
Expectation-Maximization Algorithm for Clustering

Multidimensional Numerical Data

Avinash Kak

Purdue University

March 3, 2024

3:19pm

An RVL Tutorial Presentation

(First presented in Summer 2012, updated Jan 2017, and reformatted in March 2024)

©2024 Avinash Kak, Purdue University

Expectation Maximization An RVL Tutorial

CONTENTS

Page

1 What Makes EM Magical? 3

2 EM: The Core Notions 5

3 An Example of EM Estimation in Which the 10
Unobserved Data is Just the Missing Data

4 EM for Clustering Data That Can be Modeled 24
as a Gaussian Mixture

5 Algorithm::ExpectationMaximization — a Perl 45
Module

6 Convenience Scripts in the examples Directory 54
of the Module Algorithm::ExpectationMaximization

17 Some Clustering Results Obtained with 56
Algorithm::ExpectationMaximization

20 Acknowledgments 69

2

Expectation Maximization An RVL Tutorial

Back to TOC

1: What Makes EM Magical?

• Despite the fact that EM can occasionally get stuck in a local

maximum as you estimate the parameters by maximizing the

log-likelihood of the observed data, in my mind there are three

things that make it magical:

– the ability to simultaneously optimize a large number of variables

– the ability to find good estimates for any missing information in your data at the
same time

– and, in the context of clustering multidimensional data that lends itself to
modeling by a Gaussian mixture, the ability to create both the traditional “hard”
clusters and and not-so-traditional “soft” clusters.

• With regard to the ability of EM to simultaneously optimize a

large number of variables, consider the case of clustering

three-dimensional data:

– Each Gaussian cluster in 3D space is characterized by the following 10 variables:
the 6 unique elements of the 3× 3 covariance matrix (which must be symmetric
and positive-definite), the 3 unique elements of the mean, and the prior associated
with the Gaussian.

– Now let’s say you expect to see six Gaussians in your data. What that means is
that you would want the values for 59 variables (remember the unit-summation
constraint on the class priors which reduces the overall number of variables by
one) to be estimated by the algorithm that seeks to discover the clusters in your
data.

3

Expectation Maximization An RVL Tutorial

– What’s amazing is that, despite the large number of variables that need to be
optimized simultaneously, the chances are that the EM algorithm will give you a
very good approximation to the correct answer.

• About EM returning both hard and soft clusters, by hard

clusters I mean a disjoint partition of the data. This is normally

what classifiers do. By soft clusters I mean allowing for a data

point to belong to two or more clusters at the same time, the

“level of membership” in a cluster being expressed by the

posterior probabilities of the classes at the data point. (We will

use the words “cluster” and “class” synonymously in this

tutorial.)

4

Expectation Maximization An RVL Tutorial

Back to TOC

2: EM: The Core Notions

• EM is based on the following core ideas:

– That there exists an analytic model for the data and that we know the functional
form of the model. However, we do NOT know the values for the parameters that
characterize this functional form).

– We have a set of recorded data points in some multidimensional space, but some
elements of the data are missing. (If you are mystified by this statement, do not
worry. It will become clear shortly.)

– We refer to the missing elements of the data as unobserved data.

– While in some cases of estimation, it is easy to put your finger on what could be
referred to as unobserved data, in others it can take some imagination — some
other way of looking at your recorded data for you to be able to conceptualize the
existence of unobserved data

– Regardless of how you bring into play the unobserved data — whether due to the
fact that you actually failed to record some of the data or whether your new way
of looking at the data generation process brought into existence certain
unobservables — the notion of unobserved data is central to a strict
implementation of the EM algorithm.

– Some folks refer to the unobserved data through the notion of hidden variables.

– However, the problem with the terminology “hidden variables” is that it fails to
capture the fact that some portions of the data may be missing because, say, your
equipment failed to record them at the moment they became available. It’s too
much of a stretch of imagination to refer to such “failure to record” in terms of
“hidden variables”.

– The notion of unobserved data is central to EM because that is what makes it
possible to construct an iterative procedure for the maximization of the
log-likelihood of the observed data.

5

Expectation Maximization An RVL Tutorial

– Obviously, we wish for EM to find the maximum-likelihood (ML) estimates for the
parameters of the data model. The model parameters estimated by EM should be
ML in the sense that they maximize the likelihood of all of the observed data.

– We also wish for EM to give us the best possible values (again in the most
likelihood sense vis-a-vis all the observed data) for the unobserved data.

• Since folks new to EM have difficulty with the notion of

unobserved data, the rest of this section presents two examples,

one in which the unobserved data is literally so — that is, a

part of the data that needed to be recorded was not recorded —

and the other in which the unobserved data is a product of our

imagination. The first example is by Duda, Hart, and Stork and

the second based on a tutorial presentation of EM by Jeff

Bilmes, “ A Gentle Tutorial of the EM Algorithm and its

Applications to Parameter Estimation for Gaussian Mixtures

and Hidden Markov Models,” Tech. Report, U. C. Berkeley.

Example 1 of Unobserved Data:

– Consider the case when the observed data consists of N points in

a 2D plane.

– Let’s say that we know a priori that a single bivariate Gaussian
is a good model for the data. We only know the functional form

of the model — we do NOT know the values for the parameters
of this model.

– That is, if ~x represents one element of the observed data, we can
write

6

Expectation Maximization An RVL Tutorial

p(~x) =
1

(2π)d/2 |Σ|1/2
e−

1

2
(~x−~µ)TΣ−1(~x−~µ) (1)

where d = 2 and |Σ| is the determinant of the 2× 2 covariance
matrix Σ. We think of ~x as a 2-dimensional column vector. (The

formula shown is for the general case of a d-dimensional ~x.)

– The yet-unknown mean of the observed data is represented by
the 2-dimensional column vector ~µ.

– The yet-unknown covariance of the observed data represented by

a positive-definite and symmetric 2× 2 matrix Σ.

– We are therefore talking about 5 unknowns in the Gaussian
model, of which three are for the symmetric 2× 2 covariance

matrix Σ and two for the mean vector ~µ.

– Given the data model as described above, let’s say we are in
possession of N observations, of which the last one is only

partial. We consider an observation to be partial if only one of
the two coordinates is known.

– Let’s denote the N − 1 complete observations by ~x1, ~x2, . . . and
~xN−1, and the last partial observation by ~x∗

N
.

– The question here is: Can EM be used to estimate the
parameters of the underlying Gaussian model, while at the same
time, providing us with an estimate for the missing potion of the

observation ~x∗
N
?

