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1: Introduction

� Measurements meant to be used for machine learning applications

are often made in high-dimensional spaces. Unfortunately, the

higher the dimensionality of the space in which the information is

being collected, the greater the likelihood that your final results

will not be so reliable.

� Consider a non-deep-learning [see comment at the end of this section] based

face-recognition experiment in which we want to compare a test

photo with the images stored in a database of mugshots, these

being photos typically taken by police after someone is arrested.

[A mugshot is a frontal image of a face, with the human subject looking straight at the camera. Before they are

entered in a database, the images are “normalized” — these days with software tools that can do the job

automatically — so that only a rectangular region bounded by the lines just outside the ears, the line just above

the head, and the line just below the chin is retained.]

� Let us say that each mugshot is of size m× n, with m and n

being typically a number between 480 and 600. Each mugshot can

be thought of as a vector in an mn dimensional measurement

space. At the lower end of the range, if m = n = 480, the

dimensionality of this space 230400.
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� In principle, one could argue that given a database that consists of

N different mugshot vectors (for N different individuals) in a

230400 dimensional space, we could test whether the photo of a

new individual corresponds to any already in the database by

measuring the Euclidean distance between the vector for the new

photo and each of the N vectors already in the database.

� Unfortunately, that is not likely to work because of the very high

dimensionality — 230400 — of the space in which the photos are

represented.

� You can expect weird things to happen when the dimensionality

of a space goes up and becomes arbitrarily large. [Consider a square

[0, 1]× [0, 1] in a 2D plane and, say, we want to populate it with randomly placed points. For each such point, we

make two calls to a function uniform(0, 1) that returns a real number between 0 and 1 with a uniform

distribution. The two calls return two values for the two coordinates of a point in the square. After you have

placed a decent number of points in this manner in the square, what you will see in the square is what you would

expect — a square with points that look more or less uniformly distributed inside it. Now let us consider a

3-dimension case — we will place points randomly inside a cube given by [0, 1]× [0, 1]× [0, 1]. For each point to

be placed inside the cube, this will require three calls to the function uniform(0, 1). If we try to visualize the

point cloud inside the cube, it will look as expected — a more-or-less uniformly distributed collection of points

inside the cube. Let’s now generalize the experiment to a d-dimensional hypercube whose each side is of size 1.

Remember, one of the corners of the hypercube would be at the origin and you will have a corner along each of

the d axes at a unit distance from the origin. Those and other corners would make for a total of 2d corners for

the cube. To place a point randomly inside the hypercube, we would need to make d calls to the function

uniform(0, 1). What is interesting is that even if just one of these d calls to uniform(0, 1) yields a value close to

0 or close to 1, the resulting point will be within a small distance δ of the surface of the cube. When d
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approaches infinity, we can expect with probability 1 that at least one of the d calls to uniform(0, 1) will yield a

value either close to 0 or close to 1. What that implies is that as the dimensionality d approaches infinity, every

one of the points placed inside the hypercube will be inside a thin shell just inside the surface of the cube. That

is, there will be no points in the main interior of the hypercube. If that’s not weird, what is?]

� For another effect, it was shown by Beyer, Goldstein,

Ramakrishnan, and Shaft in a report titled “When is Nearest

Neighbor Meaningful?” that, under some pretty general

conditions placed on a probability distribution, as the

dimensionality of a space becomes unboundedly large, all of the

points drawn from the distribution would appear to be at roughly

the same distance from any given point in the space.

� Another major headache when working with high-dimensional

spaces is that for a machine learning algorithm to generalize

properly from the training data, the higher the dimensionality, the

larger the number of training data samples you need. [It is generally

recommended that if d is the dimensionality of the space in which you are representing the entities you want

recognized with a machine learning algorithm, you need at least 10× d training samples for each class. It goes

without saying that you would want these training samples to capture all of the diversity exhibited by the

instances of a class.]

� This tutorial is about some of the more popular techniques out

there that are used for dimensionality reduction.

� The arguments presented in this section were based on a
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non-deep-learning based solution to a face recognition problem. It

is not too difficult to think of application scenarios where a more

traditional computer vision solution such as the one considered in

this section would be more appropriate than the data intensive

solutions based on deep learning:
Consider a police department that has a file on around 1000 hard-core criminals in the geographic area under

its jurisdiction. The authorities are NOT interested in solving the general problem of face recognition. The

authorities have no interest in a system that scrapes the internet for all the photos likely to be of a given

individual. All that the authorities want to know is if a the face image of a suspect corresponds to one of those

1000 images in its files. It is possible that a traditional computer vision solution would be more effective in this

case. The same arguments would apply to several cases of industrial and robotic object detection and recognition.
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2: Principal Components Analysis (PCA)

� Let’s say we are given N vectorized images

~xi i = 1, 2, ...., N (1)

In face recognition, if each face image is represented by a 64× 64

array of pixels, the vectorized form of each such image will be a

4096-element vector consisting of all the pixels in a left-to-right

and top-to-bottom scan of the face. We consider ~xi to be a

column vector. [In practice, the face images will be of size much larger than 64× 64.

We will use this size just to illustrate some of the concepts]

� We can associate the following mean image vector with the N

vectorized images:

~m =
1

N

N
∑

i=1

~xi (2)

� We can estimate the covariance C of the image set by

C =
1

N

N
∑

i=1

{

(~xi − ~m)(~xi − ~m)T
}

(3)

[Note: Given an n-dimensional random vector ~z = (z1, z2, ....., zn)
T , its covariance by

definition is an n× n matrix C whose (i, j)th element is given by

7



Optimal Subspaces for Pattern Classification An RVL Tutorial by Avi Kak

Cij = E{(zi − E{zi})(zj − E{zj})} where E{.} is the expectation operator. The form shown

above is a numerical approximation to this covariance in which we implement the

expectation operator as an average over the N samples drawn from a random process.]

� The diagonal elements of the covariance matrix C will be the

averages of the squares of the individual pixel values (after you

have subtracted the means) and the off-diagonal elements will be

the averages of the pairwise products of different pixels (again

after the mean is subtracted out). If the images were just white

noise, C would be a diagonal matrix.

� In order to achieve some invariance to illumination, each image

vector ~xi may first be normalized by subjecting it to the

constraint ~xT
i ~xi = 1.

� Dimensionality reduction by PCA consists of calculating the

eigenvectors of the covariance matrix C and retaining for

features the eigenvectors corresponding to the K largest

eigenvalues. This constitutes the orthogonal PCA feature set.

� Let’s denote our orthogonal PCA feature set by WK :

WK =
[

~w1 | ~w2 |.... | ~wK

]

(4)

where ~wi denotes the i
th eigenvector of the covariance matrix C.

WK is an 4096×K matrix for 64× 64 face images.
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� Subsequently, each vector wi will play the role of a feature for

classification. The classification will be carried out in the K

dimensional subspace corresponding to the retained

eigenvectors.

� The feature values for an unknown image will correspond to its

projections on the eigenvectors. That is, if ~x is an unknown

vectorized image, the feature values corresponding to this image

would be given by

~y = WT
K(~x − ~m) (5)

Note that ~y is just K dimensional and K is usually a very small

number compared to the dimensionality of the image vectors ~x.

