bk−2 . . . b0 (binary)

where we are saying that it takes k bits to represent the

exponent, each bit being represented by bi, with bk as the

highest bit and b0 as the lowest bit. In terms of these bits, we

can write the following equality for B:

B =
∑

bi 6=0
2i

• Now the exponentiation AB may be expressed as

AB = A
∑

bi 6=0 2
i

=
∏

bi 6=0
A2i

We could say that this form of AB roughly halves the difficulty

of computing AB because, assuming all the bits of B are set,

the largest value of 2i will be about half the largest value of B.

• We can achieve further simplification by bringing the rules of

modular arithmetic into the multiplications on the right:

AB mod n =







∏

bi 6=0

[

A2i mod n
]





 mod n
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Note that as we go from one bit position to the next higher bit

position, we square the previously computed power of A.

• The A2i terms in the above product are of the following form

A20, A21, A22, A23, . . .

As opposed to calculating each term from scratch, we can

calculate each by squaring the previous value. We may express

this idea in the following manner:

A, A2
previous, A2

previous, A2
previous, . . .

• Now we can write an algorithm for exponentiation that scans

the binary representation of the exponent B from the lowest bit

to the highest bit:

result = 1

while B > 0:

if B & 1: # check the lowest bit of B

result = ( result * A ) % n

B = B >> 1 # shift B by one bit to right

A = ( A * A ) % n

return result

• To see the dramatic speedup you get with modular

exponentiation, try the following terminal session with Python
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[ece404.12.d]$ => script

Script started on Mon 20 Feb 2012 10:23:32 PM EST

[ece404.12.d]$ => python

>>>

>>> print pow(7, 9633196, 9633197)

117649

>>>

>>>

>>>

>>> print (7 ** 9633196) % 9633197

117649

>>>

where the call to pow(7, 9633196, 9633197) calculates

79633197−1 mod 9633197 through Python’s implementation of

the modular exponentiation algorithm presented in this section.

This call will return instantaneously with the answer shown

above. On the other hand, the second call that carries out the

same calculation, but without resorting to modular

exponentiation, may take several minutes, depending on the

hardware in your machine. [You are encouraged to make similar comparisons with

numbers that are even larger than those shown here. If you wish, you can record your

terminal-interactive Python session with the command script as I did for the session presented

above. First invoke script and then invoke python as shown above. Your interactive work will be

saved in a file called typescript. You can exit the Python session by entering Ctrl-d and then exit

the recording of your terminal session by entering Ctrl-d again.]

• See the note at the top of the next page.
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An important point to note is that whereas the RSA algorithm is made

theoretically possible by the number property stated in Section 12.2, the

algorithm is made practically possible by the fact that there exist fast and

memory-efficient algorithms for modular exponentiation.
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12.6: THE SECURITY OF RSA —
VULNERABILITIES CAUSED BY LACK

OF FORWARD SECRECY

• A communication link possesses forward secrecy if the content

encryption keys used in a session cannot be inferred from a

future compromise of one or both ends of the communication

link. Forward secrecy is also referred to as Perfect Forward

Secrecy.

• To see why RSA lacks forward secrecy, imagine a patient

attacker who is recording the encrypted communications

between a server and client.

• As you will see in Lecture 13, in order to establish an encrypted

session with a server (which could be an e-commerce website like Amazon.com), a client

(which could be your laptop) downloads the server’s certificate to, first,

authenticate the server and to, then, get hold the server’s RSA

public key for the purpose of creating a secret session key. [As you

will learn in Lecture 13, a client generates a pseudorandom number to serve as the session key. To transmit

this session key to the server, the client encrypts it with the server’s public key so that only the server would

be able to decrypt it with its RSA private key. The client sends the encrypted session key to the server and,

subsequently, the two sides engage in an encrypted conversation.]
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• The attacker, who has managed to install a packet sniffer in the

LAN to which the client is connected, patiently records all

encrypted communications between the client and the server

with the expectation that someday he will be able to get hold of

the server’s private keys. Obviously, if that were to happen, the

attacker would be able to decrypt the session key that was

sent encrypted by the client to the server. And, as you can

imagine, after the attacker has figured out the session key, the

attacker will be able to decipher all of the recorded

communications between the client and the server.

• The attacker gaining access to a server’s private keys is not as

far fetched a scenario as one might think. Private keys may be

leaked out anonymously by disloyal employees or through bugs

in software. The Heartbleed bug that was discovered on April 7,

2014 is just the latest example of how private keys may fall prey

to theft through bugs in software. [See Section 20.4.4 of Lecture 20 for

further information on the Heartbeat Extension to the SSL/TLS protocol and the

Heartbleed bug.]

• We say that the basic RSA algorithm makes it possible to carry

out the exploit described above because it lacks forward secrecy.

Whether or not this vulnerability in a given server-client

interaction is a serious matter depends on the nature of the

communications between the two — especially on the lifetime of

the information exchanged between the two endpoints.
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• The solution to this problem with RSA lies in

somehow creating a secret session key without

putting it on the wire. Naturally, your first reaction to this

thought would be: “but that is impossible!!!.” You are

likely to add: “How can two sides share a secret without either

mentioning it to the other?”

• However, as they say, never underestimate the power of human

ingenuity. In Lecture 13, we will talk about an incredibly

beautiful algorithm, known as the Diffie-Hellman (DH)

algorithm, that makes it possible to create a session key without

either party transmitting the key to the other party.

• Consequently, DH provides Perfect Forward Secrecy. However,

as you will see in Lecture 13, DH does suffer from a shortcoming

of its own: it is vulnerable to the man-in-the-middle attack. By

combining RSA with DH, what you get — denoted DHE-RSA

— gives you perfect forward secrecy through the use of DH

for exchanging the session keys and RSA for endpoint (say,

server) authentication. DHE stands for “Diffie-Hellman

Exchange.” Another commonly used combination protocol for

creating secret session keys is ECDHE-RSA where ECDHE

stands for Elliptic Curve Diffie-Hellman Exchange. The subject

of elliptic curves for cryptography is presented in Lecture 14.
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12.7 THE SECURITY OF RSA — CHOSEN
CIPHERTEXT ATTACKS

• The basic RSA algorithm — that is, an encryption/decryption

scheme whose implementation does not go beyond the

mathematics of RSA as described so far — would be much too

vulnerable to all kinds of attacks, simple and fancy. Regarding

the simpler vulnerabilities, consider this: If we were to use the RSA

algorithm only as it has been described so far, think of the following vulnerability:

Let’s say your public key uses the exponent 3 and that you are in the habit of sending

very short messages to your business partners. If a message M is short enough, the

ciphertext integer C = M3 will be smaller than the modulus. Your enemies will be

able to recover the plaintext integer M simply by taking the cube-root of C by using,

say, the nth root algorithm. Such attacks become unfeasible when message integers

are padded, in the manner described in this section, so as to span the full length of

the modulus. With appropriate padding, when the message M is raised to the power

of the public exponent (even a small public exponent like 3), the result would exceed

the modulus and C would now be the remainder modulo the modulus. Since

nth root algorithm do not exist for modular arithmetic, the enemy would not be able

to recover M even if it is just a short message.

• Regarding the “fancier” vulnerabilities that RSA would fall

prey to if it were to be implemented just in the form described

so far, in this section we consider what are known as the Chosen
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Ciphertext Attacks (CCA) on the RSA cipher.

• My immediate goal in this section is to convey to the reader

what is meant by CCA. As to how RSA is made secure against

CCA is a story of what goes into the padding bytes that are

prepended to the data bytes in order to create a block of bytes

that spans the width of the modulus.

• So that you understand the basic notion of CCA, a good place

to start this section is to show how the data bytes are padded in

Version 1.5 of the PKCS#1 scheme for RSA. This scheme is

also more compactly referred to by the string “PKCS#1v1.5”.

[Going beyond the fundamental notions of RSA public-key cryptography presented in

this lecture, how exactly those notions should be used in practice is governed by the

different PKCS “schemes.” The acronym PKCS stands for “Public Key Cryptography

Standard.” It designates a set of standards from RSA Labs for public-key

cryptography.] Despite the fact that Version 1.5 was promulgated

in 1993, I believe it is still the most widely used RSA scheme

today. [Note that Versions 2.0 and higher of the PKCS#1 scheme are resistant to

all known forms of CCA attacks. By the way, you can download all of the different

versions of the PKCS#1 standard from the http://www.rsa.com/rsalabs/ web site.]

• In PKCS#1v1.5, what is subject to encryption is a block of

bytes, called, naturally, an Encryption Block (EB), that is

composed of the following sequence of bytes:
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00 || BT || PS || 00 || D

<---------- k bytes ---------->

k = size of modulus in bytes

where ‘||’ means simple concatenation, the numeric ‘00’ stands

for a byte whose value is 0, the notation ‘BT’ means a one-byte

integer that designates the type of EB, the notation ‘PS’ means

a pseudorandomly generated “Padding String”, and the symbol

‘D’ stands for the data bytes. The value of ‘BT’ is the integer 2

for encryption with RSA. [The values 0 and 1 for ‘BT’ are meant for RSA when it is

used for digital signatures.]

• The PKCS#1v1.5 standard mandates that the pseudorandomly

generated padding string PS contain at least 8 bytes for security

reasons. Therefore, in PKCS#1v1.5, the minimum value for k,

the size of the modulus, is 12 bytes. That would be accounted

for by one byte for ’00’, one for ’BT’, 8 for ’PS’, one for another

’00’, with one leftover for the data byte ’D’.

• With that brief introduction to how an encryption block is

constructed in PKCS#1v1.5, let’s get back to the subject of

CCA.

• Let’s say you use my public key (n, e) to encrypt a plaintext

message M into the ciphertext C. You send C to me, but on its
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way to me, the ciphertext C is picked up by someone we’ll refer

to as the attacker. Through CCA, the attacker can figure out

what the plaintext message M is even without having to know

the decryption exponent d. The attacker’s exploit would consist

of the following steps:

– The attacker randomly chooses an integer s.

– The attacker constructs a new message — which hopefully would not
arouse my suspicion — by forming the product C ′ = se × C mod n.

– The attacker somehow lures me into decrypting C ′. (I may

cooperate because C ′ looks innocuous to me.)

– Assume that, for whatever reason, I send back to the attacker
M ′ = C ′d = (se × C)d mod n = se×d × Cd mod n = s×M mod n.

– The attacker will now be able to recover the original message M by
M = M ′ × s−1 mod n, assuming that the multiplicative inverse of s

exists in Zn. Remember, the choice of s is under the attacker’s
control.

• The fact that RSA could be vulnerable to such attacks was first

discovered by George Davida in 1982.