7

Expectation Maximization An RVL Tutorial

Example 2 of Unobserved Data:

– Consider the following case: Our observed data can be modeled
by a mixture of K Gaussians in which each Gaussian is given by

p(~x) =
1

(2π)d/2 |Σi|1/2
e−

1

2
(~x− ~µi)TΣi

−1(~x− ~µi) (2)

– In the above model, |Σi| is the determinant of the d× d

covariance matrix Σi for the ith Gaussian, µi the mean of the
same. We also associate a prior probability ai with the ith

Gaussian with regard to its contribution to the mixture.

– Our goal is automatic clustering of the observations into disjoint

clusters, which each cluster corresponding to a single Gaussian.

– The question here is whether EM can be used to estimate the
class labels for the data elements, while, at the same time,

estimating the means and the covariances of the individual
Gaussians in the mixture.

– We obviously need to conceptualize the existence of unobserved

data in this case. On the face of it, it is not clear as to what
would constitute the unobserved data after we have recorded the

N data points.

– As it turns out, we can conceptualize the needed unobserved
data by thinking of the data generation process in a manner that

allows a random variable to be associated with the selection of
the Gaussian for each data point, as we next describe.

8

Expectation Maximization An RVL Tutorial

– We imagine the N data observations ~x1, ~x2, . . . , ~xN as having
been generated sequentially through N different data generation

events.

– Next, we bring into existence a sequence of N scalar random
variables Y = {y1, y2, . . . , yN} that correspond to the N

observations X = {~x1, ~x2, . . . , ~xN} on an index-by-index basis.
The variable yi will take on a random value from the set

{1, 2, . . . , K}, the value corresponding to the Gaussian that was
chosen for the production of ~xi.

– As shown in Section 4 of this tutorial, treating
Y = {y1, y2, . . . , yN} as unobserved data allows us to use the EM

algorithm for an iterative maximization of the log-likelihood for
the data actually observed.

– In this case, it makes sense to refer to the unobserved data as the

hidden variables in the estimation process.

• As mentioned earlier, the next section will present an example

in which the unobserved data is literally so. Subsequently, in

Section 4, we will talk about using EM for clustering Gaussian

mixture data.

9

Expectation Maximization An RVL Tutorial

Back to TOC

3: An Example of EM Estimation in Which

the Unobserved Data is Just the Missing

Data

• This example is by Duda, Hart, and Stork (DHS) from their

book “Pattern Classification,” pages 126-128.

• My goal in using the DHS example is both to illustrate that the

unobserved data can indeed be just the missing data, and to

develop the notion of how the unobserved data facilitates the

development of an iterative method for the maximization of the

log-likelihood of the data actually observed.

• The observed data in this example will consist of four randomly

produced points in a plane, with only the second coordinate

available for the last point.

• The coordinate values for the four observed points are:

~x1 =
(

0
2

)

, ~x2 =
(

1
0

)

, ~x3 =
(

2
2

)

, and ~x4 =
(

∗
4

)

. Since

the first coordinate of the last observation, ~x4, is unknown, we

use the symbol ’*’ for its value.

10

Expectation Maximization An RVL Tutorial

• We will denote the last observation ~x4 =
(

x4,1

4

)

, where the

variable x4,1 stands for the missing information in the data.

• So the problem is to estimate a value for x4,1 that would be

“consistent” — consistent in the maximum-likelihood sense —

with the observed values for ~x1, ~x2, ~x3, and for the x4,2
coordinate of ~x4.

• To keep the example simple, we assume the observed data can

be modeled by a Gaussian with uncorrelated x and y

coordinates.

• The Gaussian distribution for the data is given by

p(~x) =
1

(2π)d/2 |Σ|1/2
e−

1

2
(~x−~µ)TΣ−1(~x−~µ) (3)

where d = 2, and with the covariance of this Gaussian given by

Σ =

[

σ2
1 0
0 σ2

2

]

(4)

• We will express the mean of the Gaussian in terms of its

coordinates through:

~µ =

(

µ1

µ2

)

(5)

11

Expectation Maximization An RVL Tutorial

• As the reader can see, there are four parameters, yet unknown,

in the data model: σ2
1, σ

2
2, µ1 and µ2. We will next talk about

how these parameters can be estimated with EM.

• The EM algorithm requires us to iterate through the following

two steps:

1. The Expectation Step: Using the current best guess for the parameters of the
data model, we construct an expression for the log-likelihood for all data,
observed and unobserved, and, then, marginalize the expression with respect to
the unobserved data. This expression will be shown to depend on both the
current best guess for the model parameters and the model parameters treated as
variables. [This sentence, undoubtedly confusing at its first reading, will become
clear soon.]

2. The Maximization Step: Given the expression resulting from the previous
step, for the next guess we choose those values for the model parameters that
maximize the expectation expression. These constitute our best new guess for the
model parameters.

• The output of the Expectation Step codifies our expectation

with regard to what model parameters are most consistent with

the data actually observed and with the current guess for the

parameters — provided we maximize the expression yielded by

this step.

• We stop iterating through the two steps when any further

change in the log-likelihood of the observed data falls below

some small threshold.

12

Expectation Maximization An RVL Tutorial

• This brings us to the very important subject of the

“marginalization” of the log-likelihood of all the data, observed

and unobserved. By marginalization in the Expectation Step we

mean integration of the log-likelihood for all data over all

possibilities for the unobserved data.

• In order to give substance to the remark made at the bottom of

the previous page, let’s first write down an expression for

log-likelihood for all data.

• Assuming the observations to have been made independently,

ordinarily, the expression for the log-likelihood for the four data

points would be

LL =
4
∑

i=1

ln p(~xi|~θ) (6)

where by the vector ~θ we mean the model parameters:

~θ =

µ1

µ2

σ2
1

σ2
2

(7)

• However, since we know that the last point, ~x4, was observed

only partially — that is, only the second coordinate of the last

point was actually observed — we need to tease it out of the

summation in Eq. (6) for special treatment later.

13

Expectation Maximization An RVL Tutorial

• So let’s write the log-likelihood expression in the following form:

LL =

3
∑

i=1

ln p(~xi|~θ) + ln p(~x4|~θ) (8)

• As you will see later, in the Maximization Step of each iteration

of EM, we would want to choose a value for the parameter

vector ~θ that maximizes the log-likelihood shown above.

Although, in and of itself, that sounds straightforward, the

reality of what needs to be maximized is a little bit more

complex.

• We want the maximization of the log-likelihood to NOT be

absolute in any sense, but to be with respect to the current

guess for the model parameter vector ~θ. (If we could solve the

absolute maximization of the log-likelihood problem, we would

not need the EM algorithm.)

