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1: Introduction

• The goal of this tutorial presentation is to focus on the

Monte-Carlo methods for solving what are known as probabilistic

integrals in Bayesian estimation. The integrand in a probabilistic

integral consists of two parts, one a probability distribution and

the rest. As a result, the value of the integral can be considered to

be the expectation of the “rest” with respect to the probability

distribution.

• The Monte-Carlo approach to solving a probabilistic integral

consists of sampling the parameter space according to the

probability distribution part of integrand and then merely

summing up the values of the rest of the integrand at those points

in the parameter space.

• When the probability distribution part of the integrand is simple

— such as uniform or Gaussian — the method described above

will generally work well. When that is not the case, you may have

to resort to what’s known as Importance Sampling of the

parameter space.

• The first four sections of this tutorial are devoted to explaining in

detail the ideas mentioned above. The last section, Section 5,
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takes up the subject of time varying systems and their

probabilistic modeling. As an example of a time-varying system,

think of tracking objects and humans in videos. What you have

here is time-sequenced data in the form of image frames and you

want to track an object by estimating its position with respect to

all its 6 degrees of freedom, 3 translational and 3 rotational. What

you’d like to do is to create a data model for tracking a vector of 6

numbers in the presence of background noise.

• As I show in Section 5 of this tutorial, when the time evolution of

whatever it is you are tracking is nonlinear and the observation

noise non-Gaussian, you may again have to resort to Monte-Carlo

based solutions for filtering out the noise and for making

predictions.

• I should also mention that this tutorial is a continuation of my

tutorial:

“ML, MAP, and Bayesian — The Holy Trinity of Parameter

Estimation and Data Prediction”

that can be downloaded from:

https://engineering.purdue.edu/kak/Tutorials/Trinity.pdf
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2: A Brief Review of ML, MAP, and Bayesian
Estimation

• The main goal of this section is to refresh your memory about the

basic vocabulary of maximum likelihood (ML), maximum

a-posteriori (MAP), and Bayesian estimation. The subsections

that follow are drawn from my “Holy Trinity” tutorial that I cited

at the end of the previous section.

• Perhaps the most fundamental terms in this vocab are: likelihood,

log-likelihood, evidence, prior, and posterior. To understand

these terms, you must also be able to wrap your head around the

terms and phrases like observation model, model parameters,

probability distribution over the model parameters,

independent observations, etc.

• As you will see in this section, constructing ML and MAP

estimates is relatively easy. These estimates would be for the

parameters of the model that you have conjured up for the

observed data.

• On the other hand, Bayesian estimation is made difficult by the

fact that it requires us to estimate not just a single numerical

value for each model parameters, but a probability distribution
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over all possible values for the model parameters.

• The challenges faced in constructing Bayesian estimates for the

probability distribution for the model parameters provide the

motivation for the Monte Carlo techniques presented in Section 3

of this tutorial.
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2.1: Estimation of Parameters and Prediction
of Future Values from Evidence

• Let’s say we have evidence X that consists of a set of independent

observations:

X = {xi}
|X |
i=1 (1)

where each xi is a realization of a random variable x. Each

observation xi is, in general, a data point in a multidimensional

space.

• Let’s say that a set Θ of probability distribution parameters can

be used to explain the evidence X .

• The manner in which the evidence X depends on the parameters

Θ will be referred to as the observation model.

• What can we do with this evidence?

• We may wish to estimate the parameters Θ with the help of the

Bayes’ Rule

prob(Θ|X ) =
prob(X |Θ) · prob(Θ)

prob(X )
(2)
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• Or, given a new observation x̃, we may wish to compute the

probability that the observation is supported by the evidence

prob(x̃|X ) (3)

• The former represents parameter estimation and the latter

data prediction or regression.

• In the rest of this section, I’ll first focus on the estimation of the

parameters Θ. To that end, We can use the Bayes’ Rule

prob(Θ|X ) =
prob(X |Θ) · prob(Θ)

prob(X )
(4)

and interpret the rule as

posterior =
likelihood · prior

evidence
(5)

• Since we will be using these terms frequently in the rest of this

tutorial, remember that posterior means prob(Θ|X ), likelihood

means prob(X |Θ), and evidence means prob(X ).

• The likelihood distribution prob(X |Θ) is the same thing as the

observation model we talked about earlier.

• In what follows, I’ll now consider the Maximum Likelihood

(ML) Estimation of Θ.
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• We seek that value for Θ which maximizes the likelihood for the

evidence actually recorded. That is, we seek that value for Θ

which gives largest value to

prob(X |Θ) (6)

for the measured X . Recognizing that the evidence X consists of

independent observations {x1,x2, .....}, we can say that we seek

that value Θ which maximizes
∏

xi∈X

prob(xi|Θ) (7)

• Because of the product on the RHS, it is often simpler to use the

logarithm of the product. What you get from the logarithm is

commonly referred to as the log-likelihood. Using the symbol L to

denote the log-likelihood, we can express it as:

L =
∑

xi∈X

log prob(xi|Θ) (8)

and say that we seek that solution for the parameters that

maximizes L. That is,

Θ̂ML = argmax
Θ

L (9)

• The ML solution for the parameters is usually obtained by setting

∂L

∂θi
= 0 ∀ θi ∈ Θ (10)
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• Special Note on ML versus MAP and Bayesian:

ML estimation is the easiest to implement because one usually expresses the obser-

vation model through equations that make explicit the analytical form of p(X |Θ).

This analytical form can then be manipulated to yield Θ that maximizes p(X |Θ). See

the Holy Trinity tutorial mentioned in the Introduction for an example.

• I’ll now consider Maximum a Posteriori (MAP) Estimation of Θ.

• For constructing a maximum a posteriori (MAP) estimate, we

first go back to our Bayes’ Rule in Eq. (4):

prob(Θ|X ) =
prob(X |Θ) · prob(Θ)

prob(X )
(11)

• We now seek that value for Θ which maximizes the posterior

prob(Θ|X ).