[~y is NOT a vector in the original high-dimensional space. It is merely a sequence of

coefficients formed by taking the dot-product of ~x− ~m with each of the leading

eigenvectors. The point being made here would be the same as calling a coordinate pair (3, 4) a vector

in R2. For a vector representation of the point (3, 4), you’ll need to express it as 3x̂+ 4ŷ. See Section 2.6

for further details regarding this point.]

� The space spanned by the K column vectors in WK is a

K-dimensional subspace of the original high-dimensional space in

which the image vectors ~x reside. [This subspace is commonly called the

PCA space.] This subspace is a hyperplane or a linear manifold in

the original high-dimensional space.

� While the projection of ~x− ~m into the hyperplane spanned by

9



Optimal Subspaces for Pattern Classification An RVL Tutorial by Avi Kak

the column vector of WK gives us the desired low-dimensional

representation of ~x, the projection of ~x− ~m into the space

spanned by the remaining eigenvectors of C tells us how much

information was lost in generating the low-dimensional

representation.

� Let the matrix ✟
✟✟WK consist of the trailing eigenvectors of C,

meaning the eigenvectors that did not get used in WK .

� The product ✟
✟✟WT
K(~x− ~m) then gives us the dot-products of ~x− ~m

with each of the trailing eigenvectors of C that are in ✟
✟✟WK . These

correspond to the projections of ~x− ~m on the hyperplane that is

perpendicular to the one defined by WK. The projections on the

trailing eigenvectors can be represented by the error vector ~e:

~e = ✟
✟WT
K(~x − ~m) (6)

As with ~y, ~e is NOT a vector in the original high-dimensional

space, but merely a sequence of dot products with the trailing

eigenvectors of C.

� We can therefore write for the square of the norm of the error

vector when representing ~x by ~y:
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d2err = ||~e||2 = ~eT~e

=
(

✟
✟WT
K(~x − ~m)

)T
✟
✟WT
K(~x − ~m)

= (~x − ~m)T✟✟WK✟
✟WT
K(~x − ~m) (7)

� For any user-specified choice for K, the PCA algorithm gives

you the best hyperplane in the original data space that

minimizes the value of d2err as averaged over all the data samples.

� When derived in a probabilistic framework, for a user-specified

K, the PCA algorithm returns a K-dimensional hyperplane that

minimizes the expectation E{d2err}. Furthermore, the algorithm

also guarantees that every pair of the eigenvectors retained in

the low-dimensional space will be statistically uncorrelated.

That is E{~wi~wj} = E{~wi}E{~wj}.

� Note, however, that it is only for Gaussian data that statistical

uncorrelatedness implies statistical independence.

� In real applications of PCA, you are almost always faced with

non-Gaussian data that resides on highly curved (the same thing

as nonlinear) manifolds (See Section 2.3 of this tutorial). So even

though the features as yielded by PCA are statistically
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uncorrelated, they may yet be highly statistically dependent.

� In and of itself, PCA is not designed to retain class discriminant

information. Nonetheless, it has been found to be very effective

for classification. (See, for example, the paper “PCA versus LDA”

by Martinez and Kak, IEEE Transactions on PAMI, 2001) [A general

rule of thumb is that, if d is the dimensionality of the space in which you are attempting classification, you need

at least 10× d training samples for each class. This can make for unrealistic demands on the amount of training

data needed when d is large. Hence the need for PCA.]
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2.1: Computation of the Eigenvectors for
PCA

� Consider the problem of recognizing faces from the frontal images

of the faces in a database of such images (such images are also

called mugshots).

� It is fairly typical to use what are known as normalized faces for

such recognition. Either automatically or, as is often the case,

manually, you crop each training image so as to retain a

rectangular region that is bounded by the lines just outside of the

ears, the line just above the head and the line just below the chin.

� When a query image comes in, it can be cropped in a similar

manner before it is compared with the database images.

� Let’s assume that each such normalized image is an array of

64× 64 pixels. This means that image vector xi will be 4096

elements long and that the covariance matrix C will be

4096× 4096. Let’s now focus on estimating this covariance matrix
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using

C =
1

N

N
∑

i=1

{

(~xi − ~m)(~xi − ~m)T
}

(8)

� While the large size of C may or may not be daunting in these

modern times, a direct eigendecomposition of large matrices can

eat up significant computational resources. There is also the issue

of numerical stability of eigendecomposition of very large matrices

that are of very low rank.

� Fortunately, there is a computational trick available to make the

job of eigendecomposition C very easy and numerically stable.

� To see this computational trick, let’s arrange all of the zero-mean

image vectors in the form of a matrix:

X =
[

~x1 − ~m | ~x2 − ~m | . . . | ~xN − ~m
]

(9)

Assuming that we have N = 100 training images available, the

size of the matrix X is 4096× 100.

� Suppressing the division by N , we can now show that

C = XXT (10)
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� As is to be expected, C will be of size 4096× 4096 for our

example. [To see the equivalence between this form for C and the form shown earlier, imagine that

X = [~a ~b ~c]. In this case, XXT = [~a ~b ~c]

[ ~aT

~bT

~cT

]

= ~a~aT +~b~bT + ~c~cT . ]

� If ~w represents an eigenvector of C, it must satisfy

XXT ~w = λ~w (11)

� While our goal remains to find the eigenvectors ~w of the

composite matrix XXT , let’s go ahead and find the eigenvectors

of XTX. Denoting the eigenvectors of XTX by ~u, we can

obviously write

XTX~u = λ~u (12)

� Since, for the case of N = 100 training images, the composite

matrix XTX will only be of size 100× 100, finding the

eigenvectors ~u is easy.

� To see how we can obtain ~w from ~u, let’s pre-multiply both sides

of the above equation by X. We get

XXTX~u = λX~u (13)
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which is better displayed as

(XXT )X~u = λX~u (14)

or, equivalently as

C(X~u) = λ(X~u) (15)

� The above equation implies that we can obtain ~w from ~u by

~w = X~u (16)

� For the example we are considering, we have only 100 eigenvectors

for ~u since XTX will only be of size 100× 100.

� IMPORTANT: The eigenvectors calculated with the trick

described on the previous page will NOT be of unit magnitude.

Therefore, you must normalize them before projecting either the

training images or the test images into the eigenspace formed by

the eigenvectors that you choose to retain.

� It may seem at first sight that whereas C may possess as many as

4096 eigenvectors for the example under consideration, the trick

described on the previous page gives us only 100 eigenvectors. So

you might ask: What about the other eigenvectors? As it turns
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out, the other eigenvectors do not really exist — as I argue on the

next page.

� The total number of eigenvectors of C will never exceed the

number of images used for its computation. The reason for that,

as shown by the Eq. (8) for C, is that if you use 100 images for its

computation, C will be a sum of 100 unit-rank outer-product

matrices. The rank of C will therefore never exceed the rank of

XTX.
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2.2: A Potential Shortcoming of PCA

� It is relatively easy to lose class discriminant information with

PCA. This is illustrated in Figure 1:

Eigenvector with the smallest eigenvalue

Eigenvector with the largest eigenvalue

(Discarded)

Figure 1: An example to illustrate how it would be possible for a PCA

based classifier to lose the inter-class discriminatory information.