• To address the issue raised in the previous bullet, let’s denote

the current guess for the model parameters by ~θg. So the

question then becomes as to how to “link-up” the log-likelihood

expression shown in Equation (8) with ~θg.

• The value for the log-likelihood shown in Eq. (8) depends

obviously on the data coordinate x4,1, whose value we do not

know. The best way to deal with this lack of knowledge about

14

Expectation Maximization An RVL Tutorial

x4,1 is to average out the log-likelihood with respect to x4,1.

• In a multi-variable scenario, averaging out an entity with

respect to any single variable means carrying out a marginal

integration of the entity with respect to the probability density

function for the variable in question.

• The question then arises as to what density function to use for

the variable x4,1. This is where the current best guess

about the data model comes in. Recall, we represent our

current best guess for the data model by the parameter vector
~θg.

• Since the parameter vector ~θg is for a model that includes two

coordinates, in and of itself, this parameter vector does not

apply directly to the scalar variable x4,1.

• So the best we can do for the needed density function for x4,1 at

the moment is to express it generally as p(x4,1|~θg, x4,2 = 4).

• Now we are ready to write the log-likelihood for all of the data

observations, while taking into account the missing data

coordinate x4,1.

15

Expectation Maximization An RVL Tutorial

• As stated earlier, the new log-likelihood will be a

marginalization of the original log-likelihood over the

unobserved data element:

LL′ =

∫ ∞

−∞

{

3
∑

i=1

ln p(~xi|~θ) + ln p(~x4|~θ)
}

p(x4,1|~θg, x4,2 = 4) dx4,1 (9)

As you can see, this marginalization of the log-likelihood over

x4,1 is with respect to the current best guess ~θg for the model

parameters.

• Since the observations of the four data points in the 2D plane

are independent of one another, the marginalization shown

above with respect to the variable x4,1 does not affect the

contribution to the log-likelihood by ~x1, ~x2, and ~x3.

• The x4,1-marginalized log-likelihood shown in Eq. (9) can

therefore be simplified to:

LL′ =
3
∑

i=1

ln p(~xi|~θ) +

∫ ∞

−∞

(

ln p(~x4|~θ)
)

p(x4,1|~θg, x4,2 = 4) dx4,1 (10)

• We will now use Bayes’ Rule to simplify the integral on the

right in Eq. (10) as shown next.

• Applying the Bayes’ Rule to the second term of the integrand in

Eq. (10):

16

Expectation Maximization An RVL Tutorial

∫ ∞

−∞

(

ln p(~x4 | ~θ)
)

p(x4,1 | ~θg, x4,2 = 4) dx4,1

=

∫ ∞

−∞

ln p(~x4 | ~θ) p(x4,1, ~θ
g, x4,2 = 4)

p(~θg, x4,2 = 4)
dx4,1

=

∫ ∞

−∞

ln p(~x4 | ~θ)
p

((

x4,1

4

) ∣

∣

∣

∣

~θg
)

· p(~θg)

p(x4,2 = 4 | ~θg) · p(~θg)
dx4,1

=

∫ ∞

−∞

ln p(~x4 | ~θ)
p

((

x4,1

4

) ∣

∣

∣

∣

~θg
)

p(x4,2 = 4|~θg)
dx4,1

=

∫ ∞

−∞

ln p(~x4 | ~θ)
p

((

x4,1

4

) ∣

∣

∣

∣

~θg
)

∫∞

∞
p

((

x′
4,1

4

) ∣

∣

∣

∣

~θg
)

dx′
4,1

dx4,1

(11)

• The final expression shown above is easy to handle since all the

probabilities are now described by the Gaussian model in Eq.

(3).

• The x4,1-marginalized log-likelihood shown in Eq. (10) can

therefore be expressed as:

LL′ =
3
∑

i=1

ln p(~xi|~θ) +

∫ ∞

−∞

ln p(~x4 | ~θ)
p

((

x4,1

4

) ∣

∣

∣

∣

~θg
)

∫∞

∞
p

((

x′
4,1

4

) ∣

∣

∣

∣

~θg
)

dx′
4,1

dx4,1 (12)

Notice that this is a function of both the current guess ~θg for

the model parameters, which basically is a set of constant

17

Expectation Maximization An RVL Tutorial

values, and the variables for the new guess in the vector ~θ.

• The result in Equation (12) is our expectation for the

log-likelihood of the observed data as a function of the variables

in ~θ.

• Now that we have a “general” expression for the log-likelihood

expectation for the model parameters, it’s time to get to

the business of applying the EM algorithm to the

problem at hand — for both the purpose of

estimating the model parameters and the missing

x4,1.

• In the discussion that follows, we will refer to the Expectation

Step as the E-Step and the Maximization Step as the M-Step.

• For the very first iteration through the two steps, we must make

a reasonable random guess for the model parameters. We will

choose

~θg =

0
0
1
1

(13)

• In other words, we are choosing zero mean and unit variance as

the initial guess for the model parameters.

18

Expectation Maximization An RVL Tutorial

• For the invocation of the E-Step in the first iteration of the EM

algorithm, we plug the guess in Eq. (13) in Eq. (12) and we get

LL′ =
3
∑

i=1

ln p(~xi|~θ) +
1

D

∫ ∞

−∞

ln p(~x4 | ~θ) p

((

x4,1

4

) ∣

∣

∣

∣

~θg
)

dx4,1 (14)

where the constant D stands for the denominator integral on

the right hand side in Eq. (12). It is given by

D =

∫ ∞

−∞

p

(

x′
4,1

4

)

∣

∣

∣

∣

∣

∣

∣

∣

0
0
1
1

dx′
4,1

=

∫ ∞

−∞

1

2π
e

−1

2
(x2

4,1+42) dx′
4,1

=
e−8

√
2π

(15)

• We will now simplify the integral in Eq. (14) as follows:

∫ ∞

−∞

ln p(~x4 | ~θ) p

((

x4,1

4

) ∣

∣

∣

∣

~θg
)

dx4,1

19

Expectation Maximization An RVL Tutorial

=

∫ ∞

−∞

ln p

(

x4,1

4

)

∣

∣

∣

∣

∣

∣

∣

∣

µ1

µ2

σ2
1

σ2
2

· 1

2π
e−

1

2
(x2

4,1+42)dx4,1

=

∫ ∞

−∞

ln

(

1

2πσ1σ2
e−

1

2((x4,1−µ1)2σ2
1
+(4−µ2)2σ2

2)
)

· 1

2π
e−

1

2
(x2

4,1+42)dx4,1

=

∫ ∞

−∞

{

ln

(

1

2πσ1σ2

)