• Therefore, our solution can now be stated as

Θ̂MAP = argmax
Θ

prob(Θ|X )

= argmax
Θ

prob(X |Θ) · prob(Θ)

prob(X )
(12)

• Being independent of Θ, the denominator can be ignored for

finding the value of Θ where the numerator becomes maximum.
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• So we can write for the solution:

Θ̂MAP = argmax
Θ

prob(X |Θ) · prob(Θ)

= argmax
Θ

∏

xi∈X

prob(xi|Θ) · prob(Θ) (13)

• As with the ML estimate, we can make this problem easier if we

first take the logarithm of the posteriors. We can then write

Θ̂MAP = argmax
Θ

(
∑

xi∈X

log prob(xi|Θ) + log prob(Θ)

)
(14)

• Finding Θ where the above expression is maximized is just as

easy as the maximization needed for ML if an analytical

expression for the prior is available. Often people use parametric

functions such as the beta, Dirichlet, etc., for prob(Θ).

• Finally, let’s consider Bayesian Estimation.

• Before taking up the case of Bayesian Estimation, note that, given

the evidence X , ML considers the parameter vector Θ to be a

constant and seeks out that value for the constant that provides

maximum support for the evidence. ML does NOT allow us to

inject our prior beliefs about the likely values for Θ in the

estimation calculations.
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• MAP allows for the fact that the parameter vector Θ can take

values from a distribution that expresses our prior beliefs

regarding the parameters. MAP returns that value for Θ where

the probability prob(Θ|X ) is a maximum.

• Both ML and MAP return only single and specific values for the

parameter Θ.

• Bayesian estimation, by contrast, calculates fully the posterior

distribution prob(Θ|X ).

• Of all the Θ values made possible by this distribution, it is our job

to select a value that we consider best in some sense. For

example, we may choose the expected value of Θ assuming its

variance is small enough.

• The variance that we can calculate for the parameter Θ from its

posterior distribution allows us to express our confidence in any

specific value we may use as an estimate. If the variance is too

large, we may declare that there does not exist a good estimate

for Θ.

12



Monte Carlo Integration in Bayesian Estimation An RVL Tutorial by Avi Kak

Back to TOC

2.2: What Makes Bayesian Estimation
Difficult: A Theoretical Perspective

• Bayesian estimation is made complex by a variety of reasons,

some theoretical and some practical. What’s interesting is that

some of the theoretical reasons that make Bayesian estimation

difficult disappear in a practical implementation of the approach,

but then other difficulties crop up when actually implementing the

approach.

• Let’s first focus on why a theoretician might consider Bayesian

estimation difficult. Note that vis-a-vis MAP estimation, now the

denominator in the Bayes’ Rule

prob(Θ|X ) =
prob(X |Θ) · prob(Θ)

prob(X )
(15)

cannot be ignored.

• The denominator in the above equation is known as the

probability of evidence and is related to the other probabilities

that make their appearance in the Bayes’ Rule by

prob(X ) =

∫

Θ

prob(X |Θ) · prob(Θ) dΘ (16)
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• Bayesian estimation therefore calls on us to compute the following

posterior as a distribution:

prob(Θ|X ) =
prob(X |Θ) · prob(Θ)∫
prob(X |Θ) · prob(Θ) dΘ

(17)

• If you want to be able to derive an algebraic form for the

posterior, the most challenging part of Bayesian estimation is the

integration in the denominator.

• This leads to the following thought critical to Bayesian estimation:

For a given observation model, if we have a choice regarding

how we express our prior beliefs, we must use that form which

allows us to carry out the integration in the denominator. It is

this thought that leads to the notion of conjugate priors.

• For a given algebraic form for the likelihood (that is, for a given

observation model, which is the same thing as the likelihood

function), the different forms for the prior prob(Θ) pose different

levels of difficulty for the determination of the marginal in the

denominator and, therefore, for the determination of the posterior.

• For a given algebraic form for the likelihood function prob(X |Θ), a

prior prob(Θ) is called a conjugate prior if the posterior prob(Θ|X )

has the same algebraic form as the prior.

14
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• Bayesian estimation and prediction become much easier should

the engineering assumptions allow a conjugate prior to be chosen

for the applicable observation model.

• When the observation model (meaning the likelihood

distribution) can be assumed to be Gaussian, a Gaussian prior

would constitute a conjugate prior because in this case the

posterior would also be Gaussian.

• When data is generated by an experiment based on Bernoulli

trials, the likelihood function is a binomial and the beta

distribution constitutes a conjugate prior.

• When the likelihood function can be modeled as a multinomial,

the conjugate prior is the Dirichlet distribution. (See my Holy

Trinity tutorial mentioned in the Introduction section.)
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2.3: What Makes Bayesian Estimation
Difficult: A Practical Perspective

• In the comment after Eq. (17), I mentioned that, from a

theoretical perspective, the main difficulty with Bayesian

estimation is the integration in the denominator on the right in

Eqs. (15) and (17).

• What is interesting is that, from an implementation perspective,

the calculation of the denominator in Eqs. (15) and (17) may

turn out to be the least of your problems.

• That is because the role played by the denominator is merely as

a normalizer for the numerator. So if you compute the Bayesian

posterior distribution ignoring the denominator at a reasonably

large number of sampling points in the parameter space spanned

by Θ, just by summing the resulting estimates for the posterior

distribution values you can find the normalization constant since

the sum must add up to 1.

• If one were to analyze the above mentioned simplification

theoretically, you would see that it makes sense only when we

can assume the prior distribution prob(Θ) to be uniform.
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• Even when it is possible to take advantage of the above mentioned

simplification, a practical implementation of Bayesian estimation

can throw up additional challenges that can be attributed to the

observation model (meaning, the likelihood distribution defined in

the previous section) that you might want to use in a given

application.

• From a practical perspective, there is also the issue of

non-recursive versus recursive estimation.