� Whether or not losing class discriminatory information by

18
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discarding the eigenvectors corresponding to the smallest

eigenvalues becomes an issue for real-life applications depends

obviously on the shapes of the class distributions.

� For the example shown on the previous page, if we discard the

eigenvector corresponding to the smaller of the two eigenvalues,

we would need to project all of our training data on the sole

retained eigenvector. Given the large overlap between the

projections of the two class distributions, it would be impossible

to construct a classifier with a low misclassification error.
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2.3: An Even More Serious Shortcoming of
PCA

� The goal of PCA is to give you the best possible K-dimensional

hyperplane approximation to all your training data. (That is,

your data will be represented by its projections on the best fitting

hyperplane.) [For example, if the original data space is 3-dimensional and K = 2, the

PCA algorithm will give you the best possible plane that passes through your

3-dimensional data.]

� What that implies is that if most of the variation in your data

vectors ~x is “linear” — in other words, if most of the variation in

the data can be explained by forming vectors that are linear

combinations of other vectors — then PCA should work well for

you. Remember, every point on a hyperplane is a linear vector

sum of other points on the hyperplane.

� Unfortunately, the above assumption is often not satisfied in

important applications. Face recognition being a classic case in

which the assumption is grossly violated.

� What you see at left in Figure 2 are the face vectors ~x for three

different human subjects as the angle of view is varied from −90◦
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to +90◦ in yaw and −60◦ to +60◦ in pitch. The data points (with

one color for each human subject) are shown in the 3D subspace

formed by the largest three eigenvectors of the covariance matrix.

The fact that the face vectors fall on highly structured surfaces

even in a 3D space means that all of the data in the original

high-dimensional space resides on a very low-dimensional

manifold that cannot be approximated by a hyperplane.

Figure 2: Each color in the depiction at left is a surface formed by the

three largest eigenvectors computed from the face photo of a real human
subject. The depiction at right is the average of the three surfaces at left.

� The manifold depictions in Figure 2 are from the following

publication on face recognition from the Robot Vision Lab at

Purdue:

https://engineering.purdue.edu/RVL/Publications/FaceRecognitionUnconstrainedPurdueRVL.pdf

� What you see on the right in Figure 2 is the mean manifold for

21
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the three human subjects.

� Obviously, if the data resides predominantly on a highly

structured nonlinear surface in some subspace of the original

high-dimensional measurement space, it is unlikely to lend itself to

PCA type of modeling.

� That leads to the question of how to carry out dimensionality

reduction when the original data resides on a low-dimensional

manifold that cannot be approximated by a hyperplane. See my

tutorial “Clustering Data That Resides on a Low-Dimensional

Manifold in a High-Dimensional Measurement Space” for

answers to this very important question. Here is a clickable URL

that takes you directly to that tutorial:

https://engineering.purdue.edu/kak/Tutorials/ClusteringDataOnManifolds.pdf

22
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2.4: PCA + NN for Classification

� A common approach to classification goes as follows: Let’s say we

have N total images depicting C classes. We assume that each

image contains only one object (a typical situation in face

recognition experiments) and the class label of each object is one

of C labels.

� We assume that the N images constitute our human-labeled data.

That is, the class label of the object in each image is known.

� We now apply PCA to all of the N images and retain just a

handful of the eigenvectors with the largest eigenvalues for a

subspace in which we carry out classification.

� In the subspace thus constructed, we can now use the k-NN (k

Nearest Neighbors) classifier to find the class label for a new query

image.

� Often, people just use the one-nearest-neighbor classifier.

� Nearest neighbor classification requires that we be able to measure
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the distance between data points in the subspace.

� Most application use the Euclidean distance for finding the nearest

neighbor. Of course, one can also use the various Lp norms.

� Searching for the nearest neighbor can be speeded up by using a

data structure such as a KD-tree for storing all the samples.
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2.5: PCA versus the Other Approaches for
Dimensionality Reduction

� For reasons already explained, PCA is not always the best

approach for dimensionality reduction. As illustrated previously,

you can easily lose class discriminatory information with PCA.

� Another common approach to dimensionality reduction is a

combinatorial search for the best feature subset using some sort of

a greedy algorithm.

� Two examples of this method are: (1) the forward selection

method; and (2) the backward elimination method.

� In the forward selection method, you search through all possible

features and choose one that optimizes some feature selection

criterion. [The criterion can be the minimization of the class entropy along that feature direction, as

explained in the paper: Lynne Grewe and A. C. Kak, “ Interactive Learning of a Multi-Attribute Hash Table

Classifier for Fast Object Recognition,” Computer Vision and Image Understanding, pp. 387-416, Vol. 61, No. 3,

1995. You can download it from

https://engineering.purdue.edu/RVL/Publications/Grewe95Interactive.pdf.] After selecting

the first feature, you again search through all remaining features

and find the best choice for a subspace consisting of two features;

25
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and so on.

� The backward elimination method starts with the full features

space and eliminates one feature at a time. Elimination of a

feature is carried out on the basis of criteria similar to what is

used in forward selection.

� Most folks who use combinatorial approaches for feature selection

seem to prefer the forward selection method.

26



Optimal Subspaces for Pattern Classification An RVL Tutorial by Avi Kak

Back to TOC

2.6: Evaluate Yourself on Your
Understanding of PCA

� Considering that PCA is one of the most commonly used

techniques for dimensionality reduction, the more deeply you

understand it, the better you’ll be at figuring out when to use it

and when to resort to more sophisticated approaches. With that

goal in mind, ask yourself the following questions:

� Why can we not express a data point ~x in the original

high-dimensional space as a vector sum of its projection on the

hyperplane spanned by the leading K eigenvectors of the

covariance matrix C and the projection of ~x into the subspace

that is perpendicular to the hyperplane? That is, why is the

following vector addition wrong?

WT
K(~x − ~m) + ✟

✟WT
K(~x − ~m) (17)

where ✟
✟✟WK is made up of the trailing eigenvectors of C — these

are the eigenvectors that are left over after you have used the K

leading eigenvectors as the column vectors of WK . [Hint: The

product WT

K(~x− ~m) merely gives you the “dot products” of ~x− ~m with the different eigenvectors. To represent

this projection into the subspace spanned by the K eigenvectors in WK as a vector in the original space, you will

need to express the projection as WKWT
K(~x− ~m). The same goes for representing as a vector in the original

space the perpendicular to the hyperplane as given by✟✟WT

K(~x− ~m).]
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� Just as a mental exercise, imagine that all your data resides on

two different planes of a 3D feature space. Assume that these

planes are described by z = 1 and z = 2 and that each plane

corresponds to a different class. This data is obviously locally 2D

even though it resides in a 3D space. Let’s say we reduce the

dimensionality of the data from 3 to 2 by applying the PCA

algorithm to all your data.

� Where would the plane yielded by PCA lie in relation to the two

data planes? (Assume that even after you have subtracted the

global mean from the data, it still resides predominantly on two

different planes.) And under what conditions would you be able

to use the reduced-dimensionality representation of the 3D data

for classification?

� Finally, let us imagine that your original data resides on the 8

sides of a cube in 3D space and that each side of the cube

corresponds to a different class. Obviously, the data is again

locally 2-dimensional although overall it is 3-dimensional. Given

the intrinsically 2D nature of the data, you may be tempted to

apply the PCA algorithm to it for dimensionality reduction.