• Another form of CCA was discovered by Daniel Bleichenbacher

in 1998. In this attack, the attacker uses a sequence of

randomly selected integers s to form a candidate sequence of
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ciphertexts C ′ = se × C mod n. The attacker chooses the

integers s one at a time, forms the ciphertext C ′, and sends it to

an oracle just to find out if C ′ is likely to have been produced

by a message whose first two bytes have the integer values of 0

and 2 — in accordance with the format of the encryption block

shown earlier in this section. Each positive return from the

oracle allows the attacker to enlarge the size of s and make an

increasingly narrower estimate for the value of the plaintext

integer M that corresponds to the original C. The iterations

end when the estimated value for M is just one number. [In case

you are wondering about the “oracle” and as to what that would correspond to in practice, the goal here is

merely to demonstrate that the attacker can recover the message integer M even with very limited knowledge

that consists of some mechanism informing the attacker whether or not the chosen C′ violates the structure of

the encryption block that is stipulated for PKCS#1v1.5. Whether or not such a mechanism exists today is

not the point. Such a mechanism could consist of the victim’s RSA engine simply returning an error report

whenever it receives a ciphertext that it believes was produced by a message that did not conform to the

encryption block structure in PKCS#1v1.5.] Bleichenbacher’s attack is reported

in the publication “Chosen Ciphertext Attacks Against

Protocols Based on the RSA Encryption Standard

PKCS#1,” that is available from his home page.

• These days one makes a distinction between two different types

of chosen ciphertext attacks and these are referred to as CCA1

and CCA2. Under CCA1, the attacker can consult the

decryption oracle mentioned above an arbitrary number of

times, but only until the attacker has acquired the ciphertext C

through eavesdropping or otherwise. And, under CCA2, the
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attacker can continue to consult the oracle even after seeing C.

For obvious reasons, in either model, the attacker cannot query

the oracle with C itself. The CCA1 attack is also known as the

passive chosen ciphertext attack and CCA2 as the adaptive

chosen ciphertext attack. The attack by Bleichenbacher is an

example of CCA2. The success of that attack implies that

PKCS#1v1.5 is not CCA2 secure.

• RSA is made resistant to CCA2 when the padding bytes are set

according to OAEP. OAEP stands for Optimal Asymmetric

Encryption Padding. Unlike what you saw for the

PKCS#1v1.5 format for encryption blocks at the beginning of

this section, there is no structure in the encryption blocks under

PKCS#1v2.x. The padding now involves a mask generation

function that depends on a hash applied to a set of parameters.

For further information, the reader is referred to the RSA Labs

publication “RSAES-OAEP Encryption Scheme” and the

references contained therein. This publication can be download

from the same web site as mentioned at the beginning of this

section.
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12.8 THE SECURITY OF RSA —
VULNERABILITIES CAUSED BY

LOW-ENTROPY RANDOM NUMBERS

• Please review Section 10.8 of Lecture 10 to appreciate the

significance of “Low Entropy” in the title of this section. [As

explained there, the entropy of a random number generator is at its highest if all numbers are equally likely to

be produced within the range of numbers that the output is designed for. For example, if a CSPRNG can

produce 512-bit random numbers with equal probability, its entropy is at its maximum and it equals 512 bits.

However, should the probabilities associated with the output random numbers be nonuniform, the entropy

will be less than 512. The greater the nonuniformity of this probability distribution, the smaller the entropy.

The entropy is zero for deterministic output.]

• Consider the following mind boggling fact: If an attacker can

get hold of a pair of RSA moduli, N1 and N2, that share a

factor, the attacker will be able to figure out the other factor

for both moduli with hardly any work. Obviously, once the

attacker has acquired both factors of a modulus, the attacker

can quickly calculate the private key that goes with the public

key associated with the modulus. This exploit, if successfully

carried out, immediately yields the private keys that go with the

public keys that contain the N1 and N2 moduli.

• To see why that is the case, let’s say that p is the common
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factor of the two moduli N1 and N2. That makes p the GCD of

N1 and N2. Now let’s denote the other factor in N1 by q1 and

in N2 by q2. You already know from Lecture 5 that Euclid’s

recursion makes the calculation of the GCD of any two numbers

extremely fast. [Using Euclid’s algorithm, the GCD of two 1024-bit integers on a routine

desktop can be computed in just a few microseconds using the Gnu Multiple Precision (GMP) library. More

theoretically speaking, the computational complexity of Euclid’s GCD algorithm is O(n2) for n bit

numbers.] Therefore, the common factor p of two moduli —

assuming they have a common factor — can be calculated

almost instantaneously with ordinary hardware. And once you

have p, the factors q1 and q2 are obtainable by simple integer

division, which is also fast.

• You might ask: Is it really likely that an attacker would find a

pair of RSA moduli that share a common factor? The answer is:

It is very, very likely today. Read on for why.

• Modern port and vulnerability scanners of the sort I’ll present

in Lecture 23 can carry out a full SSL/TLS and SSH handshake

and fetch the certificates used by the TLS/SSL hosts (these are

typically HTTPS web servers) and the host keys used by the

SSHD servers at a fairly rapid rate.

• In a truly landmark investigation by Nadia Heninger, Zakir

Durumeric, Eric Wustrow, and J. Alex Halderman that was

presented at the 2012 USENIX Security Symposium, the
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authors reported harvesting over 5 million TLS/SSL certificates

and around 4 million RSA-based SSH host keys through scans

that lasted no more than a couple of days. As you can see, these

authors were able to harvest a very large number of RSA

moduli in a rather short time. Subsequently they set out to find

the factors that any of the moduli shared with any of the other

moduli. [While the GCD of a pair of numbers can be computed very fast on a

run-of-the-mill machine, it would still take a very long time to do pairwise

computation for all the numbers in a set that contains a few million numbers. For

further speedup, Heninger et al. used a method proposed by Daniel Bernstein. In this

method, you start with calculating the product of all the moduli, multiplying two

moduli at a time in what’s called a product tree, and then reduce the product with

respect to the pairwise products of the squares of the moduli in what’s known as the

remainder tree. This approach, applied to over 11 million RSA moduli from the

TLS/SSL and SSH datasets, yielded the p factors in under 6 hours on a multicore PC

class machine with 32 GB of RAM.] The title of the publication by

Heninger et al. is “Mining your Ps and Qs: Detection of

Widespread Weak Keys in Network Devices”.

• In this manner, Heninger et al. were able to compute the

private keys for 0.50% of the TLS/SSL servers (the HTTPS web

servers) and for 0.03% of the SSH servers.

• The upshot of the investigation reported by Heninger et al. is

that your random number generator must have high enough

entropy so that each modulus is unique vis-a-vis the moduli

used by any other communication device any place on the face
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of this earth!

• While the prescription stated above is followed for the most

part by most computers of the sort we use everyday, that’s not

necessarily the case for a large number of what are known as

headless communication devices in the internet. By headless

devices we mean routers, firewalls, sever management cards, etc.

As observed by Heninger et al., a very large number of such

headless devices use software entropy sources for the random

bytes they need as candidates for the prime numbers and the

most commonly used software entropy source is /dev/urandom

that supplies pseudorandom bytes through non-blocking reads.

• The problem with /dev/urandom arises at boot time when such a

software entropy source is least equipped to supply high-entropy

random bytes and this happens exactly when the network

interface has a need to create keys for communicating with

other hosts.

• See Section 10.9.4 of Lecture 10 for further information on

/dev/urandom and its relationship to /dev/random.
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Back to TOC

12.9 THE SECURITY OF RSA — THE
MATHEMATICAL ATTACK

• Assuming that the security issues brought up in the previous

three sections are not relevant in a given application context,

the security of RSA depends critically on the fact that whereas

it is easy to multiply two large primes to construct a modulus,

the inverse operation of factoring the modulus into its prime

factors can be extremely difficult — difficult until you solve the

integer factorization problem for the sizes of the numbers

involved. [Functions that are easy to compute in one direction but that cannot be easily inverted

without special information are known as trapdoor functions.] Trying to break RSA by

developing an integer factorization solution for the moduli

involved is known as a mathematical attack.

• That is, a mathematical attack on RSA consists of figuring out

the prime factors p and q of the modulus n. Obviously, knowing

p and q, the attacker will be able to figure out the private

exponent d for decryption.

• Another way of stating the same as above would be that the

attacker would try to figure out the totient φ(n) of the modulus

n. But as stated earlier, knowing φ(n) is equivalent to knowing

the factors p and q. If an attacker can somehow figure out φ(n),
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the attacker will be able to set up the equation

(p− 1)(q − 1) = φ(n), that, along with the equation

p× q = n, will allow the attacker to determine the values for p

and q.

• Because of their importance in public-key cryptography, a

number that is a product of two (not necessarily distinct)

primes is known as a semiprime. Such numbers are also called

biprimes, pq-numbers, and 2-almost primes. Currently the

largest known semiprime is

(282,589,933 – 1)2

This number has over 48 million digits. This is the square of the

largest known prime number, implying that what you see inside

the parentheses is a prime number.

• Over the years, various mathematical techniques have been

developed for solving the integer factorization problem

involving large numbers. A detailed presentation of integer

factorization is beyond the scope of this lecture. We will now

briefly mention some of the more prominent methods, the goal

here being merely to make the reader familiar with the

existence of the methods. For a full understanding of the

mentioned methods, the reader must look up other sources

where the methods are discussed in much greater detail [Be aware

that while the methods listed below can factorize large numbers, for very large numbers of the sort used these

days in RSA cryptography, you have to custom design the algorithms for each attack. Customization
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generally consists of making various conjectures about the modulo properties of the factors and using the

conjectures to speed up the search for the factors.]:

Trial Division: This is the oldest technique. Works quite well

for removing primes from large integers of up to 12 digits

(that is, numbers smaller then 1012). As the name implies,

you simply divide the number to be factorized by

successively larger integers. A variation is to form a product

m = p1p2p3 . . . pr of r primes and to then compute

gcd(n,m) for finding the largest prime factor in n. Here is a

product of all primes p ≤ 97:

2305567963945518424753102147331756070

Fermat’s Factorization Method: Is based on the notion

that every odd number n that has two non-trivial factors

can be expressed as a difference of two squares,

n = (x2 − y2). If we can find such x and y, then the two

factors of n are (x− y) and (x + y). Searching for these

factors boils down to solving x2 ≡ y2 (mod n). This is

referred to as a congruence of squares. That every odd n

can be expressed as a difference of two squares follows from

the fact that if n = a× b, then

n = [(a + b)/2]2 − [(a − b)/2]2

Note that since n is assumed to be odd, both a and b are
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odd, implying that a + b and a− b will both be even. In its

implementation, one tries various values of x hoping to find

one that yields a square for x2 − n. The search is begun

with with the integer x = ⌈√n⌉. Here is the pseudocode
for this approach

x = ceil( sqrt( n ) ) # assume n is odd

y_squared = x ** 2 - n

while y_squared is not a square

x = x + 1

y_squared = x ** 2 - n # y_squared = y_squared + 2*x + 1

return x - sqrt( b_squared )

This method works fast if n has a factor close to its

square-root. In general, its complexity is O(n). Fermat’s

method can be speeded up by using trial division for

candidate factors up to
√
n.