• Several of these challenges can be addressed by importance

sampling and Monte Carlo integration, as you will see in the rest

of this presentation.

• In the rest of this tutorial, I’ll first take up the subject of the

Monte Carlo technique for solving integrals that involve

probability distributions. In that discussion, I’ll also present

importance sampling as a way to improve the performance of

Monte Carlo based integration.
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3: Monte-Carlo Integration for Bayesian
Estimation

• As mentioned in the previous section, Bayesian estimation, in

general, requires us to solve the integral in the denominator of Eq.

(17).

• The form shown for the denominator in Eq. (17) is special — in

the sense that one of the terms in the denominator is a probability

distribution.

• When an integrand can be expressed as a product of two

functions, with one of the two being a probability distribution (as

is the case with the denominator in Eq. (17)), you have what’s

known as a probabilistic integral.

• A probabilistic integral can be interpreted as finding the

expectation of the values of the other function in the product of

the two functions mentioned above. This is best done with the

Monte-Carlo technique mentioned in the next section.
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3.1: Solving Probabilistic Integrals
Numerically

• Integrals that involve probability distributions in the integrands

are ideal for solution by Monte Carlo methods.

• Consider the following general example of such an integration:

E(g(X ,Θ)) =

∫
g(X ,Θ) · prob(Θ) dΘ (18)

• When g(X ,Θ) ≡ Θ, the integration amounts to finding the mean of

the elements of the random vector Θ. In general, when

g(X ,Θ) ≡ Θn, the integration amounts to finding the nth moment

of the random vector Θ.

• The Monte Carlo approach to solving the integration shown above

is to draw samples from the probability distribution prob(Θ) and

then to estimate the integral with the help of these samples.

• When prob(Θ) is simple, such as uniform or normal, it is trivial to

draw such samples from the distribution prob(Θ) by making

straightforward function calls to standard software libraries for

generating random numbers.
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• Assuming that prob(Θ) is uniform or normal, let {Θ1,Θ2, . . . ,Θn}

be a sequence of independent samples supplied to us by a random

number generator. Now you should be able to use the following

summation as a good approximation to the integral shown above:

E(g(X ,Θ)) ≈
1

n

n∑

i=1

g(X ,Θi) (19)

• However, in general, especially in Bayesian estimation, prob(Θ) can

be expected to be arbitrary.

• Now we are faced with the challenge of how to draw a set of

samples that would correspond to our current best guess for

prob(Θ). Assume for a moment that we have somehow acquired

the ability to draw such a set of samples. (We could, for

example, use the Metropolis-Hastings Algorithm described in

Section 3.4 of this tutorial for that purpose.) In that case, one

would think that the summation shown above should still work as

an approximation to the integral. That is, we should still be able

to estimate the integral by

E(g(X ,Θ)) ≈
1

n

∑

i

g(X ,Θi) (20)

But, in practice, there is a deep practical flaw in this logic even if

we have a great sampling algorithm, as you will soon see.
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3.2: A Pictorial Explanation of Why You
Might Expect a Simple Summation of g() to

Work

• As the following figure shows, if g(), shown by the blue curve in

the figure, is a reasonably smooth function over its domain of

definition, we can certainly expect a straightforward summation of

g() over the samples drawn from the probability distribution

prob(), shown by the green curve, to approximate
∫
g(Θ)prob(Θ) dΘ.

samples drawn from prob()

prob(x)
g(x)
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3.3: A Pictorial Explanation of Why You
Might NOT Expect a Simple Summation of g()

to Work

• However, if g(Θ) acquires its most significant values where prob(Θ)

is expected to yield very few samples, as shown by the example in

the figure below, a result obtained by (1/n)
∑

i g(Θi) over the

samples drawn from the distribution prob(Θ) will certainly NOT

yield a good approximation to the integral
∫
g(Θ)prob(Θ)dΘ.

samples drawn from prob()

prob(x)
g(x)

• This difficulty with the estimation of integrals involving

probability distributions has led to the notion of importance

sampling.
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• For the purpose of solving the integral, we want to draw samples

not taking into account only the distribution prob(Θ), but also

where g(Θ) acquires significant values.

• We obviously want to think of prob(Θ) playing a probabilistic role

vis-a-vis g(Θ). But, purely from the standpoint of the integration

of the product g(Θ) · prob(Θ), the roles of g() and prob() are

symmetric with respect to what gets weighted in a digital

approximation to the integral.
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4: Importance Sampling

• By this time you should be comfortable with the fact that the

Monte-Carlo method is a powerful technique for solving

probabilistic integrals — that is, when the integrand is a product

of two functions, with one of the two being a probability

distribution.

• While in theory the Monte-Carlo approach sounds great, it does

requires that the sampling points in space spanned by the

parameter vector Θ be drawn in accordance with the probability

distribution part of the integrand. However, it is not so easy to

draw usable sampling points from the parameter space should

the the probability distribution NOT be compatible with the

rest of the integrand as illustrated by the figures in Sections 3.2

and 3.3.

• As explained in the subsections to follow, Importance Sampling

based on a Proposal Distribution can be a solution to the

dilemma presented above.

• When the probability distribution function is not compatible with

the rest of the integrand, you try to come up with a Proposal

Distribution that strikes a middle ground between the two.
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• After you have decided that you want to use Importance Sampling

based approach for solving a probabilistic integral, you are still

faced with the following implementation issue: How exactly to

draw samples from the probability distribution that you are

interested in? The solutions to this problem are based on MCMC

sampling. MCMC stands for Markov-Chain Monte-Carlo. In the

last subsection of this section, I’ll talk about the two commonly

used MCMC samplers: Metropolis-Hastings and Gibbs.
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4.1: Definition of Importance Sampling

• Importance Sampling is an approach for a Monte-Carlo solution

to integrals of the form

∫
g(X ,Θ) · prob(Θ) dΘ (21)

when we have no reason to believe that g() is “compatible” with

prob().