Would that work? [What works in this case is known as the “local PCA”

algorithm, as explained in my tutorial “Clustering Data That Resides on a

Low-Dimensional Man-

ifold in a High-Dimensional Measurement Space.” Here is a clickable URL for this tutorial:

https://engineering.purdue.edu/kak/Tutorials/ClusteringDataOnManifolds.pdf]

28
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3: Linear Discriminant Analysis (LDA)

� Whereas PCA seeks to find an orthogonal set of maximal-variance

directions in the underlying vector space for all available training

data, the goal of LDA is to find the directions in the underlying

vector space that are maximally discriminating between the

classes.

� A vector direction is maximally discriminating between the

classes if it simultaneously maximizes the between-class scatter

and minimizes the within-class scatter along that direction.

[More precisely, when we project all of the training data on to a

vector that is along a maximally discriminatory direction, the

ratio of between-class scatter to within-class scatter will be the

largest.]

� The subset of images that correspond to class i will be denoted Ci
and we will use C to denote the set of all classes. The mean

image vector for Ci will be denoted ~mi. We will refer to ~mi as the

class mean. The number of all classes is given by the cardinality

|C|, and the number of images in class i by the cardinality |Ci|.

� Let ~m denote the overall mean image vector for all images. We

29



Optimal Subspaces for Pattern Classification An RVL Tutorial by Avi Kak

will refer to ~m as the global mean.

� We now define between-class scatter by

SB =
1

|C|

|C|
∑

i=1

( ~mi − ~m)( ~mi − ~m)T (18)

If each face image is represented by a 4096-element vector, SB is a

4096× 4096 sized matrix.

� And we define the within-class scatter by

SW =
1

|C|

|C|
∑

i=1

1

|Ci|

|Ci|
∑

k=1

(~xi
k − ~mi)(~x

i
k − ~mi)

T (19)

where ~xi
k is the k

th image vector in the ith class. As with SB, SW

will also be a 4096× 4096 sized matrix when each image is

represented by a 4096-element vector.

� In the formula for SW , the inner summation estimates the

covariance for each class separately and the outer summation

averages these covariances over all the classes.

� If we choose some vector ~w in the underlying vector space (the

space in which each image is represented by a vector), then

~wTSB ~w (20)
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gives us a projection of the between-class scatter on the vector ~w.

[This result can be derived trivially from the definition of SB itself in Eq.

(18). Calculate the right hand side in that definition for the projection

~wT ( ~mi − ~m) instead of for ( ~mi − ~m). The new argument to the summation will

become ~wT ( ~mi − ~m)( ~mi − ~m)T ~w.]

� Similarly,

~wTSW ~w (21)

gives us a projection of the within-class scatter on the vector ~w.

� The above geometrical interpretation can be used to search for the

directions ~w that maximize the ratio of between-class scatter to

within-class scatter. These directions would constitute the best

feature vectors from the standpoint of achieving the best class

discriminations.

� The above mentioned ratio, known as the Fisher Discriminant

Function, is given by:

J(~w) =
~wTSB ~w

~wTSW ~w
(22)

� We can show that a vector ~w that maximizes the Fisher
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Discriminant Function must satisfy

SB ~w = λSW ~w (23)

for some constant λ. By the way, this is referred to as the

generalized eigenvalue problem. [This result can be derived by solving the

following maximization problem: maximize ~wTSB ~w subject to ~wTSW ~w = 1. Using the method of

Lagrange multipliers, we therefore maximize L(~w) = ~wTSB ~w − λ(~wTSW ~w − 1) by setting

dL(~w)
d~w

= 0. This gives us the equation SB ~w − λSW ~w = 0 and that takes us directly to the result

shown.]

� If SW could be assumed to be nonsingular, the above problem can

be translated into the following more conventional

eigendecomposition problem:

S−1
W SB ~w = λ~w (24)
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3.1: LDA for the Two-Class Problem

� Since the global mean for the two-class problem is given by

( ~m1 + ~m2)/2, the between-class scatter matrix for this case is

given by

SB = ( ~m1 − ~m2)( ~m1 − ~m2)
T (25)

� This implies that SB ~w will always be in the direction of ~m1 − ~m2

since the scalar product ( ~m1 − ~m2)
T ~w will always reduce to just

a scalar.

� Therefore, regardless of what ~w turns out to be, for the two class

case the following will always be true for some scalar c: [Just multiply

from the right the two sides in Eq. (25) with any arbitrary vector ~w. You will see that c = ( ~m1 − ~m2)
T
· ~w]

SB ~w = c(̇ ~m1 − ~m2) (26)

� If we substitute the above result in the fundamental equation to

solve S−1
W SB ~w = λ~w, we get the following solution for the

maximally class discriminating direction ~w for the two-class case:

~w = S−1
W ( ~m1 − ~m2) (27)

33



Optimal Subspaces for Pattern Classification An RVL Tutorial by Avi Kak

� Note that there can exist only one solution vector ~w for

S−1
W SB ~w = λ~w for the two-class case. [That is because SB is a rank 1 matrix

— since it is formed by a vector outer product. Additionally, the rank of a product of two

matrices cannot exceed the smaller of the rank for the two matrices.] Therefore, the

rank of S−1
W SB will also be equal to 1 (assuming S−1

W exists).

� To classify an unknown query image, all we need to do is to set up

a decision threshold along this maximally discriminating direction.

� To summarize, with LDA, for the two-class problem, you get only

one LDA vector and it is the difference vector between the two

means, the difference vector being modified by the matrix S−1
W ,

assuming that the inverse of the within-class scatter matrix exists.

� That leads to the question of what to do when SW is of reduced

rank and its inverse does not exist. When S−1
W does not exist, we

resort to the algorithm described in Section 3.5.

� Whereas the two-class problem gives us only one LDA feature, in

general, though, as we will see later, for |C| classes, you will get at

most |C| − 1 LDA vectors.

� Next we talk about LDA for discriminating simultaneously

between more than two classes.
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3.2: LDA for Multiple Classes (Multiple
Discriminant Analysis)

� Recall that for the C class problem our goal is to solve the

generalized eigendecomposition problem given by

SB ~wk = λkSW ~wk for its eigenvectors wk, k = 1, 2, ... and retain

a small number of the eigenvectors that correspond to the largest

eigenvalues λk. [λk can be shown to be the ratio of the projected between-class scatter to the

within-class scatter along the kth eigenvector.]

� From the definition of SB:

SB =
1

|C|

|C|
∑

i=1

( ~mi − ~m)( ~mi − ~m)T (28)

note that SB is a sum of |C| matrices of rank at most 1. When

you construct a matrix by taking the outer product of two

vectors, every row of the matrix is some multiple of the first row.

� Additionally, since the global mean ~m is formed from a linear sum

of the class means ~mi, only |C| − 1 of the |C| matrices that go

into SB are linearly independent.

� Therefore, the rank of SB is at most |C| − 1. As a result, the
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generalized eigenvector decomposition problem has at most

|C| − 1 non-zero eigenvalues.

� Hence, we can extract at most |C| − 1 LDA eigenvectors.