− 1

2

[

(x4,1 − µ1)
2σ2

1 + (4− µ2)
2σ2

2

]

}

· 1

2π
e−

1

2
(x2

4,1+42)dx4,1

=

∫ ∞

−∞

ln

(

1

2πσ1σ2

)

1

2π
e−

1

2
(x2

4,1+42)dx4,1 −
1

2

∫ ∞

−∞

[

(x4,1 − µ1)
2σ2

1 + (4− µ2)
2σ2

2

]

· 1

2π
e−

1

2
(x2

4,1+42)dx4,1

= ln

(

1

2πσ1σ2

)

· e−8

√
2π

1

2

[

(1 + µ2
1)

2σ2
1 + (16− 8µ2 + µ2

2)σ
2
2

]

· e−8

√
2π

(16)

• We used the following two properties of the Gaussian integrals

in deriving the final expression shown in Eq. (16):

1√
2π

∫ ∞

−∞

e−
z2

2 dz = 1

∫ ∞

−∞

z2e−z2dz =
√
2π

(17)

where the second property is a simplification of the following

result concerning Gaussian integrals (see Wikipedia page on

“Gaussian integrals”):
∫ ∞

0

z2ne−
z2

a2 dz =
√
π
(2n)!

n!

(a

2

)2n+1

20

Expectation Maximization An RVL Tutorial

• Substituting Eq. (16) in Eq. (14), we get for our marginalized

log-likelihood:

LL′ =

3
∑

i=1

ln p(~xi|~θ) +
1

2

[

(1 + µ2
1)

2σ2
1 + (16− 8µ2 + µ2

2)σ
2
2

]

− ln(2πσ1σ2)

(18)

That completes the E-Step in the first iteration of the EM

algorithm.

• For the M-Step, we substitute in the first term of the

log-likelihood expression of Eq. (18) the values of p(~x)

evaluated at ~x1 =
(

0
2

)

, ~x2 =
(

1
0

)

, and ~x3 =
(

2
2

)

. We then

take the partial derivatives of the log-likelihood with respect to

the parameters µ1, µ2, σ
2
1 and σ2

2. Setting these partial

derivatives to zero, we obtain the following values for the new

guess according to the result shown on page 127 of Duda, Hart,

and Stork:

~θnew =

0.75
2.0
0.918
2.0

(19)

• This completes one iteration of the EM algorithm.

• Duda, Hart, and Stork tell us that the EM algorithm converges

in three iterations to the values shown below for µ1, µ2, σ
2
1, and

σ2
2:

21

Expectation Maximization An RVL Tutorial

~θnew =

1.0
2.0
0.667
2.0

(20)

• Subsequently, we may construct an ML estimate for the missing

x4,1 by substituting ~x =
(

x4,1

4

)

and the values estimated by

EM for the parameter ~µ and Σ in Eq. (3), taking the natural

log of the resulting expression to obtained the log-likelihood,

and setting its derivative with respect to x4,1 to 0. In our case,

this returns the answer x4,1 = 1.0.

• The example presented in this section represents a strict

interpretation of what is meant by an

Expectation-Maximization algorithm. In general, it is possible

to come up with “looser” interpretations in which we relax the

condition that each new guess for the parameters being

estimated be optimum (from the standpoint of optimizing the

log-likelihood of the observed data).

• If we had to re-work the example presented so far in accordance

with a looser interpretation of EM, after the initial guess ~θg, we

would obtain an ML estimate for the missing x4,1 in the manner

described previously. That would constitute our E-Step.

Subsequently, we would use the estimated value for x4,1 to

construct an ML estimate for the next guess ~θnew, and so on.

22

Expectation Maximization An RVL Tutorial

We would continue the iterations as long as the log-likelihood of

the actually observed data continues to increase.

• In both the strict and the loose interpretations (the loose

interpretation is also referred to as the Generalized Expectation

Maximization algorithm), the algorithm is guaranteed to

converge to a local maximum of the log-likelihood of the

observed data.

23

Expectation Maximization An RVL Tutorial

Back to TOC

4: EM for Clustering Data That Can be

Modeled as a Gaussian Mixture

• Let’s say we have observed the following N data points in a

d-dimensional space:

X = {~x1, ~x2, . . . ~xN} (21)

We will assume that these N points are drawn from K

Gaussian distributions, with the ℓth distribution characterized

by the parameters θℓ = {~µℓ,Σℓ}, where µℓ is the mean and Σℓ

the covariance. We also assume that the different Gaussian

distributions do not carry equal weight with regard to their

contributions to the observed data. We will represent this fact

by associating a prior probability aℓ with the ℓth Gaussian.

Obviously,
∑K

ℓ=1 aℓ = 1.

• We further assume that do not know which element of X was

drawn from which of the Gaussians. However, we do know that

each element of the dataset X is characterized by the following

mixture probability density function:

p(~x | Θ) =

K
∑

ℓ=1

aℓ · pℓ(~x | θℓ) (22)

24

Expectation Maximization An RVL Tutorial

where, as mentioned above, aℓ is the prior associated with the

ℓth Gaussian, and Θ represents all the parameters involved in

the description of the mixture:

Θ = (a1,, aK ; θ1,, θK) (23)

As you would expect, the ℓth Gaussian in the mixture is given by

pℓ(~x|θℓ) =
1

(2π)d/2 |Σℓ|1/2
e−

1

2
(~x− ~µℓ)

TΣ−1

ℓ
(~x− ~µℓ) (24)

where θℓ = (~µℓ,Σℓ) represents the parameters for just the ℓth

Gaussian.

• If we assume that the N observations in X are independent, we

can write the following expression for the probability

distribution for all of the observations in X :

p(X |Θ) =

N
∏

i=1

p(~xi | Θ)

=

N
∏

i=1

(

K
∑

ℓ=1

aℓ · pℓ(~xi | θℓ)
)

(25)

• Substituting the individual Gaussians from Eq. (24) in Eq.