• Importance sampling brings into play another distribution q(Θ),

known as the sampling distribution or the proposal distribution,

whose job is to help us do a better job of randomly sampling the

values spanned by Θ.

• Before we show how q(Θ) can be used, let’s rewrite the integral

shown above in a way that accepts the interjection of this new

distribution:

∫
g(X ,Θ) prob(Θ)

q(Θ) q(Θ) dΘ
∫ prob(Θ)

q(Θ) q(Θ) dΘ
(22)

• You might wonder as to why we would want to gratuitously add a

denominator in the above equation since none existed in the

expression shown in Eq. (21). Consider this as a “remediation

26
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guard” against the real possibility that at program execution

time, the actual numerical values used for prob(Θ)
q(Θ)

· q(Θ) will depart

from a true probability distribution.

• At least theoretically, Eq. (22) says that our integral in Eq. (21)

remains unchanged regardless of the choice of q(Θ) (as long as

dividing prob() by q() does NOT introduce any singularities in the

integrand).

• So we may now use q(Θ) for creating a random set of samples

{Θ1, . . . ,Θn} for Monte-Carlo integration with the hope that

these samples will be relevant to both g() and prob().

• That is, we can hope that the chosen q(Θ) would strike an

acceptable middle ground between the needs of g() and prob().
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4.2: Practical Implications of Using a
“Designer” Proposal Distribution q() for

Monte-Carlo Integration

• Looking at Eq. (22), Importance Sampling tells us that we can

use “any” proposal distribution q(Θ) to draw random samples

from for the purpose of Monte Carlo integration provided we now

think of s(Θ):

s(Θ) = g(X ,Θ)
prob(Θ)

q(Θ)
(23)

vis-a-vis q(Θ) the way we first thought of g(X ,Θ) vis-a-vis prob(Θ).

• Additionally, we must now also estimate the integration in the

denominator of the form shown in Eq. (22). For this purpose, we

must now estimate the integral
∫
t(Θ)q(Θ)dΘ with

t(Θ) = prob(Θ)/q(Θ).

• The implication is that we must now first construct the weights at

the random samples drawn according to the probability

distribution q(Θ):

wi =
prob(Θi)

q(Θi)
(24)

and then use the following estimation for our original integral
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1
n

∑n
i=1w

i · g(Θi)
1
n

∑n
i=1w

i
(25)

• The weights wi are known as the importance weights.

• But, of course, we are still faced with the question of how to

choose the proposal distribution q(Θ).

• The Monte-Carlo integration formula shown above in Eq. (25) is

used more often in the following form:
n∑

i=1

W i · g(Θi) (26)

where W i are the normalized versions of the importance weights

shown on the previous page:

W i =
wi

∑n
j=1w

j
(27)

• It is in this form we will use the formula in Gaussian Particle

Filtering.
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4.3: Is There a Way to Compare Different
Proposal Distributions with Regard to Their

Effectiveness?

• As mentioned in the previous subsection, a Monte-Carlo

integration is an expectation of some entity g():

∫
g(Θ) · prob(Θ) dΘ = E(g(Θ)) ≈

n∑

i=1

W i · g(Θi) (28)

• We may associate a variance with this estimate. We will call it the

Monte Carlo Variance:

∫
[g(Θ)− E(g(Θ))]2 · prob(Θ) dΘ = V ar(g(Θ)) (29)

• By treating the left hand side in the same manner as the original

integration problem, we can write a discrete approximation to the

variance in terms of the random samples used in the Monte Carlo

estimate.

• The goal of importance sampling is to choose the proposal

distribution q(Θ) that minimizes the Monte-Carlo variance.
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• It has been shown that the proposal distribution that minimizes

the Monte-Carlo Variance is given by

q(Θ) ∝ |g(Θ) · prob(Θ)| (30)

which makes intuitive sense.

• Although it is comforting to think of the above as a good strategy,

it is not a complete solution to the choosing of the proposal

distribution. The product g(Θ)prob(Θ) may not sample g(Θ)

properly because the former goes to zero where it should not.

• It is not uncommon to see people using the heuristic

q(Θ) ∝ |g(Θ)| (31)

but now you run into the problem of ensuring that the weights wi

do not become ill conditioned at all the sampling points.
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4.4: We are Still Faced with the Problem of
How to Draw Samples According to a

Prescribed Distribution — MCMC Samplers

• It might be easier to carry out the Monte Carlo integration with

the proposal distribution q(Θ) than it was with the original

prob(Θ), but we are still faced with the problem of having to draw

sampling point in the Θ space that would correspond to the q(Θ)

distribution. How does one do that?

• As it turns out, how to draw samples whose probability

distribution would correspond to a given proposal q(Θ) is an

interesting challenge unto itself — especially if q(Θ) is a

complicated multi-modal function.

• In the rest of this section, I’ll use the notation p(x) to denote the

distribution whose samples we wish to draw from for the purpose

of Monte Carlo integration.

• So the goal in this section is to estimate the integral∫
x∈X p(x)f(x)dx, where p(x) is a probability distribution and where

f(x) is some arbitrary function. As mentioned earlier if p(x) is

simple, like a uniform or a Gaussian distribution, the N samples

xi, as you would expect, can be drawn easily from p(x) using
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run-of-the-mill function calls to random-number generators. With

such samples, an unbiased estimate of the integral∫
x∈X p(x)f(x)dx would be given by the summation

(1/N)
∑N

i=1 f(xi). Unfortunately, this standard Monte-Carlo

approach does not work when p(x) is a complicated probability

distribution — simply because it is non-trivial to sample

complicated probability distributions algorithmically.

• Modern approaches to drawing samples from an arbitrary

probability distribution p(x) for the purpose of Monte-Carlo

integration are based on MCMC sampling, where MCMC stands

for Markov-Chain Monte-Carlo.

• MCMC sampling is based on the following intuitions:

1. For the very first sample, x1, you accept any value that belongs to the

domain of p(x), that is, any randomly chosen value x where p(x) > 0.
At this point, any sample is as good as any other.