� It can be shown that when SW is isotropic (all classes have

identical variances in all of the same principal directions), the

LDA eigenvectors are the eigenvectors of the SB matrix. These

correspond to the space spanned by the |C| − 1 mean difference

vectors ~mi − ~m.

� Let the retained LDA eigenvectors be represented by W: [My

apologies to the reader who is confused by the same symbol W being used in SW for “within-class

scatter”and in what’s shown below for the set of LDA eigenvectors.]

W =
[

~w1 | ~w2 | .... | ~wK

]

(29)

� It can now be argued that ~WTSB
~W is the projection of the

overall between-class scatter SB into the subspace spanned by W.

� We can similarly argue that ~WTSW
~W is the projection of the

overall within-class scatter SW into the subspace spanned by W.
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Figure 3: If LDA were required to give us the best 2D space for the 3D

covariances shown in the figure, it’s likely to choose the one on the left
because of the separations between the classes on that 2D plane.

� Recall that each eigenvector ~wk is chosen to maximize the ratio of

between-class scatter to within-class scatter along that direction.

� We can therefore conclude that the retained LDA eigenvectors in

W will maximize the same ratio in the subspace spanned by W.

� Figure 3, supplied by Hyukseong Kwon, shows us projecting the

three different class covariances, defined originally in a 3D space,

into two different 2D subspaces. LDA will use the 2D subspace

that yields the best ratio of the projected between-class scatter to

within-class scatter. [Hyukseong Kwon produced a most impressive Ph.D dissertation in Purdue

RVL that showed how an indoor mobile robot could be made to produce architectural-quality maps of building
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interiors. Check out his publications at the RVL publications page.]
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3.3: Can PCA Outperform LDA for
Classification?

� By PCA based classification we mean a classifier that works as

explained in Section 2.1.

� By LDA based classification we mean choosing a set of LDA

eigenvectors and carrying out nearest-neighbor classification in the

subspace spanned by the eigenvectors.

� The question posed by the title of this section is addressed by the

“PCA versus LDA” paper by Martinez and Kak, which is one of

the highly cited papers in face recognition (over 4140 citations on

Google Scholar as of November 2022).

� The Martinez and Kak paper makes the following claim:

“When the training data inadequately represents the

underlying class distributions, a PCA based classifier can

outperform an LDA based classifier.”

This claim is very relevant to face recognition research because

many face databases contain only a small number of face images

(sometimes just one or two) for each human. Our claim says that
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when such a database is used for training a classifier, PCA may do

just as well as LDA.

� Figure 4 illustrates this point clearly. The LDA decision threshold

cuts across the underlying class distributions and will therefore

result in high misclassification error.

Class 1 training data

Class 2 training data

PCA Eigenvector Retained

LDA Eigenvector Retained

PCA Decision Threshold

LDA Decision Threshold

Figure 4: As illustrated here, when the available training data grossly
undersamples the class distributions (highly likely to happen in real-world

scenarios), an LDA based decision threshold may give worst results than
the one based on PCA.
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3.4: LDA’s Peaking Problem

� On the good side, the LDA eigenvectors capture the most

class-discriminant directions in the underlying vector space.

� On the not so good side, the LDA eigenvectors tend not to be

orthogonal (although they can be orthogonalized with, say,

Gram-Schmidt orthogonalization).

� Also, LDA eigenvectors with λk << 1 may have excessively large

within-class scatter in relation to between-class scatter along those

directions.

� In practice, LDA often suffers from what is frequently referred to

as “small sample size (SSS)” problem and the “peaking

phenomenon.”

� The SSS problem was illustrated Figure 4. The peaking

phenomenon exhibited by LDA means that as you add more and

more eigenvectors (obviously, up to a max of |C| − 1 eigenvectors),

at some point the performance of the classifier starts to decrease

— contrary to what the intuition would say. This is illustrated in
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the figure below that was generated by Chad Aeschliman in our

laboratory.

Figure 5: An illustration of LDA’s peaking problem. Contrary to intu-
ition, the performance of an LDA based classifier may actually degrade

as you add more and more eigenvectors.

� Figure 5 was generated for a dataset of normalized 128× 128 face

images of 30 individuals. Overall, the dataset consisted of 1260

images, divided into two sets, one used for training and the other

for testing. Of the 42 images of each individual, 21 were taken at

1◦ pose increments in the azimuth angle and the other 21 taken

with fixed pose but with the direction of illumination changing in
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1◦ intervals. This dataset is a subset of the CUbiC FacePix(30)

face database of images that is made available by Arizona State

University.

� The LDA implementation used for the results shown in Figure 5

were obtained with the Yu and Yang algorithm described in

Section 3.5 of this tutorial using the Nearest Neighbor (1-NN)

classifier.

� For the results shown in Figure 5, out of the 42 images available

for each individual, 10 randomly selected images were used for

training and the rest for testing.

� I believe the peaking phenomenon is caused by the fact that, for

small eigenvalues, the within-class scatter may exceed the

between-class scatter along the direction represented by the

corresponding eigenvectors. In fact, since the eigenvalue is the

ratio of the two, that is guaranteed to be the case when λk < 1.

So when such eigenvectors are added to the subspace, we can

expect the classifier performance to deteriorate.

� But many folks believe that the peaking phenomenon is caused by

what is known as overfitting.

� Overfitting means that your decision surfaces are hewing too close
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to the training data. In other words, your classifier may suffer

from overfitting when it is trained to work too perfectly on the

training data and tested too insufficiently on the test data.

� Said another way, you have overfitting when you have insufficient

generalization from the training data.

� Overfitting may occur for several reasons, a common one being

that you have insufficient training data for the dimensionality of

the feature space.

� The greater the dimensionality of the feature space, the larger the

number of training samples you need for the classifier to work

well. This is called the curse of dimensionality.

� As a very, very approximate rule of thumb, the number of training

samples you need for each class must be at least ten times the

dimensionality of the feature space.

� Shown in Fig. 6 are the results obtained when we increase the

number of training images to 21 for each individual and use the

rest for testing. You will notice that the peaking phenomenon

seems to have disappeared — at least for the case of the current

dataset.
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� Note that one does not always have the luxury of increasing the

size of the training set in the manner we have for the results

shown on in Fig. 6. In many applications, you may only have one

or two training images available for each human in the database.

Figure 6: As shown here, it may be possible to mitigate the peaking

problem with more training data.

� Because of the peaking issues related to its performance, LDA is

sometimes used in a two-stage mode in which PCA is used first to

reduce the overall dimensionality of the feature space and LDA

used subsequently for establishing a subspace in which the

classification is carried out by, say, the nearest neighbor rule.

45



Optimal Subspaces for Pattern Classification An RVL Tutorial by Avi Kak

Back to TOC

3.5: Computational Issues Related to LDA

� As mentioned previously, computing the LDA eigenvectors

requires that we solve the generalized eigendecomposition problem

SB ~w = λSW ~w (30)

which we could solve as a regular eigendecomposition problem

S−1
W SB ~w = λ~w (31)

provided SW is non-singular.

� Whether or not SW is nonsingular depends both on the shapes of

the individual class distributions and on how well the

distributions are sampled by the training images. [Consider the case when

the class distributions look like co-planar 2D disks in an underlying 3D space. In this case, even if there is no

shortage of training samples, SW will be singular.]