Sieve Based Methods: Sieve is a process of successive

crossing out entries in a table of numbers according to a set

of rules so that only some remain as candidates for whatever

one is looking for. The oldest known sieve is the sieve of

Eratosthenes for generating prime numbers. In order to

find all the prime integers up to a number, you first write

down the numbers successively (starting with the number 2)

in an array-like display. The sieve algorithm then starts by

crossing out all the numbers divisible by 2 (and adding 2 to

the list of primes). Next you cross out all the entries in the

table that are divisible by 3 and you add 3 to the list of
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primes, and so on. Modern sieves that are used for fast

factorization are known as quadratic sieve, number

field sieve, etc. The quadratic sieve method is the fastest

for integers under 110 decimal digits and considerably

simpler than the number field sieve. Like the principle

underlying Fermat’s factorization method, the quadratic

sieve method tries to establish congruences modulo n. In

Fermat’s method, we search for a single number x so that

x2 mod n is a square. But such x’s are difficult to find. With

quadratic sieve, we compute x2 mod n for many x’s and

then find a subset of these whose product is a square.

Pollard-ρ Method: It is based on the following observations:

– Say d is a factor of n. Obviously, the yet unknown d

satisfies d|n. Now assume that we have two randomly

chosen numbers a and b so that a ≡ b (mod d).

Obviously, for such a and b, a− b ≡ 0 (mod n),

implying a− b = kd for some k, further implying that d

must also be a divisor of the difference a− b. That is,

d|(a− b). Since, by assumption, d|n, it must be the case
that gcd(a− b, n) is a multiple of d. We can now set d to

the answer returned by gcd, assuming that this answer is

greater than 1. Once we find such a factor of n, we can

divide n by the factor and repeat the algorithm on the

resulting smaller integer.
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– This suggests the following approach to finding a factor of

n: (1) Randomly choose two numbers a, b ≤ √n; (2) Find
gcd(a− b, n); (3) If this gcd is equal to 1, go back to step

1 until the gcd calculation yields a number d greater than

1. This d must be a factor of n. [A discerning reader might say that

since we know nothing about the factor d of n and since we are essentially shooting in the

dark when making guesses for a and b, why should we expect a performance any better than

making random guesses for the factors of n up to the square-root of n. That may well be

true in general, but the beauty of searching for the factors via the differences a− b is that it

generalizes to the main feature of the Pollard-ρ algorithm in which the sequence of

integers you choose for b grows twice as fast as the sequence of integers you

choose for a. It is this feature that makes for a much more efficient way to look for the

factors of n. This feature is implemented in lines (E10), (E11), and (E12) of the code shown

at the end of this section. As was demonstrated by Pollard, letting b grow twice as fast as a

in gcd(a− b, n) makes for fast detection of cycles, these being two different numbers a and b

that are congruent modulo some integer d < n.]

– In the code shown at the end of this section, the simple

procedure laid out above is called

pollard rho simple(); its implementation is shown in

lines (D1) through (D15) of the code. We start the

calculation by choosing random numbers for a and b, and

computing gcd(a− b, n). Assuming that this gcd equals

1, we now generate another candidate for b in the loop in

lines (D9) through (D14). For each new candidate

generated for b, its difference must be computed from all

the previously generated random numbers and the gcd of

the differences computed. In general, for the kth random
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number selected for b, you have to carry out k calculations

of gcd.

– The above mentioned ever increasing number of gcd

calculations for each iteration of the algorithm is avoided

by what is the heart of the Pollard-ρ algorithm. The

candidate numbers are generated pseudorandomly using a

function f that maps a set to itself through the

equivalence of the remainders modulo n. Let’s express the

sequence of numbers generated through such a function

by xi+1 = f(xi) mod n. Again assuming the yet

unknown factor d of n, suppose we discover a pair of

indices i and j, i < j, for this sequence such that

xi ≡ xj (mod d), then obviously f(xi) ≡ f(xj) (mod d).

This implies that each element of the sequence after j will

be congruent to each corresponding element of the

sequence after i modulo the unknown d.

– So let’s say we can find two numbers in the sequence xi
and x2i that are congruent modulo the unknown factor d,

then by the logic already explained d|(xi−x2i). Since d|n,
it must be case that gcd(xi− x2i, n) must be a factor of n.

– The Pollard-ρ algorithm uses a function f() to generate

two sequence xi and yi, with the latter growing twice as

fast as the former — see lines (E10), (E11), and (E12) of

the code for an illustration of this idea. That is, at each
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iteration, the first sequence corresponds to xi+1 ← f(xi)

and yi+1 ← f(f(yi)). This would cause each (xi, yi) pair

to be the same as (xi, x2i). If we are in the cycle part of

the sequence, and if xi ≡ x2i (mod d), then we must

have a d = gcd((xi − yi), n), d 6= 1 and we are done.

– The most commonly used function f(x) is the polynomial

f(x) = x2 + c mod n with the constant c not allowed

to take the values 0 and −2. The code shown in lines (E4)

through (E15) constitutes an implementation of this

polynomial.

– Some parts of the implementation of the overall integer

factorization algorithm shown below should already be

familiar to you. The calculation of gcd in lines in (B1)

through (B4) is from Section 5.4.5 of Lecture 5. The

Miller-Rabin based primality testing code in lines (C1)

through (C22) is from Section 11.5.5 of Lecture 11.

#!/usr/bin/env python

## Factorize.py

## Author: Avi Kak

## Date: February 26, 2011

## Modified: Febrary 25, 2012

## Uncomment line (F9) and comment out line (F10) if you want to see the results

## with the simpler form of the Pollard-Rho algorithm.

import random

import sys

def factorize(n): #(F1)

prime_factors = [] #(F2)
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factors = [n] #(F3)

while len(factors) != 0: #(F4)

p = factors.pop() #(F5)

if test_integer_for_prime(p): #(F6)

prime_factors.append(p) #(F7)

continue #(F8)

# d = pollard_rho_simple(p) #(F9)

d = pollard_rho_strong(p) #(F10)

if d == p: #(F11)

factors.append(d) #(F12)

else: #(F13)

factors.append(d) #(F14)

factors.append(p//d) #(F15)

return prime_factors #(F16)

def test_integer_for_prime(p): #(P1)

probes = [2,3,5,7,11,13,17] #(P2)

for a in probes: #(P3)

if a == p: return 1 #(P4)

if any([p % a == 0 for a in probes]): return 0 #(P5)

k, q = 0, p-1 #(P6)

while not q&1: #(P7)

q >>= 1 #(P8)

k += 1 #(P9)

for a in probes: #(P10)

a_raised_to_q = pow(a, q, p) #(P11)

if a_raised_to_q == 1 or a_raised_to_q == p-1: continue #(P12)

a_raised_to_jq = a_raised_to_q #(P13)

primeflag = 0 #(P14)

for j in range(k-1): #(P15)

a_raised_to_jq = pow(a_raised_to_jq, 2, p) #(P16)

if a_raised_to_jq == p-1: #(P17)

primeflag = 1 #(P18)

break #(P19)

if not primeflag: return 0 #(P20)

probability_of_prime = 1 - 1.0/(4 ** len(probes)) #(P21)

return probability_of_prime #(P22)

def pollard_rho_simple(p): #(Q1)

probes = [2,3,5,7,11,13,17] #(Q2)

for a in probes: #(Q3)

if p%a == 0: return a #(Q4)

d = 1 #(Q5)

a = random.randint(2,p) #(Q6)

random_num = [] #(Q7)

random_num.append( a ) #(Q8)

while d==1: #(Q9)

b = random.randint(2,p) #(Q10)

for a in random_num[:]: #(Q11)

d = gcd( a-b, p ) #(Q12)

if d > 1: break #(Q13)

random_num.append(b) #(Q14)

return d #(Q15)

def pollard_rho_strong(p): #(R1)
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probes = [2,3,5,7,11,13,17] #(R2)

for a in probes: #(R3)

if p%a == 0: return a #(R4)

d = 1 #(R5)

a = random.randint(2,p) #(R6)

c = random.randint(2,p) #(R7)

b = a #(R8)

while d==1: #(R9)

a = (a * a + c) % p #(R10)

b = (b * b + c) % p #(R11)

b = (b * b + c) % p #(R12)

d = gcd( a-b, p) #(R13)

if d > 1: break #(R14)

return d #(R15)

def gcd(a,b): #(S1)

while b: #(S2)

a, b = b, a%b #(S3)

return a #(D4)

if __name__ == ’__main__’: #(A1)

if len( sys.argv ) != 2: #(A2)

sys.exit( "Call syntax: Factorize.py number" ) #(A3)

p = int( sys.argv[1] ) #(A4)

factors = factorize(p) #(A5)

print("\nFactors of %d:" % p) #(A6)

for num in sorted(set(factors)): #(A7)

print("%s %d ^ %d" % (" ", num, factors.count(num))) #(A8)

– Let’s try the program on what is known as the sixth Fermat

number [The nth Fermat number is given by 22
n

+ 1. So the sixth Fermat number is 264 + 1.]:

Factorize.py 18446744073709551617

The factors returned are:

274177 ^ 1

67280421310721 ^ 1

In the answer shown what comes after ^ is the power of the

factor in the number. You can check the correctness of the answer by entering the

number in the search window at the http://www.factordb.com web site. You will also
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notice that you will get the same in only another blink of the

eye if you comment out line (F10) and uncomment line (F9),

which basically amounts to making a random guess for the

factors.

– That we get the same performance regardless of whether we

use the statement in line (F9) or the statement in line (F10)

happens because the number we asked Factorize.py to

factorize above was easy. As we will mention in Section 12.9,

factorization becomes harder when a composite is a product

of two primes of roughly the same size. For that reason, a

tougher problem would be to factorize the known semiprime

10023859281455311421. Now, unless you are willing to wait

for a long time, you will have no choice but to use the

statement in line (F10). Using the statement in line (F10),

the factors returned for this number are:

1308520867 ^ 1

7660450463 ^ 1

– For another example, when we call Factorize.py on the

number shown below, using the statement in line (F10) for

the Pollard-ρ algorithm

11579208923731619542357098500868790785326998466564056403

the factors returned are:
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23 ^ 1

41 ^ 1

149 ^ 1

40076041 ^ 1

713526132967 ^ 1

9962712838657 ^ 1

289273479972424951 ^ 1

– Shown next is a Perl version of the script for factorization.