2. For the next sample, you again randomly choose a value from the
interval where p(x) > 0 but now you must “reconcile” it with what
you chose previously for x1. Let’s denote the value you are now

looking at as x∗ and refer to it as our candidate for x2.

3. By having to “reconcile” the candidate x∗ with the previously selected
x1 before accepting the candidate as the next sample, here is what I
mean: For obvious reasons, your desire should be to select a large

number of samples in the vicinity of the peaks in p(x) and, relatively
speaking, fewer samples where p(x) is close to 0. You can capture this

intuition by examining the ratio a1 = p(x∗)
p(x1)

. If a1 > 1, then accepting
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x∗ as x2 makes sense because your decision would be biased toward
placing samples where the probabilities p(x) are higher.

4. However, should a1 < 1, you need to exercise some caution in

accepting x∗ for x2, as explained on the next page.

5. While obviously any sample x∗ where p(x∗) > 0 is a legitimate sample,

you nonetheless want to accept x∗ as x2 with some hesitation when
a1 < 1, your hesitation being greater the smaller the value of a1 in

relation to unity. You capture this intuition by saying that let’s accept
x∗ as x2 with probability a1.

6. In an algorithmic implementation of the above stated intuition, you
fire up a random-number generator that returns floating-point
numbers in the interval (0, 1). Let’s say the number returned by the

random-number generator is u. You accept x∗ as x2 if u < a1.

• It is these intuitions that form the foundation of the original

Metropolis algorithm for drawing samples from a given

probability distribution.

• Since each sample chosen in this manner depends on just the

sample selected previously, a sequence of such samples forms a

Markov chain.

• Since the sequence of samples generated in this manner forms a

Markov chain, this approach to drawing samples from a

distribution for the purpose of Monte-Carlo integration of

complex integrands is commonly referred to as the Markov-Chain
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Monte-Carlo sampler, or, more conveniently, as the MCMC

sampler.

• To be precise, the Metropolis algorithm for MCMC sampling uses

what is known as a proposal distribution1 for MCMC sampling

q(x∗|xt−1) to return a candidate x∗ for the current sample xt given

the previous sample xt−1 and requires that q(.|.) be symmetric with

respect to its two arguments if you want the theoretical guarantee

that the first-order probability distribution of the samples of the

Markov Chain converge to the desired density p(x).

• This symmetry restriction on the proposal distribution is removed

in a more general algorithm known as the Metropolis-Hastings

(MH) algorithm.

• In the Metropolis-Hastings algorithm, however, the ratio that is

tested for the acceptance of the candidate x∗ is now given by the

product a = a1× a2 where a2 = q(xt−1|x∗)
q(x∗|xt−1)

where a1 was defined earlier

in Step 3 of the 6-Step original Metropolis algorithm. If a ≥ 1, we

accept the candidate x∗ immediately for the next sample.

Otherwise, we only accept it with probability a.

• If we think of a1 for the case of the Metropolis algorithm and of

a = a1× a2 for the case of Metropolis-Hastings algorithm as the

probability with which the candidate x∗ is accepted, we can write

for the Metropolis algorithm:
1Do not confuse the proposal distribution q(·|·) here with the proposal distribution q() in Section 4.1 where I was explaining the

basic idea of importance sampling.
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a1 = min
( p(x∗)

p(xt−1)
, 1
)

(32)

and for the Metropolis-Hastings algorithm:

a = min
( p(x∗)q(xt−1|x∗)

p(xt−1)q(x∗|xt−1)
, 1
)

(33)

• Obviously, should you happen to use for the Metropolis-Hastings

algorithm a q(.|.) that is symmetric with respect to its two

arguments, you’ll have a = a1.

• The Metropolis-Hastings (MH) algorithm is the most popular

algorithm for MCMC sampling. The algorithm is straightforward

to implement. The reader may wish to check out my Perl

implementation Metropolis Hastings.pl in Section 26.7 of

https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture26.pdf.

• That script generates MCMC samples for the target density

function p(x) = 0.3 · e−0.2x2

+ 0.7 · e−0.2(x−10)2 that is shown by the

line plot in the figure on the next page. The histogram for the

MCMC samples produced by the script is based on only the first

500 samples of the sequence. This histogram is shown as a bar

graph in the same figure. [Ordinarily, it is best to discard several

hundred samples at the beginning of such a sequence to eliminate the

effects of initialization. After these initial samples are rejected, the rest of

the sequence would follow even more closely the desired density.]
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• As mentioned earlier, the MH algorithm requires us to specify a

proposal density function q(x|y).

• The proposal density function that I used in my Perl script is

q(x|y) = N (y, 100), that is, it is a normal density that is centered

at the previous sample with a standard deviation of 10. This

standard-deviation was chosen keeping in mind the interval

(−5.0, 15.0) over which p(x) is defined with values not too close to

zero, as shown by the line plot in above figure.

• For some final observations related to the MH algorithm for

MCMC sampling:

– Commonly used proposal densities include uniform, normal (as in my

37



Monte Carlo Integration in Bayesian Estimation An RVL Tutorial by Avi Kak

Perl script), and χ2. With each of these choices, you also have to
decide how “wide” a proposal density to use. In my Perl script, I used

a standard deviation of 10 keeping in mind the width of the target
density function p(x).

– It is possible for the width of the proposal density to be either too
small or too large. If too small, your MCMC chain may get stuck in

just one of the modes of a multimodal target distribution. If too wide,
your acceptance rate for the candidate samples may be too low.

– One final issue related to the samples yielded by the
Metropolis-Hastings algorithm is the correlatedness of the adjacent

samples. The very nature of the derivation of the samples implies that
there can exist significant correlations between adjacent samples.

However, it is important to Monte Carlo integration that the
samples be independent. In order to meet this constraint, it
is common to take every nth sample from the MCMC chain,

with n chosen suitably to make the retained samples
independent. This is referred to as the thinning of the

MCMC samples.