� In most practical situations involving face recognition (where you

think of each individual’s face as a separate class), you are likely to

have an insufficient sampling of the class distributions. Therefore,

you can count on SW to be singular and for S−1
W to not exist.
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� These problems caused by SW being singular become exacerbated

when the data dimensionality is large. Recall, in face recognition,

if we retain just 64× 64 array of pixels for normalized faces, you

will be computing SW in a 4096 dimensional space.

� Because of these difficulties associated with solving the

generalized eigendecomposition problem, people sometimes first

use PCA to reduce the dimensionality of the data and then apply

the LDA algorithm to the reduced dimensionality data.

� But, as we mentioned previously, applying PCA before LDA is a

dangerous thing to do since you could lose class discriminatory

information through PCA.

� Getting back to SW being singular, note that the null space of

this scatter matrix can potentially contain much class

discriminatory information. This fact becomes intuitive if you

realize that the best LDA direction is one in which the projection

of the between-class scatter matrix SB is maximum and the

projection of the within-class scatter matrix SW is minimum.

� Obviously, if there exists a direction ~w on which the projection of

SW is zero, it’s that much the better. But such a desirable ~w will

be in the null space of SW .
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� When S−1
W does not exist, one can take recourse to the alternative

of directly maximizing the Fisher discriminant function:

J(~w) =
~wTSB ~w

~wTSW ~w
(32)

by heuristically discarding those subspaces in the original

N-dimensional measurement space that are not likely to contain

class discriminant directions.

� As to how to invoke such heuristics can be seen in an algorithm

proposed by Hua Yu and Jie Yang (“A Direct LDA Algorithm for

High-Dimensional Data....” in Pattern Recognition, 2001).

� Yu and Yang’s algorithm involves the following steps:

– Use regular eigendecomposition to diagonalize SB. This will

yield a matrix V of eigenvectors such that

VTSBV = Λ (33)

where VTV = I and Λ is a diagonal matrix of eigenvalues in a

descending order.

– Now discard those eigenvalues in Λ that are close to 0 since

such directions carry no inter-class discriminations. Let’s say

you retained only M eigenvalues. Let Y be the matrix formed

by the first M eigenvectors in V. Y will be of size N ×M

where, for our example, N = 4096 for the case of 64× 64
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pixels retained in the normalized faces. M could be as small

as, say, 20.

– Obviously,

YTSBY = DB (34)

where DB is the upper-left M ×M submatrix of Λ.

– Now construct a matrix Z as follows:

Z = YD
−1/2
B (35)

We can show that Z unitizes SB, meaning that

ZTSBZ = IM×M , in a space whose intrinsic dimensionality has

been reduced from N to M by discarding the subspace in

which the between-class scatter is minimal. Note that the

smaller the between-class scatter, the worst it is. The size of Z

is also N ×M .

– Now diagonalize ZTSWZ by regular eigendecomposition. This

will yield a matrix U of eigenvectors such that

UTZTSWZU = DW (36)

– Since the goal is to maximize the ratio of between-class scatter

to within-class scatter and since much inter-class

discriminatory information is contained in the smallest
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eigenvectors of SW , we now discard the largest eigenvalues of

DW and drop the corresponding eigenvectors.

– As opposed to discarding the largest eigenvectors of SW at this

point, an alternative strategy consists of retaining all of the

eigenvectors for now and then discarding the largest of the

eigenvectors at the end.

– Let Û denote the matrix of the eigenvectors retained from U.

– Yu and Yang claim that the matrix of the LDA eigenvectors

that maximize the Fisher discriminant function is given by

WT = ÛTZT (37)

� With regard to actual implementation of the Yu and Yang

algorithm, special attention needs to be paid to the

eigendecompositions shown earlier for SB and for ZTSWZ. The

computational trick required for the implementation of the first

eigendecomposition is the same as in Section 2.1, except for the

fact that now you must also retain the eigenvalues. But note that

the eigenvalues for the eigenvectors of the decomposition

expressed by the form GGT are the same as for the eigenvectors

of the decomposition GTG.
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� With regard to the eigendecomposition called for in Eq. (36), you

have to first express ZTSWZ as a composite GGT before you can

use the computational trick in Section 2.1. This requires that the

matrix SW be expressed in the composite form GGT . That is

easy to do if you stare long enough on the summation form for

this matrix.

� When retaining only a subset of the eigenvectors from the set W,

note that you choose those eigenvectors that correspond to the

smallest eigenvalues in DW .
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4: Focusing on Class Separability: Why it
Matters

� Let’s now reflect on a basic shortcoming of LDA: The

between-class scatter is measured by the distances between the

class means without regard to the spread of the classes themselves.

� As Figure 7 illustrates, depending on the underlying class

distributions and the number of eigenvectors retained, this can

easily result in misclassification errors even in situations when such

errors can be avoided because the classes are clearly separable.

� We therefore need classifiers that create decision boundaries not

just on the basis of gross statistical properties such as the mean

and the covariance, but also on the basis of the overall separability

of the class distributions.

� With regard to class separability, the following question is

extremely important: Are the classes linearly separable? In other

words, considering for a moment only two classes, can we separate

them by a hyperplane?
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Class 2
Mean

Class 1
Mean

LDA Eigenvector Retained

Class 1

Class 2

LDA Decision Threshold

Figure 7: This figure illustrates that measuring class separability
through just the difference between the means can be “dangerous”.
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� If the answer to the above question is yes, the decision boundary

can be learned by a variety of approaches, the simplest being by

induction from the labeled data. (For example, one could use the

Quinlan’s C4.5 algorithm to induce a decision tree whose decision

thresholds would approximate the linear separating surface. See

Grewe and Kak (CVIU 1995) for an application of this to

computer vision.)

� If the separating surface between two classes is nonlinear, one can

use a support vector machine (SVM) for classification.

� SVM nonlinearly transforms a feature space into a higher

dimensional space in which the classes can become separable by

linear or piecewise linear surfaces.

� A regular classifier obtains the optimum decision surface by

minimizing the misclassification error. In the SVM literature, this

is referred to as the minimization of empirical risk. Minimizing

empirical risk using a small training set can result in a complex

classifier that suffers from overfitting, as shown in Figure 8. Such

a classifier will not be able to generalize from the

training set to unseen future data.

� Instead of just minimizing empirical risk when learning from finite
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A simpler classifer with a

 to generalize
possibly greater power 

Possibly overfitted decision boundary
(An overly complex classifier)

Figure 8: Overfitting means creating a decision boundary that follows
the training samples much too closely.
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training data, an SVM classifier minimizes what is known as the

structural risk. Minimizing structural risk means minimizing

the empirical risk while also minimizing the complexity of the

decision boundary in order to increase the generalization ability of

the classifier.

� The complexity of a classifier can be measured with the

Vapnik-Chervonenkis (VC) dimension. (More of that in a later

seminar.) Maximizing the margin of separation between the

classes while minimizing the empirical risk amounts to finding a

classifier with the low VC dimension.

� An SVM solution usually involves a kernel trick that allows us

to train a classifier with only the inner products of the training

samples.

� For classes with nonlinear separating surfaces, SVM involves using

kernel methods to hopefully transform the feature space into a

higher dimensional kernel space in which the decision surface

would be linearly separable.