(25), we can write for the probability distribution for all of our

dataset:

25

Expectation Maximization An RVL Tutorial

p(X |Θ) =
N
∏

i=1

(

K
∑

ℓ=1

aℓ ·
1

(2π)d/2 |Σℓ|1/2
e−

1

2
(~xi− ~µℓ)

TΣ−1

ℓ
(~xi− ~µℓ)

)

(26)

• Focusing on Eq. (26), if we knew the parameter set Θ, then

p(X|Θ) is obviously a probability distribution for the dataset

X . However, if our goal is to estimate Θ from a given set of

observations X = {~x1, ~x2, . . . ~xN}, then we prefer to think

of the right hand side in Eq. (26) as the likelihood that tells us

how likely the known observations in X are for candidate values

for the elements of Θ. To make this fact more explicit, we

rewrite Eq. (26) as

L(Θ | X) =
N
∏

i=1

(

K
∑

ℓ=1

aℓ ·
1

(2π)d/2 |Σℓ|1/2
e−

1

2
(~xi− ~µℓ)

TΣ−1

ℓ
(~xi− ~µℓ)

)

(27)

• Our goal is to construct a Maximum Likelihood estimate for Θ

by seeking Θ∗ that maximizes the log-likelihood:

Θ∗ = argmax
Θ

ln (L(Θ | X)) (28)

• Substituting Eq. (27) in Eq. (28), we get

Θ∗ = argmax
Θ

ln

[

N
∏

i=1

(

K
∑

ℓ=1

aℓ ·
1

(2π)d/2 |Σℓ|1/2
e−

1

2
(~xi− ~µℓ)

TΣ−1

ℓ
(~xi− ~µℓ)

)]

= argmax
Θ

N
∑

i=1

ln

[(

K
∑

ℓ=1

aℓ ·
1

(2π)d/2 |Σℓ|1/2
e−

1

2
(~xi− ~µℓ)

TΣ−1

ℓ
(~xi− ~µℓ)

)]

(29)

26

Expectation Maximization An RVL Tutorial

• Looking at the expression shown on the right hand side above,

our goal of finding a Θ that maximizes the log-likelihood is

made difficult by the fact that we are dealing with the logarithm

of a summation of exponentials. So the usual convenience

afforded by the fact that the logarithm of an isolated Gaussian

distributions reduces to a simple quadratic cannot help us here.

• This is where the EM algorithm comes to our rescue.

• In order to use EM, we obviously need to conceptualize the

existence of unobserved data in this case. As mentioned earlier

in the second half of Section 3, we can conceptualize the needed

unobserved data by thinking of the data generation process in a

manner that allows a random variable to be associated with the

selection of the Gaussian for each data point. We imagine the

N observations ~x1, ~x2, . . . , ~xN to be the results of N different

data generation events.

• Next, we bring into existence a sequence of N scalar random

variables Y = {y1, y2, . . . , yN}, with yi corresponding to the

data generation event that resulted in us making the

observation ~xi.

• Think of each yi as a Gaussian-selector random variable. There

are N of them and each such variable takes on a value from the

set {1, 2, . . . , K}.
27

Expectation Maximization An RVL Tutorial

• The value of the random variable yi being yi = ℓ implies that

the ith data element was generated by the Gaussian pℓ() whose

mean is µℓ and covariance Σℓ.

• Treating Y = {y1, y2, . . . , yN} as unobserved data allows us to

use the EM algorithm for an iterative maximization of the

log-likelihood for the data actually observed.

• While previously we wanted to estimate Θ by maximizing the

likelihood L(Θ|X), we now want to subject the estimation of Θ

to the maximization of L(Θ | X ,Y). We note:

L(Θ | X ,Y) = p(X ,Y | Θ)

=

N
∏

i=1

p(~xi, yi | Θ)

=
N
∏

i=1

p(~xi | yi,Θ) · p(yi) (30)

• Note that we are using the notation p() generically, in the sense

that that p() in Eq. (30) simply stands for the probability of its

argument. So in the second term in Eq. (30), p(yi) stands for

the probability that a Gaussian-selector random variable will

take on the value yi.

• Since the conditioning of the probability p(~xi | yi,Θ) jointly on

the Gaussian-selector random variable yi and Θ is the same as

28

Expectation Maximization An RVL Tutorial

choosing just the parameters θyi that correspond to the yi
th

Gaussian, L(Θ|X ,Y) can be further simplified as follows

L(Θ | X ,Y) =

N
∏

i=1

pyi(~xi | θyi) · p(yi)

=

N
∏

i=1

ayi · pyi(~xi | θyi)

(31)

• Eq. (31) makes explicit the fact that the likelihood for all data

— both observed and unobserved — depends on the values

taken on by the Gaussian-selector random variables, yi’s, for

each of the data production events.

• Of course, in practice, we want to maximize the log-likelihood.

So we rewrite the result in Eq. (31) in the following form:

LL =
N
∑

i=1

ln
(

ayi · pyi(~xi | θyi)
)

(32)

• At this point, the reader would be well served by reviewing

Section 3 of this tutorial. In our discussion here, we are about

to invoke one of the most central notions of EM — the

marginalization of the log-likelihood of all data over the

unobserved data — that was developed in that section.

29

Expectation Maximization An RVL Tutorial

• At this point in our derivation, we are at about the same point

as where we were just prior to Eq. (9) in Section 3. If you

understood the discussion in that section, you know that we

next need to marginalize the log-likelihood shown in Eq. (32)

with respect to the unobserved data Y . This we do by writing:

LL′ =

K
∑

y1=1

. . .

K
∑

yN=1

(

N
∑

i=1

ln
(

ayi · pyi(~xi | θyi)
)

)

· p(y1 . . . yN | Θg,X) (33)

where Θg represents the current guess for the parameters we

need to estimate. Again using the notation p() generically, the

notation p(y1, . . . , yN) is for the joint probability of the N

Gaussian-selector random variables taking on the values y1
through yN .

• The Y-marginalized log-likelihood in Eq. (33) is obviously the

expectation of the observed-data log-likelihood with

respect to the hidden variables in Y . On the other hand, Eq.

(32) shows the complete-data log-likelihood. By this time you

obviously know that by “complete data” I mean both the

observed data X and the unobserved data Y .

• With regard to the y1 . . . yN -summations in Eq. (33), note the

role played by the unknown distribution p(y1, . . . , yN). This

distribution is obviously related to the Gaussian priors ai’s for

the K Gaussians in the mixture. Just imagine the extreme case

when, say, a0 is 0.99 and all other K − 1 ai’s are close to zero.

30

Expectation Maximization An RVL Tutorial

For such an extreme case, most of the N yi’s will be set to 0.

This dependence on the K priors, ai’s, must somehow be

reflected in the distribution p(y1, . . . , yN).

• Since our data generation model is based on the assumption

that the choice of the Gaussian at each of the N data

production events is made randomly (and independently of the

other such choices), we can write

p
(

y1 . . . yN | Θg,X
)

=

N
∏

i=1

p(yi | Θg,X)

=

N
∏

i=1

p(yi | ~xi,Θ
g)

(34)

where the second expression again is based on the independence

of data generation at each of the N different data production

events.