• On last topic I want to mention just in passing is the Gibbs

sampler as a special case of the MH MCMC sampler.

• First note that the notation x in our discussion on MCMC

sampling was meant to stand for a vector variable of an arbitrary

number of dimensions.

• Assuming that x is n-variate, MCMC sampling with the MH

algorithm directly gives us a sequence of samples in the
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n-dimensional space spanned by x. After the initialization effects

have died down, this sequence can be expected to stabilize in a

stationary distribution that is a good approximation to the

n-variate joint distribution p(x) over n variables.

• The Gibbs MCMC sampler samples each dimension of x

separately through the univariate conditional distribution along

that dimension vis-a-vis the rest. Before I explain why this

makes sense, let me introduce some notation for such conditional

distributions.

• I’ll make the individual components of x explicit by writing

x = (x1, . . . , xn)
T .

• I will also write x(−i) = (x1, . . . , xi−1, xi+1, . . . , xn)
T .

• Let’s now focus on the n univariate conditional distributions:

p(xi|x(−i)) for i = 1, . . . , n. Keep in mind the fact that a

conditional distribution for the component scalar variable xi
makes sense only when the other n− 1 variables in x(−i) are given

constant values.

• Gibbs MCMC sampling is based on the observation that even

when the joint distribution p(x) is multimodal, the univariate

conditional distribution for each xi when all the other variables

are held constant is likely to be approximable by a relatively

easy unimodal distribution, such as uniform or normal.

39



Monte Carlo Integration in Bayesian Estimation An RVL Tutorial by Avi Kak

• What that implies is that the individual scalar variables can be

sampled through straightforward function calls to standard

software packages dealing with the production of random

numbers without resort to the notion of acceptance probabilities

as in the Metropolis-Hastings algorithm.

• Taking the above observations into account, one could set up a

Gibbs MCMC sampler in the following manner:

– For initialization, we choose random values for the variables x2

through xn. We denote these by x
(0)
2 , . . . , x

(0)
n . These are our initial

samples for the n− 1 scalar variables x2 through xn.

– We next draw a sample for x1 by

x
(1)
1 ∼ p

(
x1

∣∣∣ x(−1) = (x
(0)
2 , . . . , x(0)

n )
)

(34)

where x
(1)
1 means that it is a sample for the variable x1 produced at

the first iteration of the sampler.

– We next draw a sample for x2 by

x
(1)
2 ∼ p

(
x2

∣∣∣ x1 = x
(1)
1 ,x(−1,−2) = (x

(0)
3 , . . . , x(0)

n )
)

(35)

– In the same manner, we draw samples for the scalars xj, with

j = 3 . . . n, In the conditional probability for each xj, we use the

just drawn x
(1)
i for i = 1 . . . j − 1 and the initialization values

x
(0)
i for i = j + 1, . . . , n.
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• In this manner, we complete one “scan” through all the n

dimensions of x. In the next scan, we now use the previously

calculated sample values for the conditioning variables and

proceed in exactly the same manner as above.

• After K such scans through the component variables, we end up

with K sampling points for vector variable x.
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5: Application to Time-Varying Systems:
Bayesian Estimation of the State

• A classic case of a time-varying system would be tracking an

object or a human in a video. Imagine for a moment that you you

have a segmentation algorithm that can isolate out a human in,

say, the first frame of a video and now you wish to track that

individual through all their motions in the subsequent frames.

• This problem is made very challenging by the fact that the object

you are tracking might occasionally become partially or fully

obscured by other objects in the scene.

• The algorithmic challenge here is how best to specify a state

vector for representing the object being tracked and, then, how to

update the state vector from frame to frame. As you will see in

this section, you will need to make certain assumptions about the

temporal evolution of the state vector in order to end up with a

computationally feasible algorithm.

• It is beyond the scope of this tutorial to address the problem of

how to patch up the disconnections in a track caused by object

obscurations.
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• If you are interested in the full problem of object tracking in the

presence of obscurations, you might enjoy the research described

in the following publication from Purdue Robot Vision Lab:

https://engineering.purdue.edu/RVL/Publications/ITAE_AeschlimanParkKak_v2.pdf
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5.1: Probabilistic Modeling of a Dynamic
System

• There are two different but equivalent ways of looking at a

dynamic system, View 1 and View 2 as described below.

• View 1: We may represent a dynamic system by an

N-dimensional random vector x and talk about a sequence

{x0,x1, . . . ,xk, . . .} of the values of this random vector as a function

of time k.

• For example, if we are tracking a human being in video imagery,

we may think of x as the N values of the N parameters of the pose

of the human being. All of these N values are likely to change

with time k. We can use p(xk = a) to denote the probability that

the random vector x has acquired the specific value a at time k.

• We may now think of the conditional probability p(xk+1|xk) as

informing us how the values of the random vector x will transition

from one time instant to the next.

• The above view is typical of how Kalman Filters and Particle

Filters are developed.
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• View 2: Or, we may conceive of the system being in one of N

possible states at any given time instance k and think of x as

representing a distribution of probabilities over all possible states.

• At any given time instant k, the system must be in exactly one of

N states, except that we do not know which one. Our ignorance

regarding the exact state the system is in at time k is reflected by

the probability distribution x over all N states. We refer to this

distribution as a state vector.

• Going back to the example of tracking a human being in video

imagery, in View 2, we associate a discrete but exhaustive set of

N pose states with the human. Assuming for a moment that

N = 4, we expect the human to be in exactly one of those 4 states

at all time instants.

• The time evolution of the state vector may now be represented by

the changing distribution of probabilities stored in the state

vector. That is, we now talk about a sequence x0,x1, . . . ,xk, . . . to

represent the time varying distribution of the probabilities over

the states.

• Obviously, in View 2, it must be the case that
∑N

i=1 xk,i = 1 at

every time instant k since xk,i is the probability of the system

being in the ith state in the state vector xk. (Note that this

normalization does not apply to View 1.)
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• In View 2, the conditional probability p(xk+1|xk) becomes an

N ×N matrix of state transition probabilities.