Since arbitrarily sized integers are not native to Perl, this

script can only handle integers that can be accommodated in

4 bytes that Perl uses for storing unsigned integers. [As

mentioned previously in Lecture 11, in Perl you must import the

Math::BigInt package for arbitrarily large integers. Later in this section I will

show an implementation of the Pollard-Rho factorization algorithm that is based

on the Math::BigInt representation of large integers.]

#!/usr/bin/env perl

## Factorize.pl

## Author: Avi Kak

## Date: February 19, 2016

## Uncomment line (F12) and comment out line (F13) if you want to see the results

## with the simpler form of the Pollard-Rho algorithm.

use strict;

use warnings;

die "\nUsage: $0 <integer> \n" unless @ARGV == 1; #(A1)

my $p = shift @ARGV; #(A2)

die "Your number is too large for factorization by this script. " .

"Instead, try the script ’FactorizeWithBigInt.pl’\n"

if $p > 0x7f_ff_ff_ff; #(A3)

my @factors = @{factorize($p)}; #(A4)

my %how_many_of_each; #(A5)

map {$how_many_of_each{$_}++} @factors; #(A6)

print "\nFactors of $p:\n"; #(A7)
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foreach my $factor (sort {$a <=> $b} keys %how_many_of_each) { #(A8)

print " $factor ^ $how_many_of_each{$factor}\n"; #(A9)

}

sub factorize { #(F1)

my $n = shift; #(F2)

my @prime_factors = (); #(F3)

my @factors; #(F4)

push @factors, $n; #(F5)

while (@factors > 0) { #(F6)

my $p = pop @factors; #(F8)

if (test_integer_for_prime($p)) { #(F9)

push @prime_factors, $p; #(F10)

next; #(F11)

}

# my $d = pollard_rho_simple($p); #(F12)

my $d = pollard_rho_strong($p); #(F13)

if ($d == $p) { #(F14)

push @factors, $d; #(F15)

} else {

push @factors, $d; #(F16)

push @factors, int($p / $d); #(F17)

}

}

return \@prime_factors; #(F18)

}

sub test_integer_for_prime { #(P1)

my $p = shift; #(P2)

my @probes = qw[ 2 3 5 7 11 13 17 ]; #(P3)

foreach my $a (@probes) { #(P4)

return 1 if $a == $p; #(P5)

}

my ($k, $q) = (0, $p - 1); #(P6)

while (! ($q & 1)) { #(P7)

$q >>= 1; #(P8)

$k += 1; #(P9)

}

my ($a_raised_to_q, $a_raised_to_jq, $primeflag); #(P10)

foreach my $a (@probes) { #(P11)

my ($base,$exponent) = ($a,$q); #(P12)

my $a_raised_to_q = 1; #(P13)

while ((int($exponent) > 0)) { #(P14)

$a_raised_to_q = ($a_raised_to_q * $base) % $p

if int($exponent) & 1; #(P15)

$exponent = $exponent >> 1; #(P16)

$base = ($base * $base) % $p; #(P17)

}

next if $a_raised_to_q == 1; #(P18)

next if ($a_raised_to_q == ($p - 1)) && ($k > 0); #(P19)

$a_raised_to_jq = $a_raised_to_q; #(P20)

$primeflag = 0; #(P21)

foreach my $j (0 .. $k - 2) { #(P22)

$a_raised_to_jq = ($a_raised_to_jq ** 2) % $p; #(P23)

if ($a_raised_to_jq == $p-1) { #(P24)
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$primeflag = 1; #(P25)

last; #(P26)

}

}

return 0 if ! $primeflag; #(P27)

}

my $probability_of_prime = 1 - 1.0/(4 ** scalar(@probes)); #(P28)

return $probability_of_prime; #(P29)

}

sub pollard_rho_simple { #(Q1)

my $p = shift; #(Q2)

my @probes = qw[ 2 3 5 7 11 13 17 ]; #(Q3)

foreach my $a (@probes) { #(Q4)

return $a if $p % $a == 0; #(Q5)

}

my $d = 1; #(Q6)

my $a = 2 + int(rand($p)); #(Q7)

my @random_num = ($a); #(Q8)

while ($d == 1) { #(Q9)

my $b = 2 + int(rand($p)); #(Q10)

foreach my $a (@random_num) { #(Q11)

$d = gcd($a - $b, $p); #(Q12)

last if $d > 1; #(Q13)

}

push @random_num, $b; #(Q14)

}

return $d; #(Q15)

}

sub pollard_rho_strong { #(R1)

my $p = shift; #(R2)

my @probes = qw[ 2 3 5 7 11 13 17 ]; #(R3)

foreach my $a (@probes) { #(R4)

return $a if $p % $a == 0;

}

my $d = 1; #(R5)

my $a = 2 + int(rand($p)); #(R6)

my $c = 2 + int(rand($p)); #(R6)

my $b = $a; #(R7)

while ($d == 1) { #(R8)

$a = ($a * $a + $c) % $p; #(R9)

$b = ($b * $b + $c) % $p; #(R10)

$b = ($b * $b + $c) % $p; #(R11)

$d = gcd($a - $b, $p); #(R12)

last if $d > 1; #(R13)

}

return $d; #(R14)

}

sub gcd { #(S1)

my ($a,$b) = @_; #(S2)

while ($b) { #(S3)

($a,$b) = ($b, $a % $b); #(S4)

}
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return $a; #(S5)

}

– If you call the above script with the argument shown below

Factorize.pl 1844674407

the script will return the answer shown below:

Factors of 1844674407:

3 ^ 2

204963823 ^ 1

– On the other hand, if you call this script for a large integer,

as in

Factorize.pl 18446744073709551617

the script will come back with the error message:

Your number is too large for factorization by this script.

Instead, try the script ’FactorizeWithBigInt.pl’

This error message is triggered by the statement in line (A3)

of the script where we compare the user-supplied integer

with the largest integer that can be stored in 4 bytes.

– That brings me to a Math::BigInt variant of the Perl script

shown above in order to deal with arbitrarily large

integers. Although the Math::BigInt library is now a part

of the Perl core, it is somewhat awkward to use unlike what

is the case with Python where transitioning to the

big-number representation happens under the hood. When
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using Math::BigInt, all operations — addition,

multiplication, exponentiation, modular multiplication,

modular exponentiation, and so on — require calls to this

module’s API.

– In the script that is shown below, we immediately convert

the user supplied integer as a command-line argument into

its Math::BigInt representation in line (A5). As stated in my

introduction to the Pollard-Rho algorithm, the algorithm

requires randomly generated integers whose differences, if

found coprime to the integer that is being factorized, then

become the factors you are looking for. For the script

Factorize.pl shown above, we could call on Perl’s native

rand() function to supply us with those random

numbers. [Since we upper-bounded the integers to be factorized in

that script to the largest that can be stored in 4 bytes and since that is

also the upper bound on the numbers that rand() can return, the

behavior of rand() is consistent with what the script Factorize.pl is

capable of.] However, when you are dealing with arbitrarily

large integers, you need a random number generator

commensurate with such numbers. That is the reason for

importing the Math::BigInt::Random::OO in line (A2).

#!/usr/bin/env perl

## FactorizeWithBigInt.pl

## Author: Avi Kak

## Date: February 21, 2016

## Uncomment line (F13) and comment out line (F14) if you want to see the results

## with the simpler form of the Pollard-Rho algorithm.
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use strict;

use warnings;

use Math::BigInt;

use Math::BigInt::Random::OO;

########################### class FactorizeWithBigInt ##########################

package FactorizeWithBigInt;

sub new { #(A1)

my ($class, $num) = @_; #(A2)

bless { #(A3)

num => int($num), #(A4)

}, $class; #(A5)

}

sub factorize { #(F1)

my $self = shift; #(F2)

my $n = $self->{num}; #(F3)

my @prime_factors = (); #(F4)

my @factors; #(F5)

push @factors, $n; #(F6)

while (@factors > 0) { #(F7)

my $p = pop @factors; #(F8)

if ($self->test_integer_for_prime($p)) { #(F9)

my $pnum = $p->numify(); #(F10)

push @prime_factors, $p; #(F11)

next; #(F12)

}

# my $d = $self->pollard_rho_simple($p); #(F13)

my $d = $self->pollard_rho_strong($p); #(F14)

if ($d->copy()->bacmp($p->copy()) == 0) { #(F15)

push @factors, $d; #(F16)

} else { #(F17)

push @factors, $d; #(F18)

my $div = $p->copy()->bdiv($d->copy()); #(F19)

push @factors, $div; #(F20)

}

}

return \@prime_factors; #(F21)

}

sub test_integer_for_prime { #(P1)

my $self = shift; #(P2)

my $p = shift; #(P3)

return 0 if $p->is_one(); #(P4)

my @probes = qw[ 2 3 5 7 11 13 17 ]; #(P5)

foreach my $a (@probes) { #(P6)

$a = Math::BigInt->new("$a"); #(P7)

return 1 if $p->bcmp($a) == 0; #(P8)

return 0 if $p->copy()->bmod($a)->is_zero(); #(P9)

}

my ($k, $q) = (0, $p->copy()->bdec()); #(P10)

while (! $q->copy()->band( Math::BigInt->new("1"))) { #(P11)

$q->brsft( 1 ); #(P12)

$k += 1; #(P13)
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}

my ($a_raised_to_q, $a_raised_to_jq, $primeflag); #(P14)

foreach my $a (@probes) { #(P15)

my $abig = Math::BigInt->new("$a"); #(P16)

my $a_raised_to_q = $abig->bmodpow($q, $p); #(P17)

next if $a_raised_to_q->is_one(); #(P18)

my $pdec = $p->copy()->bdec(); #(P19)

next if ($a_raised_to_q->bcmp($pdec) == 0) && ($k > 0); #(P20)

$a_raised_to_jq = $a_raised_to_q; #(P21)

$primeflag = 0; #(P22)

foreach my $j (0 .. $k - 2) { #(P23)

my $two = Math::BigInt->new("2"); #(P24)

$a_raised_to_jq = $a_raised_to_jq->copy()->bmodpow($two, $p); #(P25)

if ($a_raised_to_jq->bcmp( $p->copy()->bdec() ) == 0 ) { #(P26)

$primeflag = 1; #(P27)

last; #(P28)

}

}

return 0 if ! $primeflag; #(P29)

}

my $probability_of_prime = 1 - 1.0/(4 ** scalar(@probes)); #(P30)

return $probability_of_prime; #(P31)

}

sub pollard_rho_simple { #(Q1)

my $self = shift; #(Q2)

my $p = shift; #(Q3)

my @probes = qw[ 2 3 5 7 11 13 17 ]; #(Q4)

foreach my $a (@probes) { #(Q5)

my $abig = Math::BigInt->new("$a"); #(Q6)

return $abig if $p->copy()->bmod($abig)->is_zero(); #(Q7)