• Note that p(yi | ~xi,Θ
g) stands for

the probability that a Gaussian selector has value yi given that the observed
data element has value ~xi and that the parameters of the mixture are set to
Θg

• Using Bayes’ Rule, the above probability can be expressed in

the following form:

31

Expectation Maximization An RVL Tutorial

the probability that the observation is ~xi and the mixture parameters are Θg

given that the Gaussian-selector has value yi

multiplied by

the probability that the Gaussian-selector has value yi

and divided by

the probability that the observation is ~xi and the mixture parameters are Θg

• Expressed mathematically, we can therefore write

p(yi | ~xi,Θ
g) =

pyi(~xi,Θ
g|yi) · agyi

p(~xi,Θg)

=
pyi(~xi | Θg, yi) · p(Θg) · agyi

p(~xi|Θg) · p(Θg)

=
pyi(~xi|θgyi) · agyi
p(~xi | Θg)

=
pyi(~xi|θgyi) · agyi
∑K

i=1 a
g
i pi(~xi | θgi)

(35)

• We will now go back to Eq. (33) for the expected log-likelihood

for the observed data and simplify it further. Substituting Eq.

(34) in Eq. (33), we get

LL′ =
K
∑

y1=1

. . .

K
∑

yN=1

(

N
∑

i=1

ln
(

ayi · pyi(xi | θyi)
)

)

·
N
∏

j=1

p(yj | ~xj ,Θ
g) (36)

• We will next isolate out the inner summation shown above,
∑N

i=1 ln
(

ayi · pyi(xi | θyi)
)

, over the N observed-data generation events

32

Expectation Maximization An RVL Tutorial

from the summations over the variables in Y by first expressing,

as shown below, the inner summation as a double summation

with the help of the Kronecker delta function δℓ,yi (which equals

1 when ℓ = yi and zero otherwise):

N
∑

i=1

ln
(

ayi · pyi(xi | θyi)
)

=
K
∑

ℓ=1

N
∑

i=1

δℓ,yi ln
(

aℓ · pℓ(xi | θℓ)
)

(37)

• Note that the above re-write of the inner summation in Eq. (36)

merely expresses the choice that the Gaussian selector at the

data generation event indexed i is set to ℓ.

• Substituting Eq. (37) in Eq. (36), we can write

LL′ =

K
∑

ℓ=1

N
∑

i=1

ln
(

aℓ · pℓ(xi | θℓ)
)

K
∑

y1=1

. . .

K
∑

yN=1

δℓ,yi ·
N
∏

j=1

p(yj | ~xj ,Θ
g) (38)

• We will now focus on the just the portion
∑K

y1=1 . . .
∑K

yN=1 δℓ,yi ·
∏N

j=1 p(yj | ~xj ,Θ
g) of the right hand side of Eq.

(38) and show that it simplifies to just p(ℓ | ~xi,Θ
g), where

p(ℓ | ~xi,Θ
g) is the probability that the value of the

Gaussian-selector is ℓ given the observation ~xi and given that

the mixture parameters are Θg.

• The portion
∑K

y1=1 . . .
∑K

yN=1 δℓ,yi ·
∏N

j=1 p(yj | ~xj ,Θ
g) of Eq. (38) can

be simplified in the following manner:

33

Expectation Maximization An RVL Tutorial

K
∑

y1=1

. . .

K
∑

yN=1

(

δℓ,yi ·
N
∏

j=1

p(yj | ~xj ,Θ
g)
)

=

(

K
∑

y1=1

. . .

K
∑

yi−1=1

K
∑

yi+1=1

. . .

K
∑

yN=1

N
∏

j=1,j 6=i

p(yj|~xj,Θ
g)

)

· p(ℓ|~xi,Θ
g)

(39)

Note how the summation with respect to the variable yi
collapsed to just the term p(ℓ|~xi,Θ

g) on account of δℓ,yi. This

term is placed outside the large parentheses. So the summations

are now, first, with respect to the variables y1 through yi−1, and

then with respect to the variables yi+1 through yN .

• Expressing the summations over the product as a product over

a summation, we can re-express the result in Eq. (39) in the

following form:

K
∑

y1=1

. . .

K
∑

yN=1

(

δℓ,yi ·
N
∏

j=1

p(yj | ~xj ,Θ
g)
)

=

N
∏

j=1,j 6=i

(

K
∑

yj=1

p(yj | ~xj ,Θ
g)

)

· p(ℓ|~xi,Θ
g) (40)

• However, since
∑K

yj=1 p(yj | ~xj ,Θ
g) = 1, we end up with the

simplification:

K
∑

y1=1

. . .

K
∑

yN=1

(

δℓ,yi ·
N
∏

j=1

p(yj | ~xj ,Θ
g)
)

= p(ℓ|~xi,Θ
g) (41)

34

Expectation Maximization An RVL Tutorial

• We substitute this result in Eq. (38) to obtain a much simpler

form for the expected log-likelihood, as shown next.

• Substituting Eq. (41) in Eq. (38), we get for Y-marginalized

log-likelihood:

LL′ =
K
∑

ℓ=1

N
∑

i=1

ln
(

aℓ · pℓ(xi | θℓ)
)

· p(ℓ|~xi,Θ
g) (42)

This is the expected value of the log-likelihood of the observed

data X , with the expectation having been carried out over the

unobserved data Y .

• The result shown above lends itself to the following further

simplification:

LL′ =

K
∑

ℓ=1

N
∑

i=1

ln
(

aℓ
)

· p(ℓ|~xi,Θ
g) +

K
∑

ℓ=1

N
∑

i=1

ln
(

pℓ(xi | θℓ)
)

· p(ℓ|~xi,Θ
g) (43)

• The form shown in Eq. (43) is particularly convenient for the

maximization of the log-likelihood because it separates out the

contributions from the aℓ terms and those from the θℓ terms.

Recall our goal is to find the best values for aℓ and θℓ for all ℓ

from 1 through K since these constitute the parameters of our

data model.

35

Expectation Maximization An RVL Tutorial

• That brings to an end the analytical work for the Expectation

Step. We now have an expression for the expectation of the

log-likelihood of the observed data X , with the expectation

having been carried out over the unobserved data Y .

• Our next task obviously is the Maximization Step, which calls

on us to find the model parameters that maximize the expected

log-likelihood as expressed by Eq. (43).