� For classes that are not at all separable, kernel transformations

may be of no help. In other words, SVM classifiers do not exist

when the underlying class distributions have significant overlap.
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� Note that in its basic classification, SVM is only a binary

classifier. It may however be used used for multi-class problems in

a one-versus-the-rest mode.
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5: Margin Maximization Discriminant
Analysis (MMDA)

� As mentioned, LDA features are vectors directions given by ~w

that maximize the Fisher discriminant

J(~w) =
~wTSB ~w

~wTSW ~w
(38)

where SB and SW are the between-class and within-class scatter

matrices.

� As mentioned already, a major shortcoming of this criterion is

that it measures the between-class scatter through the distance

between the class means as opposed to by the separating

margins between the classes.

� Additionally, to find the eigenvectors, one must solve the

generalized eigendecomposition problem SB ~wk = λkSW ~wk, or,

equivalently, S−1
W SB ~wk = λk~wk.

� Existence of the term S−1
W in the Fisher discriminant function

causes the LDA solution to become unstable when the number of

training samples available is much less than the dimensionality of

the training data.
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� When training data per class is insufficient, SW becomes singular

or near-singular. (Obviously, one way to solve this problem is to

first reduce the dimensionality with, say, PCA. But then you run

the risk of losing the class discriminant information.)

� Since several of the computational, stability, and classification

performance problems associated with LDA can be attributed to

the quotient structure of J(~w), that raises the question whether it

is possible to formulate an alternative form of the criterion. Our

desire would be to formulate a criterion that increases as the

classes become more and more separated, and that at the same

does not require us to invert matrices that may be near singular.

� Zhu Yan has proposed the maximization of

J(~w) = ~wT (SB − βSW )~w (39)

This then is MMDA criterion. Zhu Yan also refers to this form as

the additive form of LDA. The constant β is referred to as the

class-spread regulator.

� For Gaussian class distributions, when β = −1, MMDA reduces

to PCA because C = SB − SW for such distributions. And when

β = 1, MMDA reduces to MMC that stands for Margin

Maximization Criterion. The MMC criterion was first put

forward by Li, Jiang, and Zhang in 2003.
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� Zhu Yan recommends using MMDA with β = 9.
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5.1: Derivation of the MMDA Criterion

� The MMDA criterion is based on finding those directions in the

feature space that maximize the margin shown in Figure 9.

P
rojected class m

ean

P
rojected class m

ean

bσi

bσj

µ
i

µ
j

wk

MARGIN

Figure 9: This figure illustrates the concept of a “margin” between a
pair of distributions: It is the distance between the two closest points

belonging to the two different classes.
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� As shown in the figure, for each pair of classes i and j and for any

direction ~w in the feature space, we can construct a scalar Mij

that measures the size of the margin between the projections of

those classes on the direction vector:

Mij = |µi − µj| − b(σi + σj) (40)

Note that b controls how far we go out from the class mean to

capture a class distribution.

� Suppose b = 3, then we assume implicitly that we consider a class

to be no wider than 3σ from the projected mean along that

direction, where σ is the projected standard deviation along the

vector ~w.

� With regard to choosing b, recall the Chebyshev’s inequality that

says that for all probability distributions:

Prob(|X − µ| ≥ bσ) ≤
1

b2
(41)

for any random variable X with expected value µ and variance σ2

and for any b > 0. That is, no more than 1
b2
of a well-constructed

set of training samples can be expected to be outside b standard

deviations away from the mean regardless of the underlying

probability distribution.

� The search for the directions that are best with respect to the Mij

criterion shown previously for all possible values for i and j is
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made complicated by the difficult-to-handle nonlinearity

introduced by the absolute magnitude operator.

� We therefore use the following closely-related alternative

formulation:

M̂ij = |µi − µj|
2 − β(σ2

i + σ2
j ), β = b2 (42)

� We now construct a discriminant function by averaging the above

over all pairs of classes:

J = Eij{M̂ij}

= Eij{|µi − µj|
2} − βEij{σ

2
i + σ2

j}

where Eij is the expectation operator that forms the average with

respect to all pairs of classes.

� Note that
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Eij|µi − µj|
2 = Eij

{

~wT (~mi − ~mj)(~mi − ~mj)
T ~w

}

= Eij

{

~wT [(~mi − ~m)− (~mj − ~m)] ·

[(~mi − ~m)− (~mj − ~m)]T ~w
}

= 2~wTEi

{

(~mi − ~m)(~mi − ~m)T
}

~w

= 2~wTSB~w

βEij{σ
2
i + σ2

j} = 2βEi{σ
2
i }

= 2βEi

{

Ek

{

~wT (~xk − ~mi) ·

(~xk − ~mi)
T ~w

}}

= 2β~wTSW ~w

where the expectation with respect to the index k is over the

training samples for class i.

� Substituting the above in the expression for J , we get the

margin-based discriminant function:

J(~w) = ~wT (SB − βSW )~w (43)

� We obviously want a set of unit vectors ~w that maximize J . That
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is,

~w = argmax~w J(~w) (44)

subject to the constraint ~wT ~w = 1 since we are only interested in

the directions that optimize the MMDA criterion. To incorporate

the constraint, we use the method of Lagrange multipliers.

� We therefore maximize

L(~w) = J(~w) − λ(~wT ~w − 1) (45)

by setting

dL(~w)

d~w
= 2(SB − SW )~w − 2λ~w = 0 (46)

� This leads to the standard eigenvector problem for MMDA:

(SB − βSW )~w = λ~w (47)

as opposed to the generalized eigenvector problem we ran into for

LDA.

� But note that, depending on how the between-class scatter

compares with the within class scatter, the matrix SB − βSW

may not be positive semidefinite — unlike the covariance matrix

C for PCA. We could therefore have complex eigenvalues for

MMDA.
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� The smaller the magnitude of a complex eigenvalue for MMDA,

the larger the overlap between the classes along that eigenvector.

� Because MMDA leads to a regular eigendecomposition, we are

guaranteed to have an orthogonal set of eigenvectors, the number

of eigenvectors depending on the rank of SB − βSW . This is

unlike LDA where we cannot have more than C − 1 eigenvectors.

66



Optimal Subspaces for Pattern Classification An RVL Tutorial by Avi Kak

Back to TOC

6: Relevance-Weighted Discriminant Analysis
(RWDA)

� Earlier I pointed to two problems with LDA: (1) Problems caused

by insufficient training data; and (2) LDA’s peaking phenomenon.

Insufficient training data causes stability problems in the direct or

indirect estimation of S−1
W . I also showed how this problem,

caused by the quotient structure of the Fisher discriminant

function, can be gotten rid of in MMDA. Now we will focus on the

second problem — LDA’s peaking phenomenon.

� LDA’s peaking problem apparently disappears when the features

are weighted to reflect their relevance to classification.

� Zhu Yan claims that the generalization ability of a classifier is

improved if the features are weighted by their relevance.

� Zhu Yan’s definition of feature relevance: A feature is relevant if

there exists at least one non-overlapping region of projected

data between two or more classes along that feature direction.

The greater this non-overlap, the more relevant the

feature.
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� In other words, the non-overlapping regions of a feature direction

constitute the “working part” of that feature, as Yan puts it.