}

my $d = Math::BigInt->bone(); #(Q8)

my $randgen = Math::BigInt::Random::OO->new( max => $p ); #(Q9)

my $a = Math::BigInt->new(); #(Q10)

unless ($a->numify() >= 2) { #(Q11)

$a = $randgen->generate(1); #(Q12)

}

my @random_num = ($a); #(Q13)

while ($d->is_one()) { #(Q14)

my $b = Math::BigInt->new(); #(Q15)

unless ($b->numify() >= 2) { #(Q16)

$b = $randgen->generate(1); #(Q17)

}

foreach my $a (@random_num) { #(Q18)

$d = Math::BigInt::bgcd($a->copy()->bsub($b),$p); #(Q19)

last if $d->bacmp(Math::BigInt->bone()) > 0; #(Q20)

}

push @random_num, $b; #(Q21)

}

return $d; #(Q22)

}

sub pollard_rho_strong { #(R1)

my $self = shift; #(R2)
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my $p = shift; #(R3)

my @probes = qw[ 2 3 5 7 11 13 17 ]; #(R4)

foreach my $a (@probes) { #(R5)

my $abig = Math::BigInt->new("$a"); #(R6)

return $abig if $p->copy()->bmod($abig)->is_zero(); #(R7)

}

my $d = Math::BigInt->bone(); #(R8)

my $randgen = Math::BigInt::Random::OO->new( max => $p ); #(R9)

my $a = Math::BigInt->new(); #(R10)

unless ($a->numify() >= 2) { #(R11)

$a = $randgen->generate(1); #(R12)

}

$randgen = Math::BigInt::Random::OO->new( max => $p ); #(R13)

my $c = Math::BigInt->new(); #(R14)

unless ($c->numify() >= 2) { #(R15)

$c = $randgen->generate(1); #(R16)

}

my $b = $a->copy(); #(R17)

while ($d->is_one()) { #(R18)

$a->bmuladd($a->copy(), $c->copy())->bmod($p); #(R19)

$b->bmuladd($b->copy(), $c->copy())->bmod($p); #(R20)

$b->bmuladd($b->copy(), $c->copy())->bmod($p); #(R21)

$d = Math::BigInt::bgcd( $a->copy()->bsub($b), $p ); #(R22)

last if $d->bacmp(Math::BigInt->bone()) > 0; #(R23)

}

return $d; #(R24)

}

################################# main ######################################

package main;

unless (@ARGV) { #(M1)

1; #(M2)

} else { #(M3)

my $p = shift @ARGV; #(M2)

$p = Math::BigInt->new( "$p" ); #(M3)

my $factorizer = FactorizeWithBigInt->new($p); #(M4)

my @factors = @{$factorizer->factorize()}; #(M5)

my %how_many_of_each; #(M6)

map {$how_many_of_each{$_}++} @factors; #(M7)

print "\nFactors of $p:\n"; #(M8)

foreach my $factor (sort {$a <=> $b} keys %how_many_of_each) { #(M9)

print " $factor ^ $how_many_of_each{$factor}\n"; #(M10)

}

}

– To demonstrate the script shown above in action, if you call

FactorizeWithBigInt.pl 123456789123456789123456789123456789123456789123456789

the script returns the following factorization:

Factors of 123456789123456789123456789123456789123456789123456789:
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3 ^ 3

7 ^ 1

11 ^ 1

13 ^ 1

19 ^ 1

757 ^ 1

3607 ^ 1

3803 ^ 1

52579 ^ 1

70541929 ^ 1

14175966169 ^ 1

440334654777631 ^ 1

– The Pollard-ρ algorithm is based on John Pollard’s article

“A Monte Carlo Method for Factorization,” BIT, pp.

331-334. A more efficient variation on Pollard’s method was

published by Richard Brent: “An Improved Monte Carlo

Factorization Algorithm,” in the same journal in 1980.
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12.10 FACTORIZATION OF LARGE
NUMBERS: THE OLD RSA FACTORING

CHALLENGE

• Since the security of the RSA algorithm is so critically

dependent on the difficulty of finding the prime factors of a

large number, RSA Labs

(http://www.rsasecurity.com/rsalabs/) used to sponsor

a challenge to factor the numbers supplied by them.

• The challenge generated a lot of excitement when it was active.

Many of the large numbers put forward by RSA Labs for

factoring have still not been factored and are not expected to be

factored any time soon.

• Given the historical importance of this challenge and the fact

that many of the numbers have not yet been factored makes it

interesting to review the state of the challenge today.

• The challenges are denoted

RSA-XXX

where XXX stands for the number of bits needed for a

77



Computer and Network Security by Avi Kak Lecture 12

binary representation of the number to be factored in the round

of challenges starting with RSA− 576.

• Let’s look at the factorization of the number in the RSA-200

challenge (200 here refers to the number of decimal digits):

RSA-200 =

2799783391122132787082946763872260162107044678695

5428537560009929326128400107609345671052955360856

0618223519109513657886371059544820065767750985805

57613579098734950144178863178946295187237869221823983

Its two factors are

35324619344027701212726049781984643686711974001976250

23649303468776121253679423200058547956528088349

79258699544783330333470858414800596877379758573642

19960734330341455767872818152135381409304740185467

RSA-200 was factored on May 9, 2005 by Bahr, Boehm, Franke,

and Kleinjung of Bonn University and Max Planck Institute.

• Here is a description of RSA-576:

Name: RSA-576

Prize: $10000

Digits: 174

Digit Sum: 785

188198812920607963838697239461650439807163563379

417382700763356422988859715234665485319060606504

743045317388011303396716199692321205734031879550

656996221305168759307650257059
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RSA-576 was factored on Dec 3, 2003 by using a combination of

lattice sieving and line sieving by a team of researchers (Franke,

Kleinjung, Montgomery, te Riele, Bahr, Leclair, Leyland, and

Wackerbarth) working at Bonn University, Max Planck

Institute, and some other places.

• Here is a description of RSA-640:

Name: RSA-640

Prize: $20000

Digits: 193

Digit Sum: 806

31074182404900437213507500358885679300373460228

42727545720161948823206440518081504556346829671

72328678243791627283803341547107310850191954852

90073377248227835257423864540146917366024776523

46609

RSA-640 was factored on November 2, 2005 by the same team

that solved RSA-576. Took over five months of calendar time.

• RSA-768, shown below, was factored in December 2009 by T.

Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thome, J Bos, P.

Gaudry, A. Kruppa, P. Montgommery, D. Osvik, H. te Riele, A.

Timofeev, and P. Zimmerman. This is the largest modulus that

has been factored to date. This factorization resulted from a

multi-year effort in distributed computing.

Name: RSA-768
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Prize: $50000 (retracted)

Digits: 232

Digit Sum: 1018

12301866845301177551304949583849627207728535695

95334792197322452151726400507263657518745202199

78646938995647494277406384592519255732630345373

15482685079170261221429134616704292143116022212

40479274737794080665351419597459856902143413
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12.10.1 The Old RSA Factoring Challenge:
Numbers Not Yet Factored

Name: RSA-896

Prize: $75000 (retracted)

Digits: 270

Digit Sum: 1222

41202343698665954385553136533257594817981169984

43279828454556264338764455652484261980988704231

61841879261420247188869492560931776375033421130

98239748515094490910691026986103186270411488086

69705649029036536588674337317208131041051908642

54793282601391257624033946373269391

Name: RSA-1024

Prize: $100000 (retracted)

Digits: 309

Digit Sum: 1369

135066410865995223349603216278805969938881475605

667027524485143851526510604859533833940287150571

909441798207282164471551373680419703964191743046

496589274256239341020864383202110372958725762358

509643110564073501508187510676594629205563685529

475213500852879416377328533906109750544334999811

150056977236890927563
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Name: RSA-1536

Prize: $150000 (retracted)

Digits: 463

Digit Sum: 2153

184769970321174147430683562020016440301854933866

341017147178577491065169671116124985933768430543

574458561606154457179405222971773252466096064694

607124962372044202226975675668737842756238950876

467844093328515749657884341508847552829818672645

133986336493190808467199043187438128336350279547

028265329780293491615581188104984490831954500984

839377522725705257859194499387007369575568843693

381277961308923039256969525326162082367649031603

6551371447913932347169566988069

Name: RSA-2048

Prize: $200000 (retracted)

Digits: 617

Digit Sum: 2738

2519590847565789349402718324004839857142928212620

4032027777137836043662020707595556264018525880784

4069182906412495150821892985591491761845028084891

2007284499268739280728777673597141834727026189637

5014971824691165077613379859095700097330459748808

4284017974291006424586918171951187461215151726546

3228221686998754918242243363725908514186546204357

6798423387184774447920739934236584823824281198163

8150106748104516603773060562016196762561338441436

0383390441495263443219011465754445417842402092461

6515723350778707749817125772467962926386356373289

9121548314381678998850404453640235273819513786365

64391212010397122822120720357
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12.11 THE RSA ALGORITHM: SOME
OPERATIONAL DETAILS

• The main goal of this section is to explain how the public and

the private keys — which theoretically speaking are merely

pairs of integers [n, e] and [n, d], respectively, — are actually

represented in the memory of a computer. As you will see, the

representation used depends on the protocol. The key

representation in the SSH protocol is, for example, very different

from the key representation in the TLS/SSL protocol. However,

before getting to the key representation issues, what follows are

some very important general comments about the RSA

algorithm.

• The size of the key in the RSA algorithm typically refers to the

size of the modulus integer in bits. In that sense, the phrase

“key size” in the context of RSA is a bit of a misnomer. As

you now know, the actual keys in RSA are the public key [n, e]

and the private key [n, d]. In addition to depending on the size

of the modulus, the key sizes obviously depend on the values

chosen for e and d.

• Consider the case of an RSA implementation that provides 1024

bits of security. So we are talking about an implementation of
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the RSA algorithm that uses a 1024 bit modulus. [It is interesting to

reflect on the fact that 1024 bits can be stored in only 128 bytes in the memory of a computer (and

that translates into a 256-character hex string if we had to print out the 128 bytes for visual display),

yet the decimal value of the integer represented by these 128 bytes can be monstrously

large.] Here is an example of such a decimal number:

896648260163177445892450830685346881485335435

598887985722112773321881386436681238522440572

201181538908178518569358459456544005330977672

121582110702985339908050754212664722269478671

818708715560809784221316449003773512418972397

715186575579269079705255036377155404327546356

26323200716344058408361871194193919999

There are 359 decimal digits in this very large integer. [It is
trivial to generate arbitrarily large integers in Python since the language places no
limits on the size of the integer. I generated the above number by simply setting a
variable to a random 256 character hex string by a statement like

num = 0x7fafdbff7fe0f9ff7.... 256 hex characters ...... ff7fffda5f

and then just calling ’print num’.]

• The above example should again remind you of the

exponential relationship between what it takes to represent an

integer in the memory of a computer and the value of that

integer.