• We will start with obtaining an update formula for aℓ’s, the

Gaussian priors. We want to obtain aℓ’s through a

maximization of the log-likelihood in Eq. (43) while keeping in

the mind the constraint that
∑K

ℓ=1 aℓ = 1. This calls for the use of

a Lagrange multiplier λ in the following equation:

∂

∂aℓ′

[

LL′ + λ
(

K
∑

ℓ=1

aℓ = 1
)]

= 0 (44)

for the estimation of the prior aℓ for ℓ = ℓ′.

• Substituting Eq. (43) in Eq. (44), we get:

∂

∂aℓ′

[(

K
∑

ℓ=1

N
∑

i=1

ln(aℓ) · p(ℓ|~xi,Θ
g)

)

+ λ
(

K
∑

ℓ=1

aℓ = 1
)

]

= 0 (45)

• The partial derivative with respect to aℓ′ yields the following

equation for each ℓ′ = 1 . . .K:

36

Expectation Maximization An RVL Tutorial

N
∑

i=1

∂

∂aℓ′

(

ln(aℓ′) · p(ℓ′|~xi,Θ
g)

)

+ λ = 0 (46)

• Since ∂ lnx
∂x

= 1
x
, the K equations shown above reduce to

N
∑

i=1

p(ℓ′|~xi,Θ
g) + λ · aℓ′ = 0 (47)

• Summing both sides of the K equations shown above and

recognizing that
∑K

ℓ′=1 p(ℓ
′|~xi,Θ

g) = 1 and
∑K

ℓ′=1 aℓ′ = 1, we end up with

λ = −N (48)

• Substituting the result in Eq. (48) in Eq. (47), we get following

formula:

aℓ′ =
1

N

N
∑

i=1

p(ℓ′|~xi,Θ
g) (49)

• Eq. (49) serves as a formula for EM-based updating of the

values of the priors aℓ’s. This is how the formula needs to be

interpreted: Using the guess Θg for the mixture parameters

(recall that Θg includes the guesses for the priors

aℓ, ℓ = 1 . . .K), calculate the posterior “class” probabilities

p(ℓ|~xi,Θ
g) at each of the data points ~xi, i = 1 . . .N and then use

the formula shown above to update the values for the priors. To

emphasize the fact that the formula is to be used for updating

the values of the priors, we re-express Eq. (49) as

37

Expectation Maximization An RVL Tutorial

anewℓ =
1

N

N
∑

i=1

p(ℓ|~xi,Θ
g) (50)

for ℓ = 1 . . .K.

• Note that we referred to p(ℓ|~xi,Θ
g) as posterior class probabilities.

This is in keeping with the traditional description of such

probabilities in the pattern classification literature. We are

evidently thinking of each Gaussian in the mixture as defining a

class.

• That leaves us with having to develop the EM update formulas

for the means and the covariances of the Gaussians.

• For both of these updates, we can ignore the first of the two

terms on the right hand side in the log-likelihood formula in Eq.

(43) because it does not involve the means and the covariances.

Denoting the rest of the log-likelihood by LL′′, we can write

LL′′ =
K
∑

ℓ=1

N
∑

i=1

ln
(

pℓ(~xi | θi)
)

· p
(

ℓ | ~xi,Θ
g
)

=
K
∑

ℓ=1

N
∑

i=1

[

−1

2
(~xi − ~µℓ)

TΣ−1
ℓ (~xi − ~µℓ)−

ln |Σℓ|
2

+ ln
1

(2π)d/2

]

· p
(

ℓ | ~xi,Θ
g
)

(51)

38

Expectation Maximization An RVL Tutorial

• Taking the partial derivative of right hand side above with

respect to ~µℓ′ and setting it to zero for the maximization of LL′′

yields:

N
∑

i=1

Σ−1
ℓ′ · (~xi − ~µℓ′) · p

(

ℓ′ | ~xi,Θ
g
)

= 0 (52)

• Eq. (52), which must be true for all ℓ′, ℓ′ = 1 . . .K, follows from the

fact that when a matrix A is square-symmetric, the partial

derivative ∂
∂~x
of the quadratic ∂~xTA~x

∂~x
= 2A~x.

• Eq. (52) gives the following formula for updating the means of

the Gaussians:

~µℓ′ =

∑N
i=1 ~xi · p

(

ℓ′ | ~xi,Θ
g
)

∑N
i=1 p

(

ℓ′ | ~xi,Θg
) (53)

for ℓ′ = 1 . . .K.

• To make more explicit the fact that it is an update formula for

the mean vectors, we can express it in the following form

~µnew
ℓ =

∑N
i=1 ~xi · p

(

ℓ | ~xi,Θ
g
)

∑N
i=1 p

(

ℓ | ~xi,Θg
) (54)

This formula tells us that, using the current guess Θg (which

includes guesses for the means), we first estimate the posterior

39

Expectation Maximization An RVL Tutorial

class probabilities p(ℓ|~xi,Θ
g) at each of the data points ~xi, i = 1 . . .N,

and then use the formula shown above to update the means.

• That brings us to the derivation of an update formula for the

covariances. As was the case for the means, we only need to

maximize the second of the two terms in the summation in Eq.

(43) for estimating the covariances.

• That is, we only need to maximize the expression for LL′′

shown in Eq. (51). Ignoring the constant term inside the square

brackets in Eq. (51), we now re-express LL′′ as shown below

LL′′ =

K
∑

ℓ=1

N
∑

i=1

[

−1

2
(~xi − ~µℓ)

TΣ−1
ℓ (~xi − ~µℓ)−

ln |Σℓ|
2

]

· p
(

ℓ | ~xi,Θ
g
)

(55)

• Making use of the identity that ~xTA~x = tr(A~x~xT), where tr(A)

denotes the trace of a square matrix A, we can rewrite the

above equation as

LL′′ =
K
∑

ℓ=1

[

1

2
ln
(

|Σ−1
ℓ |
)

(

N
∑

i=1

p(ℓ|~xi,Θ
g)
)

−
1

2

N
∑

i=1

p(ℓ|~xi,Θ
g) · tr

(

Σ−1
ℓ ·Nℓ,i

)

]

(56)

where the d× d matrix Nℓ,i = (~xi − ~µℓ)(~xi − ~µℓ)
T . Recall that d is the

dimensionality of our data space. In the first term above, we

also made use of the identity |A|−1 = |A−1|.