• In the rest of this section, I’ll assume View 1, but, in keeping with

much of the literature, I’ll call x the state vector. One can indeed

make the claim that the values for all of the N important

variables of the system at time k represents the state of the

system at that time instant.

• An aside: In classical theoretical computer science, state spaces

are associated with deterministic and nondeterministic finite state

machines. But that discussion focuses on state transitions brought

about by specific inputs and, in at least the classical treatment of

finite state machines, there are no probabilities involved. Our

current discussion does not deal with causal issues related to state

transitions. In our current discussion, state transitions occur for

reasons beyond our control. All we are interested in is in figuring

out the probability distributions over the various states as we

record the observables.
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5.2: Modeling the Time Evolution of the
State Vector

• Regardless of which View you use, we assume that the state

vector x (or the random data vector x) is unobservable directly.

• We also assume that the time evolution of x can be represented by

a possibly nonlinear but known relationship f() between the state

vector and a noise process u whose distribution is known to us in

advance:

xk+1 = fk(xk,uk) k = 0, . . . (36)

• Theory does not require that the dimensionality of the state

vector x and noise vector u be the same. So we can think of fk()

as fk : R
N × R

M → R
N .

• We will refer to Eq. (36) as our Process Model.

• Our process model defines a Markov process since, if we fix the

value of xk, the only uncertainty in xk+1 is caused by the random

contribution from uk that is specific to time step k. This fact

translates into the following state transition probability

distribution:
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p(xk+1|xk) =

∫
p(xk+1|xk,uk) · p(uk|xk) duk

=

∫
p(xk+1|xk,uk) · p(uk) duk

=

∫
δ(xk+1 − fk(xk,uk)) · p(uk) duk (37)

where the second equality follows from the fact that the process

noise at each time step is independent of the state that

corresponds to that time step. That is, p(uk|xk) = p(uk). The last

equality in which δ() is the Dirac delta function, follows from the

fact that once we fix xk and uk, finding xk+1 is a deterministic

calculation involving fk().
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5.3: Relating the Observables to the State

• We further assume that what we observe is a sequence of vectors

yk, k = 1, 2, . . . and that these observables are related to the

unobservable state xk by a possibly nonlinear but known

relationship h():

yk = h(xk,vk) k = 1, . . . (38)

where vk represents the observation noise random process that can

nonlinearly affect the observed data yk.

• It is assumed that the distribution for v is known.

• Again, there is no requirement that the state x and the

observation noise v be of the same dimension. The theory does

not even require that the state x and the observation y be of the

same dimension. So, in general, we can think of h() as

h : RN × R
M → R

P .

• Eq. (38) is called the observation model.
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5.4: Two Interdependent Problems

• Given the process model and the observation model, and given all

of the observed data up to and including the current time instant,

we can now address the following two problems:

1. The Filtering Distribution Problem: We want to estimate

recursively the distribution p(xk|y1:k).

2. The Predictive Distribution Problem: We want to estimate

recursively the distribution p(xk+1|y1:k).

• In stating the two problems, I have used the notation

y1:k = {y1, . . . ,yk}.

• We assume that we know the starting distribution p(x0) at time

k = 0 in order to get the recursive estimation started.

• The two problems listed above are not independent. As we will

see shortly, they are highly interdependent in any approach to the

recursive estimation of the state.

• Estimating the filtering distribution requires the prediction
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provided by the estimation of the predictive distribution and vice

versa.
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5.5: Fundamental Equation for the Recursive
Estimation of the Filtering Distribution

• With multiple invocations of the chain rule, we can write the

filtering distribution as

p(xk|y1:k) =
p(y1:k,xk)

p(y1:k)

=
p(yk|y1:k−1,xk)p(xk|y1:k−1)p(y1:k−1)

p(yk|y1:k−1)p(y1:k−1)
= . . .

=
p(yk|xk) · p(xk|y1:k−1)

p(yk|y1:k−1)

= Ck · p(yk|xk) · p(xk|y1:k−1) (39)

where, in the last expression on the right, the normalization

constant Ck is given by

Ck = (p(yk|y1:k−1))
−1

=

(∫
p(yk|xk) · p(xk|y1:k−1) dxk

)−1

(40)

• In a recursive processing framework, the last term on the RHS in

Eq. (39) can be interpreted as providing prediction at time step k

and the second term inferred from the observation model. That

52



Monte Carlo Integration in Bayesian Estimation An RVL Tutorial by Avi Kak

brings us to the estimation of predictive distribution discussed in

the next subsection.

• Eq. (39) is our fundamental equation for the recursive estimation

of the filtering distribution.
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5.6: Fundamental Equation for the Recursive
Estimation of the Predictive Distribution

• We can write for the predictive distribution

p(xk+1|y1:k) =
p(xk+1,y1:k)

p(y1:k)

=

∫
p(xk+1,xk,y1:k) dxk

p(y1:k)

=

∫
p(xk+1|xk,y1:k) · p(xk,y1:k) dxk

p(y1:k)

=

∫
p(xk+1|xk) · p(xk,y1:k) dxk

p(y1:k)

=

∫
p(xk+1|xk) · p(xk|y1:k) · p(y1:k) dxk

p(y1:k)

=

∫
p(xk+1|xk) · p(xk|y1:k) dxk (41)

where the fourth equality on the right follows from the Markov

assumption regarding the state transitions.

• Of the two terms in the integrand in Equation (10), the second

can be interpreted as being supplied by an estimate of the filtering

distribution at time k and the first can be obtained from the

process model.

• Eq. (41) constitutes the fundamental equation for the estimation
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of the predictive distribution.
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5.7: Solving the Filtering and the Predictive
Equations Simultaneously Under Different

Assumptions

• The Simplest Case:

• When the relationships f() and h() can be assumed to be linear,

and the prior p(x0) and the noise processes u and v to be

Gaussian, we can show that the filtering and the predictive

distributions will always stay Gaussian as time progresses.