• RSA Laboratories recommends that the two primes that

compose the modulus should be roughly of equal length. So if

you want to use 1024-bit RSA encryption, that means that your

modulus integer will have a 1024 bit presentation, and that

further means that you’d need to generate two primes that are

roughly 512 bits each.
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• Doubling the size of the key (meaning the size of the modulus)

will, in general, increase the time required for public key

operations (as needed for encryption or signature verification)

by a factor of four and increase the time taken by private key

operations (decryption and signing) by a factor of eight. Public

key operations are not as affected as the private key operations

when you double the size of the key is because the public key

exponent e does not have to change as the key size increases.

On the other hand, the private key exponent d changes in direct

proportion to the size of the modulus. The key generation time

goes up by a factor of 16 as the size of the key (meaning the size

of the modulus) is doubled. But key generation is a relatively

infrequent operation. (Ref.: http://www.rsa.com/rsalabs)

• The public and the private keys are stored in particular formats

specified by various protocols. For the public key, in addition to

storing the encryption exponent and the modulus, the key may

also include information such as the time period of validity,

the name of the algorithm used for key generation, etc. For

the private key, in addition to storing the decryption exponent

and the modulus, the key may include additional information

along the same lines as for the public key, and, additionally, the

corresponding public key also. Typically, the formats call for

the keys to be stored using Base64 encoding so that they can be

displayed using printable characters. (See Lecture 2 on Base64

encoding.) To see such keys, you could, for example, experiment

with the following function:
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ssh-keygen -t rsa

The public and the private keys returned by this call, when

stored appropriately, will allow your laptop to establish SSH

connections with machines elsewhere from virtually anywhere in

the world (unless a local firewall blocks SSH traffic) without

you having to log in explicitly with a password. [You

can also replace ‘rsa’ with ‘dsa’ in the above call. The flag ‘dsa’ refers to the Digital

Signature Algorithm that typically uses the ElGamal protocol (see Section 13.6 of

Lecture 13 for ElGamal) for generating the key pairs. A call such as above will ask

you for a passphrase, but you can ignore it if you wish. The above call will store the

private key in the file .ssh/id rsa of the home account in your laptop. The public

key will be deposited in a file that will be named .ssh/id rsa.pub. Execute the

above command on your laptop and then copy the public key that is

generated into the file .ssh/authorized keys in your own account of the

remote machine to which you want SSH access without the bother of

having to log in with a password.]

• I will now show an example of a private key generated by the

command “ssh-keygen -t rsa -f mykeyfile” where the option

“-f” causes the private key to be written out to the file

mykeyfile and the corresponding public key to be written out to

the file mykeyfile.pub, both in the directory in which you

execute the command. [As mentioned in the previous bullet, without the

“-f” option, the private key would be written out to the file .ssh/id rsa and the

public key to the file .ssh/id rsa.pub, both in your home directory.] The

private key shown below is Base64 encoded:

-----BEGIN RSA PRIVATE KEY-----
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MIIEpAIBAAKCAQEAt/lgFURxL351WHaOhLzRHeWBfgt2vomE4nEl08CDtscn0yl7

UMj08B0T896QGuSPvMhFu/I5aGCM4SS7W4wPMxYlnpohKQNCOFFClLxh8AusF5NC

sZSDoRpsG02EBFtUVvzRoQcBpDQoEbbrZ60/cZEve/59z6tIexBbw19LlWAnWqO2

Q33p12mOmuNlcP+StE55Dlz828cCSStyiOtru+Z3DyMhc8D7uBDbrsXchV2dE8tf

6zpIorheFwO4iJ+0YQSaKNc7GpPJEXayBslpVeb5Dp1uZcSDWhJD5dkvpgngmGfJ

FjMuz2FhpCG7msojn1OMOG0JkrpMjMjDnRs7KwIDAQABAoIBAQCfywcskbzprqIH

yznwivvrRruZmiVyS4nTEMn1SUJeEE9D9sS4H0O4BtmcuRRbd2htZVpEa5h3U10p

9LiTRGyzR6o3PtJMiBsNRW9aNuGuGMVJ2MtV6JQH6yY49LQVAKqZv4/omGhRkke3

UzTWYUE4yA0BWsM2DCSxVz0MzgmdXGJ/s3ARcj2hetfN4FUjBg7TenSoIcb+2XA+

0B6l0sr5R3DvStl/erqwlywkA+IeX2Bvqn31yHwoSYqcxZ/eKYxn5BnRTjtXrnNE

W9LBb6Au4Ch1yzkpgCos/kGVb2nzQIKvlFbISD3FhL9hNrL9u2Wnlm9ee9umgLC8

qTiK6QFBAoGBAPM4q700n7nOFtB/zoZn9bO63dfKdZ/QuOudrgJjhygRVXIQlPyi

ZzRjdTDtfTY9DlMk6GqTpeTgVjKARE2C72Uip0Ba5s4/8lhdlvlgJjJ9w1S8LcXm

fySVHEd6vJSZ9CiaA75jybwYIlETitP3d92/nPWY7iOi67ctXaREPkphAoGBAMGj

1BzH2qcEsX/flOMMv3ou0lnq2cfw9tdw8B4DFrfeBdO2z4yOO18hi9sPSO/P7Zzb

1hfgK3RRxJJcHYVwuibObvj4n3LHAV0LuCYlRoEIt7IzbuTTQbOsWqxtHz5sGH+T

G4Vpe8iLHdEMsA2Gm911xjwURYshTFqfdKtX1KkLAoGBANaPScGRqM4qpimsda5Q

C4pP8OAqdHVVlawU36qvzk1kbTJAuo3bXpvymTFecDTmy7pBNt69/XzZAnFugdK3

DST02wKErlOISev2M/cuAMRN+YDIuMB6Q/Mrr1THS5Dz91XR+Dd+pDpQOAW57aBs

EMwH+xkVng7F7JcdaBw/L4xBAoGAM4wPHRI+rJNdRPMZyU9NcZMhP/p6uvT0YOmZ

ogOkepHJ71AM9BewymQ9vLTW76/kSwtidLyiFLbnoyaOXUVi6I2vkOtuVrmPLVu/

S7hEinjtnax/ar6qENBi2t+5n35bDyrz+pHX98zAxTOhchhRSaTefoPO93iHwOAN

yMb6v30CgYALPSHHlRCgWSd/0rqykPwzGACobm9a4Pth8YtuOSdHHfnkf2CoU3Go

y6gDXV/0k0NL9HF33A9mgXa3H0uj5hYLswRcWwmlWex6ytavFbsRwykKHRHMp9w5

iLz2nnDdZ9DwhBtsSjq948TZYoD9mGg/PZabLjBsicTtjSvCIrP1FQ==

-----END RSA PRIVATE KEY-----

• And here is an example of the public key that goes with the

private key shown above:

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC3+WAVRHEvfnVYdo6EvNEd5YF+C3

a+iYTicSXTwIO2xyfTKXtQyPTwHRPz3pAa5I+8yEW78jloYIzhJLtbjA8zFiWemiEp

A0I4UUKUvGHwC6wXk0KxlIOhGmwbTYQEW1RW/NGhBwGkNCgRtutnrT9xkS97/n3Pq0

h7EFvDX0uVYCdao7ZDfenXaY6a42Vw/5K0TnkOXPzbxwJJK3KI62u75ncPIyFzwPu4

ENuuxdyFXZ0Ty1/rOkiiuF4XA7iIn7RhBJoo1zsak8kRdrIGyWlV5vkOnW5lxINaEk

Pl2S+mCeCYZ8kWMy7PYWGkIbuayiOfU4w4bQmSukyMyMOdGzsr kak@pixie

• In general, the format used for storing a key is specific to each

protocol. The public key shown above is for the SSH protocol as

described in RFC 4253. An SSH public key stores the following
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three fields separated by white space: (1) the key type; (2) a

chunk of Base64 encoded data; and (3) A comment. In the

public key that I showed above, the first and the third fields are,

respectively, the strings ‘ssh-rsa’ and ‘kak@pixie’. What is

in-between the two is the Base64 encoded data that holds the

public exponent and the modulus integers. After you

Base64-decode this string, you end up with a stream of bytes for

three <length data> records. These three records hold the

following three pieces of information: (1) Algorithm name

(which would be the same as the key-type you would have seen

in the first field of the public key; (2) the RSA public exponent;

and (3) the RSA modulus. In each record, the length value is

stored in the first four bytes in the Big-endian form. [Therefore,

in order to extract the (e, n) integers from the key shown above, we must scan the byte stream that we get

after Base64 decoding of the middle field shown above. We look at the first four bytes to see how many

subsequent bytes hold the name of the algorithm. After we have read off those bytes, we again look at the

next four bytes to find out how many subsequent bytes hold the public exponent; and so on for extracting the

modulus integer.] Shown below is a Python script that extracts the

public exponent and the modulus stored in an SSH RSA public

key. In line with the note in blue, the script first separates the

three field in the key by splitting it on white space. It then

applies Base64 decoding to the middle field since that’s where

the public exponent and the modulus are stored. Subsequently,

it scans the stream of decoded bytes for the <length,value>

records under the assumption that the length of the value is

always placed in the first four bytes of each record.
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#!/usr/bin/env python

## extract_sshpubkey_params.py

## Author: Avi Kak

## Date: February 11, 2013

import sys

import base64

import BitVector

if len(sys.argv) != 2:

sys.stderr.write("Usage: %s <public key file>\n" % sys.argv[0])

sys.exit(1)

keydata = base64.b64decode(open(sys.argv[1]).read().split(None)[1])

bv = BitVector.BitVector( rawbytes = keydata )

parts = []

while bv.length() > 0:

bv_length = int(bv[:32]) # read 4 bytes for length of data

data_bv = bv[32:32+bv_length*8] # read the data

parts.append(data_bv)

bv.shift_left(32+bv_length*8) # shift the starting BV and

bv = bv[0:-32-bv_length*8] # and truncate its length

public_exponent = int(parts[1])

modulus = int(parts[2])

print "public exponent: ", public_exponent

print "modulus: ", modulus

• If I invoke the above script on my public SSH RSA key in

~/.ssh/id_rsa.pub by

extract_sshpubkey_params.py ~/.ssh/id_rsa.pub

I get the following output:

public exponent: 35

modulus: 28992239265965680130833686108835390387986295644147105350109222053494471862488069515097328563379

83891022841669525585184878497657164390613162380624769814604174911672498450880421371197440983388

47257142771415372626026723527808024668042801683207069068148652181723508612356368518824921733281

43920627731421841448660007107587358412377023141585968920645470981284870961025863780564707807073

26000355974893593324676938927020360090167303189496460600023756410428250646775191158351910891625

48335568714591065003819759709855208965198762621002125196213207135126179267804883812905682728422