� Note that the non-overlapping region along a feature direction is

NOT the same thing as the margin along that direction.

� For the two-class case, whereas the margin means the distance

between the closest points belonging to the two different classes

when they are projected onto a direction vector, the total

non-overlapping region means how much of a direction vector is

not simultaneously covered by both classes at the same time.

� Figure 10 shows the non-overlapping regions on a feature

direction. If we assume that on the average the standard

deviation of each class distribution as projected onto a feature

direction is σC , and that we believe that most training samples

would be within a projected standard-deviation of MσC for some

constant M , the total extent of the non-overlapping regions on a

feature direction will be 4MσC when the class projections are

completely non-overlapping.

� However, when the class projections actually overlap, then it is

not so straightforward to measure the size of the non-overlapping

regions along a feature direction.
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µ
j

M− σ Εllipsoids from class distributions

M σ
i

Mσj

wk

MARGIN

Non−overlapping regions

Figure 10: For the example shown, when the two clearly separable
classes are projected on to the feature direction wk, it is easy to esti-

mate the sizes of the non-overlapping regions and the margin along the
feature vector.
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� By examining the “geometry” of projections of class distributions

on vectors, Zhu Yan has come up with formulas for measuring the

size of the non-overlapping regions in terms of the statistical

parameters of the projections.

� Zhu Yan has proposed the following formula to associate relevance

with a given feature direction ~wk:

Γk =











1 λk ≥ M2

√

λk

λT
λk < M2

(48)

where λk is the eigenvalue associated with the eigenvector ~wk as

produced by LDA. Since the eigenvalue measures the ration of

between-class scatter to within-class scatter along that

eigenvector, we use λT as a threshold that controls the minimum

non-overlap that must exist along the eigenvector. M is the same

as in the previous figure — we call it the spread regulator.

� Yan has shown that when the LDA features are prioritized by

their relevance weights, the LDA’s peaking problem disappears.
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7: Deep Learning Based Methods for
Dimensionality Reduction — Autoencoders

� This section presents deep-learning based approaches for

dimensionality reduction. In DL, a reduced-dimensionality

representation for an input data object is referred to as its

embedding. The goal in our case would be to train a neural

network to learn to return the embeddings for a class of images.

After training, the network would hopefully do a good job of

returning the embeddings even for previously unseen images as

long as they are from the same distribution as the training images.

� For the sort of applications I discuss in my computer vision class,

the embeddings for images would be generated with an

Autoencoder.

� The basic idea of an Autoencoder for creating a

reduced-dimensionality representation of in input data is quite

simple: You create an Encoder-Decoder pair as shown in Figure

11. The Encoder’s job is to create a “compressed” representation

of the input and the Decoder’s job is to convert the compressed

representation back to its original form — to the best extent

possible.
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Figure 11: A simple Autoencoder

� Obviously, since the Encoder would have lost some information

during the encoding process, the Decoder would not be able to

fully recover the original. However, we would like to reduce the

error between the original and the reconstruction to its least

possible value.

� If we measure the error at the output with a difference function

like the “Mean-Squared Error”, the problem of finding the best

reduced-dimensionality representation of the input is set up

ideally for neural learning. You estimate the errors and

backpropagate them as you update the learnable weights in the

network until the errors have reached their least possible values.

� Training a network in the manner described above would be an
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example of self-supervised learning.

� As you can see, the basic idea of an Autoencoder is simple and

therefore easy to program. However, it is unlikely to work well in

applications where you require a significant reduction in

dimensionality. Here is the reason for that: Let’s say that your

input data is of dimensions 100,000 and you want the embedding

for each input input image to be 10 dimensional — not an

unlikely scenario for a PCA-based classifier when you retain just

the 10 largest eigenvectors for the PCA-space. That would require

the Encoder in Figure 11 to discard a lot of information. However,

for neural learning to take place, the Decoder would now have to

conjure up a significant part of what was discarded by the

Encoder so that the final output would bear some semblance to

the input. The greater the reduction in dimensionality, the greater

the difficulty for the Decoder to fulfill this requirement.

� The Variational Autoencoder (VAE) that I’ll now present

overcomes the difficulty described above by using a more

principled approach in how the Autoencoder is designed.

� VAE is based on a probabilistic model that jointly considers the

input image, the part of the input that is discarded by the

Encoder during dimensionality reduction, and the final embedding

produced. Let xin be an input image, and let xenc stand for a

reduced-dimensional representation of the input. The process of
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losing information in the Encoder can be captured by the

statement xenc ∼ N (µ, σ), which says that the encoded

representation can be imagined to be drawn from a normal

distribution with mean µ and standard-deviation σ.

� With a probabilistic interpretation of the encoding process as

described above, we are faced with the following question: What

exactly do we want to see at the output of the Encoder? Should

it be some instance xenc drawn from the distribution N (µ, σ)?

Not really. For practical reasons, we want each input image to

go into a unique output from the Encoder. All we know at this

time is that, at a purely conceptual level, the process of encoding

results in the transformation of the input image into the

distribution N (µ, σ). This distribution has two unique entities

associated with it: µ and σ. So it makes sense to train the

Encoder to output the values µ and σ for an input image.

� One could argue that by training the Encoder to output (µ, σ),

you are asking the Encoder to give you the entire distribution

N (µ, σ) corresponding to a given input image.

� Subsequently, you can use the unique µ as the embedding for the

input image. But what happens to σ that was also produced by

the Encoder? As mentioned below, the calculation of σ is critical

for the learning required by the Autoencoder.
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� That brings me to the learning required by the sort of Encoder

described above. If we wish to use self-supervised learning —

since we have no other option anyway — we must get the Decoder

to generate from the output of the Encoder an image that, to the

best extent possible, looks like the input image.

� Considering that the Encoder has provided us with the

distribution N (µ, σ) that describes the encoding process, we

could sample the distribution and feed it into the Decoder for the

production of the desired output. Doing so would amount to using

the network architecture shown in Figure 12.

Figure 12: Variational Autoencoder — the main idea

� Unfortunately, drawing a random sample from a distribution is
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not a differentiable step — differentiability being a fundamental

requirement for any neural learning. Said another way, there is no

way to backpropagate the loss through the computational step

z ∼ N (µ, σ).

� This implementation difficulty is resolved by using the

approximation:

z = µ + σ ∗ ǫ (49)

where ǫ ∼ N (0, 1) as shown in Figure 13.

Figure 13: Variational Autoencoder — What’s actually implemented

� Note that the parameter ǫ in Eq. (49) is not meant to be a

learnable parameter — it cannot be because of the reasons
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already stated. Drawing a sample from from a distribution is not

a differentiable step and therefore loss cannot be propagated

through it. However, the calculation of the latent vector z is

differentiable — despite the fact that it includes a non-learnable

parameter ǫ.

� Therefore, for any input x, the job of learning is to figure out the

best values to use for (µ, σ) for that input. The role of ǫ is to give

a differentiable degree of freedom to the Decoder when it seeks to

generate an output image from the latent vector z that is a good

approximation to the input.

� The approximation represented by Eq. (49) is frequently referred

to as the “reparameterization trick” — although there is nothing

terribly tricky about it — and implemented in a function whose

name is usually reparameterize().
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