• In this case, the optimal solution is provided by the Kalman filter.

• The optimal Bayesian solution now consists of propagating just

the mean and the covariance through time, which is what the

Kalman Filter does.

• The Not So Difficult Case:

• When the process model and the observation model [that is, f()

and h()] are piecewise linear and the assumption of Gaussian for

p(x0), on the one hand, and for the noise processes u and v, on

the other, hold, it may be sufficient to propagate only the mean
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and the covariance through time. This can be done with an

Extended Kalman Filter.

• Moderately Difficult Case:

• When the process model and/or the observation model are

nonlinear [that is, f() and h() are nonlinear] but the

assumption of the prior at time 0 and the noise processes being

Gaussian still holds, we may be able to get away with propagating

just the means and the covariances through time using the

Gaussian Particle Filter.

• The Most Difficult Case:

• When the process model and the observation model are nonlinear

and we cannot assume the prior p(x0) and/or the noise processes

to be Gaussian, then we must carry out full-blown Bayesian

estimation at each step. This may require a particle filter with

resampling at every time step.
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5.8: Gaussian Particle Filters

• Let’s go back to the two fundamental (but interdependent)

equations (39) and (41) that yield the filtering distribution and

the predictive distribution:

p(xk|y1:k) = Ck · p(yk|xk) · p(xk|y1:k−1) (42)

p(xk+1|y1:k) =

∫
p(xk+1|xk) · p(xk|y1:k) dxk (43)

• The first equation above can be interpreted as saying that the

current best filtering distribution is a product of the likelihood

distribution (based on just the current hidden state) and the

predictive distribution for the current state taking into account all

the past observations. The second equation can be interpreted as

saying that the prediction for the next time instant is a

summation over all possibilities of the applicable transitions

starting from the current filtering distribution.

• In Gaussian Particle Filtering, we assume that the filtering

distribution on the left in Eq. (42) is a Gaussian given by

N (xk; µxk
,Σxk

).
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• Similarly, we assume that the predictive distribution on the left in

Eq. (43) is a Gaussian given by N (xk+1; µ̂xk+1
, Σ̂xk+1

).

• So we are faced with the following two problems:

– How do we compute (µxk
,Σxk

) from the predicted (µ̂xk
, Σ̂xk

) ?

– How do we estimate the prediction (µ̂xk
, Σ̂xk

)?
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5.9: Estimation of (µxk,Σxk) in Kotecha-Djuric
Gaussian Particle Filtering Algorithm

• In order to compute the filtering distribution parameters (µxk
,Σxk

)

at time k, we note from Eq. (42):

p(xk|y1:k) ≈ Ck · p(yk|xk) · N (xk; µ̂xk
, Σ̂xk

) (44)

• Estimating the parameters (µxk
,Σxk

) of the filtering distribution

on the left requires we take various moments of the product on

the right. For example, to find µxk
requires that we multiply the

right hand side of the above equation by xk and integrate over all

possible values for xk.

• This is where Monte-Carlo rears its head again.

• We are obviously again faced with the computation of the

following sort of integral

Esome power of xk
=

∫
g(xk) · prob(xk) dxk (45)

• So, as described in Section 4 on Importance Sampling, we first

choose an importance sampling distribution q(xk) and draw its

samples
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{x(1)
k ,x

(2)
k , . . . ,x

(M)
k } (46)

• We refer to these samples as particles.

• We now treat the entire right hand side in Eq. (44) as our prob(xk)

for the calculation of the importance weights:

w
(j)
k =

p(yk|x
(j)
k ) · N (xk = x

(j)
k ; µ̂xk

, Σ̂xk
)

q(x
(j)
k )

(47)

We can ignore the normalization constant Ck in Eq. (44) because

it is going to drop out of our normalized importance

weights anyway. These are shown below:

W
(j)
k =

w
(j)
k∑M

i=1w
(i)
k

(48)

• Note that the first term in the numerator of Eq. (14) is trivially

computed because yk is a specific observed value, x(j)
k is a specific

sample value for xk, and, even more importantly, because we

assumed that f() and h() are known functions and the noise

processes u and v with known distributions.

• Having calculated the normalized importance weights W
(j)
k , let’s

now go back to the goal of using Monte-Carlo integration to

calculate the various moments of the filtering probability

distribution shown in Equation (13).
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• The Monte-Carlo formula says we can estimate the mean and the

covariance of the filtering distribution at time step k by using the

following weighted sums of the samples drawn from the

importance sampling distribution:

µk =

M∑

j=1

W
(j)
k · x

(j)
k (49)

Σk =

M∑

j=1

W
(j)
k · (µk − x

(j)
k )(µk − x

(j)
k )T (50)

• We obviously can derive similar formulas for estimating the

predicted parameters µ̂xk
, Σ̂xk

that are needed in the importance

weight calculations in Eq. (47).

• These can be obtained in the same manner as the parameters for

the filtering distribution at time step k.
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5.10: How Does the Importance Sampling at
Time k Relate to the Importance Sampling at

Time k + 1

• Let’s say the particles at time k are given by

{x(1)
k ,x

(2)
k , . . . ,x

(M)
k } (51)

To construct the set of M particles at time k + 1, we propagate

each particle through the process model. Therefore, the jth

particle at time k + 1 is given by

x
(j)
k+1 = f(x

(j)
k ,u

(j)
k+1) j = 1, . . . ,M (52)

• where u
(j)
k+1 is a randomly drawn jth sample from the process model

noise distribution N (u;µu,Σu).

• As we propagate the particles through successive time steps, they

are only getting dithered by the process model noise.

• In more general approaches to particle filtering, as you calculate

the posterior for the state vector at each time instant, you choose

the importance sampling distribution that is adapted to that

posterior in order to make the prediction for the next time
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instant. This is referred to particle filtering with resampling or

as sequential importance sampling (SIS).
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