31250173298006999624238138047631459357691872217
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• The SSL/TLS public and private keys, as also the SSH RSA

private keys, are, on the other hand, stored using a more

elaborate procedure: The key information is first encoded using

Abstract Syntax Notation (ASN) according to the ASN.1

standard and the resulting data structure DER-encoded into a

byte stream. (DER standards for ‘Distinguished Encoding

Rules’ — it’s a part of the ASN.1 standard.) Finally, the byte

stream thus generated is turned into a printable representation

by Base64 encoding. [The ASN.1 standard, along with one of its transfer encodings such as

DER, accomplishes the same thing for complex data structures in a binary format that the XML standard

does in a textual format. You can certainly convert XML representations into binary formats, but the

resulting encoding will, in general, be much longer than those produced by ASN.1. Let’s say you wish to

represent all of your assets in a manner that would be directly readable by different computing platforms and

different programming languages. A record of your assets is likely to consist of the names of the financial

institutions and the value of the assets held by them, a listing of your fixed assets, such as real estate

properties and their worth, etc. In general, such data will require a tree representation in which the various

nodes may stand for the names of the financial institutions or the names of the assets and the children of the

leaf nodes would consist of asset values. The values for some of the nodes may be in the form of ordered lists,

unordered lists (sets), key-value pairs, etc. ASN.1 creates compact byte level representations for such

structures that is portable across platforms and languages. Just to give you a small taste of the flexibility of

ASN.1 representation, it places no constraints on the size of any of the symbolic entities or any of the

numerical values. And to also give you a taste of the secret to the sauce, when ASN.1 is used with BER

(Basic Encoding Rules) encoding, each node of the tree is represented by three blocks of bytes: (1)

Identification block of an unlimited number of bytes; (2) Length block of an unlimited number of bytes; and

(3) Value block of an unlimited number of bytes.The important thing to note here is there are no constraints

on how many bytes are taken up by each of the thee blocks. How does ASN.1 accomplish that? It’s all done

by using high-end bytes to carry information about bytes further downstream. For example, if the length is to

be represented by a single byte, then the value of length must not exceed 128. However, if the value of length
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is 128 or greater, then the most significant bit of the first byte must be set to 1 and the trailing bits must tell

us how many of the following bytes are being used for storing the length information. Similar rules are used

for the other blocks to permit them to be of arbitrary length.]

• To generate the private and public keys for the SSL/TLS

protocol you can use the OpenSSL library in the following

manner:

openssl genrsa -out myprivate.pem 1024

openssl rsa -in myprivate.pem -pubout > mypublic.pem

where the first command creates a private key for a 1024 bit

modulus and the second then gives you the corresponding

public key. The private key will be deposited in the file

myprivate.pem and the public key in the file mypublic.pem.

• If you want to see the modulus and the public exponent used in

the public key, you can execute

openssl rsa -pubin -inform PEM -text -noout < mypublic.pem

• As mentioned earlier, SSL/TLS keys are stored (and

transmitted) by first encoding them with the abstract notation

of ASN.1, turning the resulting structure into a byte stream

with DER encoding, and, finally, making this byte stream

printable with Base64 encoding. [The standards documents that address the
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formatting of such keys are RFC 3447 and 4716.] The ASN.1 representation of a

public RSA key is given by:

SEQUENCE {

SEQUENCE {

OBJECT IDENTIFIER rsaEncryption (1 2 840 113549 1 1 1),

NULL

}

BIT STRING {

RSAPublicKey ::= SEQUENCE {

modulus INTEGER, -- n

publicExponent INTEGER -- e

}

}

}

where ”1 2 840 113549 1 1 1” is the ANS.1 specified object ID

for rsaEncryption and where n is the modulus and e the

public exponent. [In symbolic depictions of ASN.1 data

structures, what comes after a double hyphen is a

comment.] The terms SEQUENCE, BIT STRING, etc. are some

of the ASN.1 keywords. [Note that the ASN.1 keywords, such as ‘SEQUENCE’, ‘BIT

STRING’, etc., that you see in the data structure above determine how the data bearing bytes are laid out in

the byte-stream representation of the object. These keywords themselves do not appear directly in their

symbolic forms in the byte level representation of a key. An agent receiving such a key would know its

”schema” from the object identifier and would thus be able to decode the bytes.]

• The ASN.1 representation for a private key is given by (where

we have suppressed ancillary information related to the object

identity, etc.):
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RSAPrivateKey ::= SEQUENCE {

version Version,

modulus INTEGER, -- n

publicExponent INTEGER, -- e

privateExponent INTEGER, -- d

prime1 INTEGER, -- p

prime2 INTEGER, -- q

exponent1 INTEGER, -- d mod (p-1)

exponent2 INTEGER, -- d mod (q-1)

coefficient INTEGER, -- (inverse of q) mod p

otherPrimeInfos OtherPrimeInfos OPTIONAL

}

where n is the modulus, e the public exponent, d the private

exponent, p and q the two primes whose product is the

modulus. The rest of the fields are used in the modular

exponentiation that is carried out for decryption.

• In Perl, you can use the Convert::ASN1 module for creating

an ASN.1 encoded representation of a data structure and for its

transformation into a byte stream with BER or DER encodings.

In Python, you can do the same with the pyasn1 library.
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12.12 IN SUMMARY . . .

• Assuming that you are using the best possible random number

generators to create candidates for the primes that are needed

and that you also use a recent version of the RSA scheme that

is resistant to the chosen ciphertext attacks, the security of RSA

encryption depends critically on the difficulty of factoring large

integers.

• As integer factorization algorithms have become more and more

powerful over the years, RSA cryptography has had to rely on

increasingly larger values for the integer modulus and, therefore,

increasingly longer encryption keys.

• These days you are unlikely to use a key whose length is — or, to

speak more precisely, a modulus whose size is — shorter than 1024 bits for RSA.

Some people recommend 2048 or even 4096 bit keys. The

following table vividly illustrates how the key sizes compare for

symmetric-key cryptography and RSA-based public-key

cryptography for the same level of cryptographic security [Values

taken from NIST Special Publication 800-57, Recommendations for Key Management — Part 1,” by Elaine

Barker et al.]

94



Computer and Network Security by Avi Kak Lecture 12

Symmetric Key Algorithm Key Size for the Comparable RSA Key Length
Symmetric Key Algorithm for the Same Level of Security

2-Key 3DES 112 1024
3-Key 3DES 168 2048

AES-128 128 3072
AES-192 192 7680
AES-256 256 15360

• As you’d expect, the computational overhead of RSA

encryption/decryption goes up as the size of the modulus

integer increases.

• This makes RSA inappropriate for encryption/decryption of

actual message content for high data-rate communication links.

• However, RSA is ideal for the exchange of secret keys that can

subsequently be used for the more traditional (and much faster)

symmetric-key encryption and decryption of the message

content.
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12.13 HOMEWORK PROBLEMS

1. The necessary condition for the encryption key e is that it be

coprime to the totient of the modulus. But, in practice, what is

e typically set to and why? (Obviously, now the burden falls on

ensuring the selected primes p and q are such that the necessary

condition on e is still satisfied.)

2. On the basis of the material presented in Sections 12.6, 12.7,

12.8 and 12.9, make your own assessment of the security

vulnerabilities of RSA that are important today, that could

become important in the next decade, and that could be

important over the very long term.

3. From the public key, we know the modulus n and the

encryption integer e. If a bad guy could figure out the totient of

the modulus, would that amount to breaking the code?

4. Following the steps outlined in Section 12.4, create an RSA

block cipher with 16 bits of encryption (implying that you will

use a 16-bit number for the modulus n in your cipher). Do

NOT use the same primes for p and q that I used in my

example in Section 12.4. Use the n and e part of the cipher for
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block encryption of the 6-byte word “purdue”. Print out the

encrypted word as a 12-character hex string. Next use the n

and d part of the cipher to decrypt the encrypted string.

5. Assume for the sake of argument that your RSA scheme is as

simple as the one outlined in the toy example of Section 12.4.

How do you think it is possible for an attacker to figure out the

message bytes from the ciphertext bytes without access to the

private exponent?

6. As you now know, in the RSA algorithm a message M is

encrypted by calculating:

C = M e (mod n)

where n is the modulus.

Assume that you are using a 1024-bit RSA algorithm (meaning

that the modulus is of size 1024 bits) for encrypting your

messages. Now let’s say that your enemy knows that your

business partners are in the habit of communicating with you

with very short messages — messages that involve very small

values of M compared to the size of the n = p× q modulus.

Since the enemy will know your public key, he will know that

what your business partner has sent you is C = M e where e is

the public exponent that the enemy would know about.

Assuming for the sake of convenience that e = 3, why can’t the
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enemy decrypt the confidential message intended for you by just

taking the cube-root of C?

7. Programming Assignment:

To better understand the point made in Section 12.3.2 that a

small value, such as 3, for the encryption integer e is

cryptographically unsafe, assume that a party A has sent the

same message M = 10 to three different recipients using the

following three public keys:

[29, 3] [37, 3] [41, 3]

In each public key, the first integer is the modulus n and the

second the encryption integer e. Now use the Chinese

Remainder Theorem of Section 11.7 in Lecture 11 to show how

you can reconstruct M 3, which in this case would be 1000, from

the three ciphertext values corresponding to the three public

keys. [HINT: If you are using Python, the ciphertext value in each case is returned by the built-in

3-argument function pow(). For example, pow(M, 3, 29) will return the ciphertext integer C1 for the first

public key shown above. For each public key, we have Ci = M3 mod ni where the three moduli are denoted

n1 = 29, n2 = 37, and n3 = 41. Now to solve the problem, you can reason as follows: Since n1, n2, and n3

are pairwise co-prime, CRT allows us to reconstruct M3 modulo N = n1 × n2 × n3. This will require that you

find Ni = N/ni for i = 1, 2, 3. And then you would need to find the multiplicative inverse of each Ni modulo

its corresponding ni. Let N
inv
i denote this multiplicative inverse. You can use the Python

multiplicative-inverse calculator shown in Section 5.7 of Lecture 5 to calculate the N inv
i values. Then, by

CRT, you should be able to recover M3 by (C1 ×N1 ×N inv
1 + C2 ×N2 ×N inv

2 + C3 ×N3 ×N inv
3 ) mod N .]
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8. Programming Assignment:

Using the Python or the Perl version of the PrimeGenerator

class shown below and the multiplicative-inverse finding scripts

presented earlier in Section 5.7 of Lecture 5, write a script that

would constitute a “complete” implementation of a 64-bit RSA

algorithm. (As you now know from Section 12.7, a truly

complete implementation of RSA involves serious security

considerations related to padding, etc., that are beyond the

scope of a homework assignment. All you are being asked to do

in this homework is to address the basic mathematics of RSA.)

#!/usr/bin/env python

## PrimeGenerator.py

## Author: Avi Kak

## Date: February 18, 2011

## Modified Date: February 28, 2016

## Call syntax:

##

## PrimeGenerator.py width_desired_for_bit_field_for_prime

##

## For example, if you call

##

## PrimeGenerator.py 32

##

## you may get a prime that looks like 3262037833. On the other hand, if you

## call

##

## PrimeGenerator.py 128

##

## you may get a prime that looks like 338816507393364952656338247029475569761

##

## IMPORTANT: The two most significant are explicitly set for the prime that is

## returned.

import sys

import random

############################ class PrimeGenerator ##############################

class PrimeGenerator( object ): #(A1)
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def __init__( self, **kwargs ): #(A2)

bits = debug = None #(A3)

if ’bits’ in kwargs : bits = kwargs.pop(’bits’) #(A4)

if ’debug’ in kwargs : debug = kwargs.pop(’debug’) #(A5)

self.bits = bits #(A6)

self.debug = debug #(A7)

self._largest = (1 << bits) - 1 #(A8)

def set_initial_candidate(self): #(B1)

candidate = random.getrandbits( self.bits ) #(B2)

if candidate & 1 == 0: candidate += 1 #(B3)

candidate |= (1 << self.bits-1) #(B4)

candidate |= (2 << self.bits-3) #(B5)

self.candidate = candidate #(B6)

def set_probes(self): #(C1)

self.probes = [2,3,5,7,11,13,17] #(C2)

# This is the same primality testing function as shown earlier

# in Section 11.5.6 of Lecture 11:

def test_candidate_for_prime(self): #(D1)

’returns the probability if candidate is prime with high probability’

p = self.candidate #(D2)

if p == 1: return 0 #(D3)

if p in self.probes: #(D4)

self.probability_of_prime = 1 #(D5)

return 1 #(D6)

if any([p % a == 0 for a in self.probes]): return 0 #(D7)

k, q = 0, self.candidate-1 #(D8)

while not q&1: #(D9)

q >>= 1 #(D10)

k += 1 #(D11)

if self.debug: print("q = %d k = %d" % (q,k)) #(D12)

for a in self.probes: #(D13)

a_raised_to_q = pow(a, q, p) #(D14)

if a_raised_to_q == 1 or a_raised_to_q == p-1: continue #(D15)

a_raised_to_jq = a_raised_to_q #(D16)

primeflag = 0 #(D17)

for j in range(k-1): #(D18)

a_raised_to_jq = pow(a_raised_to_jq, 2, p) #(D19)

if a_raised_to_jq == p-1: #(D20)

primeflag = 1 #(D21)

break #(D22)

if not primeflag: return 0 #(D23)

self.probability_of_prime = 1 - 1.0/(4 ** len(self.probes)) #(D24)

return self.probability_of_prime #(D25)

def findPrime(self): #(E1)

self.set_initial_candidate() #(E2)

if self.debug: print(" candidate is: %d" % self.candidate) #(E3)

self.set_probes() #(E4)

if self.debug: print(" The probes are: %s" % str(self.probes)) #(E5)

max_reached = 0 #(E6)

while 1: #(E7)
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if self.test_candidate_for_prime(): #(E8)

if self.debug: #(E9)

print("Prime number: %d with probability %f\n" %

(self.candidate, self.probability_of_prime) ) #(E10)

break #(E11)

else: #(E12)

if max_reached: #(E13)

self.candidate -= 2 #(E14)

elif self.candidate >= self._largest - 2: #(E15)

max_reached = 1 #(E16)

self.candidate -= 2 #(E17)

else: #(E18)

self.candidate += 2 #(E19)

if self.debug: #(E20)

print(" candidate is: %d" % self.candidate) #(E21)

return self.candidate #(E22)

#################################### main ######################################

if __name__ == ’__main__’:

if len( sys.argv ) != 2: #(M1)

sys.exit( "Call syntax: PrimeGenerator.py width_of_bit_field" ) #(M2)

num_of_bits_desired = int(sys.argv[1]) #(M3)

generator = PrimeGenerator( bits = num_of_bits_desired ) #(M4)

prime = generator.findPrime() #(M5)

print("Prime returned: %d" % prime) #(M6)

If you make the following call to this script:

PrimeGenerator.py 64

the script will return a full-width 64-bit prime that will look like:

Prime returned: 17828589080991197309

On the other hand, a call like

PrimeGenerator.py 128

will return something like:

Prime returned: 290410362853346697538147183843312052911

For those of you will be doing this homework in Perl, here is a

Perl version of the above script:
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#!/usr/bin/env perl

## PrimeGenerator.pl

## Author: Avi Kak

## Date: February 26, 2016

## Call syntax:

##

## PrimeGenerator.pl width_desired_for_bit_field_for_prime

##

## For example, if you call

##

## PrimeGenerator.pl 32

##

## you may get a prime that looks like 3340094299. On the other hand, if you

## call

##

## PrimeGenerator.pl 128

##

## you may get a prime that looks like 333618953930748159614512936853740718827

##

## IMPORTANT: The two most significant are explicitly set for the prime that is

## returned.

use strict;

use warnings;

use Math::BigInt;

############################ class PrimeGenerator ##############################

package PrimeGenerator;

sub new { #(A1)

my ($class, %args) = @_; #(A2)

bless { #(A3)

_bits => int($args{bits}), #(A4)

_debug => $args{debug} || 0, #(A5)

_largest => (1 << int($args{bits})) - 1, #(A6)

}, $class; #(A7)

}

sub set_initial_candidate { #(B1)

my $self = shift; #(B2)

my @arr = map {my $x = rand(1); $x > 0.5 ? 1 : 0 } 0 .. $self->{_bits}-4;#(B3)

push @arr, 1; #(B4)

unshift @arr, (1,1); #(B6)

my $bstr = join ’’, split /\s/, "@arr"; #(B7)

# $self->{candidate} = oct("0b".$bstr); #(B8)

$self->{candidate} = Math::BigInt->from_bin($bstr); #(B8)

}

sub set_probes { #(C1)

my $self = shift; #(C2)

$self->{probes} = [2,3,5,7,11,13,17]; #(C3)

102



Computer and Network Security by Avi Kak Lecture 12

}

# This is the same primality testing function as shown earlier

# in Section 11.5.6 of Lecture 11:

sub test_candidate_for_prime_with_bigint { #(D1)

my $self = shift; #(D2)

my $p = $self->{candidate}; #(D3)

return 0 if $p->is_one(); #(D4)

my @probes = @{$self->{probes}}; #(D5)

foreach my $a (@probes) { #(D6)

$a = Math::BigInt->new("$a"); #(D7)

return 1 if $p->bcmp($a) == 0; #(D8)

return 0 if $p->copy()->bmod($a)->is_zero();

}

my ($k, $q) = (0, $p->copy()->bdec()); #(D9)

while (! $q->copy()->band( Math::BigInt->new("1"))) { #(D10)

$q->brsft( 1 ); #(D11)

$k += 1; #(D12)

}

my ($a_raised_to_q, $a_raised_to_jq, $primeflag); #(D13)

foreach my $a (@probes) { #(D14)

my $abig = Math::BigInt->new("$a"); #(D15)

my $a_raised_to_q = $abig->bmodpow($q, $p); #(D16)

next if $a_raised_to_q->is_one(); #(D17)

my $pdec = $p->copy()->bdec(); #(D18)

next if ($a_raised_to_q->bcmp($pdec) == 0) && ($k > 0); #(D19)

$a_raised_to_jq = $a_raised_to_q; #(D20)

$primeflag = 0; #(D21)

foreach my $j (0 .. $k - 2) { #(D22)

my $two = Math::BigInt->new("2"); #(D23)

$a_raised_to_jq = $a_raised_to_jq->copy()->bmodpow($two, $p); #(D24)

if ($a_raised_to_jq->bcmp( $p->copy()->bdec() ) == 0 ) { #(D25)

$primeflag = 1; #(D26)

last; #(D27)

}

}

return 0 if ! $primeflag; #(D28)

}

my $probability_of_prime = 1 - 1.0/(4 ** scalar(@probes)); #(D29)

$self->{probability_of_prime} = $probability_of_prime; #(D30)

return $probability_of_prime; #(D31)

}

sub findPrime { #(E1)

my $self = shift; #(E2)

$self->set_initial_candidate(); #(E3)

print " candidate is: $self->{candidate}\n" if $self->{_debug}; #(E4)

$self->set_probes(); #(E5)

print " The probes are: @{$self->{probes}}\n" if $self->{_debug}; #(E6)

my $max_reached = 0; #(E7)

while (1) { #(E8)

if ($self->test_candidate_for_prime_with_bigint()) { #(E9)

print "Prime number: $self->{candidate} with probability: " .

"$self->{probability_of_prime}\n" if $self->{debug}; #(E10)

last; #(E11)
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} else { #(E12)

if ($max_reached ) { #(E13)

$self->{candidate} -= 2; #(E14)

} elsif ($self->{candidate} >= $self->{_largest} - 2) { #(E15)

$max_reached = 1; #(E16)

$self->{candidate} -= 2; #(E17)

} else { #(E18)

$self->{candidate} += 2; #(E19)

}

}

}

return $self->{candidate}; #(E20)

}

1;

################################ main ########################################

package main;

unless (@ARGV) { #(M1)

1; #(M2)

} else { #(M3)

my $bitfield_width = shift @ARGV; #(M4)

my $generator = PrimeGenerator->new(bits => $bitfield_width); #(M5)

my $prime = $generator->findPrime(); #(M6)

print "Prime returned: $prime\n"; #(M7)

}

A call such as the one shown below for generating a 256 bit

prime

PrimeGenerator.pl 256

comes back with

Prime returned: 110683214729271322144990809842795090895043970651486233118696734813266440218909

9. Programming Assignment:

This assignment is also about implementing the RSA algorithm,

but now you are allowed to use modules from open-source

libraries for some of the work. Because these libraries sit on top

of highly efficient C code, you should be able to test your
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implementation for much larger moduli than what you used in

the previous programming assignment. Write Perl or Python

scripts that implement the RSA encryption and decryption

algorithms. Do NOT use the key-generator functions

implemented in the modules of the Perl/Python toolkits to find

d for a given e. On the other hand, you must use either the

Python implementation shown in Section 5.7 of Lecture 5 or

your own implementation of the Extended Euclidean Algorithm

to find the multiplicative inverses you need. Feel free to use any

other modules in the toolkits listed below, or, for that matter,

any other modules of you choice. However, you must list the

modules used and where you found them in the reference

section of your code.

Python Cryptography Toolkit: http://www.amk.ca/python/code/crypto

Perl Crypt-RSA Toolkit:

http://search.cpan.org/~vipul/Crypt-RSA-1.57/lib/Crypt/RSA.pm
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