40

Expectation Maximization An RVL Tutorial

• Equation (56) is in a form that lends itself to differentiation

with respect to Σ−1
ℓ′ , ℓ

′ = 1 . . .K, for the maximization of LL′′. We

need to concern ourselves with two derivatives involving Σ−1
ℓ′ :

∂ ln(|Σ−1

ℓ′
|)

∂Σ−1

ℓ′

and ∂tr(|Σ−1

ℓ′
|)

∂Σ−1

ℓ′

. The first of these can be solved using the

identity ∂ ln |A|
∂A

= 2A−1 − diag(A−1) and the second by
∂tr(AB)

∂A
= B +BT − diag(B). Substituting these derivatives in Eq. (56)

and setting the result to zero gives us the following equation:

1

2

N
∑

i=1

p
(

ℓ′|~xi,Θ
g
)

·
(

2Σℓ′−diag(Σℓ′)
)

− 1

2

N
∑

i=1

p
(

ℓ′|~xi,Θ
g
)

·
(

2Nℓ′,i − diag(Nℓ′,i)
)

= 0

(57)

• The above equation can be recast in the following form:

1

2

N
∑

i=1

p
(

ℓ′|~xi,Θ
g
)

·
(

2Mℓ′,i − diag(Mℓ′,i)
)

= 0 (58)

where Mℓ′,i = Σℓ′ −Nℓ′,i for ℓ′ = 1 . . . N .

• The result in Eq. (58) is of the form

2S − diag(S) = 0 (59)

with

S =
1

2

N
∑

i=1

p
(

ℓ′|~xi,Θ
g
)

·Mℓ′,i (60)

41

Expectation Maximization An RVL Tutorial

• For the identity in Eq. (59) to hold, it must be case that S = 0,

implying that

1

2

N
∑

i=1

p
(

ℓ′|~xi,Θ
g
)

·Mℓ′,i = 0 (61)

which yields the following solution

Σℓ′ =

∑N
i=1 p

(

ℓ′|~xi,Θ
g
)

·Nℓ′,i
∑N

i=1 p
(

ℓ′|~xi,Θg
) (62)

for ℓ′ = 1 . . . K

• Substituting in Eq. (62) the value of Nℓ′,i = (~xi − ~µℓ)(~xi − ~µℓ)
T that

was defined just after Eq. (56) and casting the result in the

form of a update formula as we did earlier for the priors and

means, we can write

Σnew
ℓ =

∑N
i=1 p

(

ℓ|~xi,Θ
g
)

· (~xi − ~µℓ)(~xi − ~µℓ)
T

∑N
i=1 p

(

ℓ|~xi,Θg
) (63)

for ℓ = 1 . . .K.

• Since you are likely to update the covariances after you have

updated the means, perhaps a more precise way to express this

formula is:

Σnew
ℓ =

∑N
i=1 p

(

ℓ|~xi,Θ
g
)

· (~xi − ~µnew
ℓ)(~xi − ~µnew

ℓ)T
∑N

i=1 p
(

ℓ|~xi,Θg
) (64)

42

Expectation Maximization An RVL Tutorial

for ℓ = 1 . . .K.

• As with the update formulas shown earlier in Eqs. (49) and

(54), the update formula in Eq. (64) tells us that, using the

guessed parameter values in Θg (this guess obviously includes

values for Σℓ, ℓ = 1 . . . K), we first calculate the posterior

“class” probabilities at each of the data points ~xi. Subsequently,

using Eq. (64), we update the covariances for each of the

Gaussians in the mixture.

• The three update formulas in Eqs. (49), (54), and (64) all

require us to the compute using the current guess the posterior

class probabilities at each of the data points. This we can do

with the help of Bayes’ Rule as follows, as shown below.

• The posterior class probabilities at each data point ~xi,

i = 1 . . . N , is given by

p(ℓ|~xi,Θ
g) =

p(~xi|ℓ,Θg) · p(ℓ|Θg)

p(ℓ, ~xi,Θg)

=
p(~xi|ℓ, θℓ) · aℓ
p(ℓ, ~xi,Θg)

=
p(~xi|ℓ, θℓ) · aℓ

numerator normalizer

(65)

43

Expectation Maximization An RVL Tutorial

• Expressing the denominator as numerator normalizer is meant

to convey the very important point that, from a computational

perspective, there is never a need to explicitly calculate the

probabilities p(ℓ, ~xi,Θ
g). After we have calculated the numerators

for all p(ℓ|~xi,Θ
g) on the left hand side above, we estimate the

denominator by insisting that
∑K

ℓ=1 p(ℓ, ~xi,Θ
g) = 1.

44

Expectation Maximization An RVL Tutorial

Back to TOC

5: Algorithm::ExpectationMaximization —

a Perl Module

• The goal of this section is to introduce you to my Perl module

Algorithm::ExpectationMaximization for the clustering of

multidimensional numerical data that can be modeled as a

Gaussian mixture. This module can be downloaded from (all in

one line):

http://search.cpan.org/~avikak/Algorithm-ExpectationMaximization/lib/Algorithm/ExpectationMaximization.pm

• If unable to directly click on the URL shown above or this URL

is difficult to copy and paste in your browser window, you can

also reach the module by carrying out a Google search on a

string like “Avi Kak EM Algorithm”. Make sure you have

reached the CPAN open-source archive and that you have

Version 1.22 of the module.

• IMPORTANT: if you are NOT a Perl programmer, the easiest

way for you to use this module for data clustering would be to

use one of the canned scripts in the examples directory of the

module. Section 6 presents a catalog of these scripts. All you

would need to do would be to modify one of these scripts to suit

your needs. The rest of this section is for those who would like

45

http://search.cpan.org/~avikak/Algorithm-ExpectationMaximization/lib/Algorithm/ExpectationMaximization.pm

Expectation Maximization An RVL Tutorial

to write their own Perl scripts for data clustering using this

module.

• The module expects that the data that needs to be clustered to

be made available through a text file whose contents should

look like:

c20 9 10.7087017 9.6352838 10.951215 ...

c7 23 12.8025925 10.6126270 10.522848 ...

b9 6 7.6011820 5.0588924 5.828417 ...

....

....

• Your file is allowed to have as many columns as you wish, but

one of the columns must contain a symbolic tag for each data

record. In the above example, the entries in the first column,

whose column index is 0, are the symbolic tags.

• You must inform the module as to which column contains the

tag and which columns to use for clustering. This you do by

defining a mask variable an example of which is shown below:

my $mask = "N0111";

for the case when your data file has five columns in it, the tag

for each record is in the first column, and you want only the

last three columns to be used for clustering. The position of

the character ’N’ corresponds to the column with the data tags.

46

Expectation Maximization An RVL Tutorial

In this case, since ’N’ is at the position of column index 0, that’s

the column with the symbolic tags. An entry of 0 in the mask

means to NOT use that column data for clustering.

• After you have set up your data file in the manner described

above, you need to create an instance of the module in your own

Perl script. This you do by invoking the module constructor

new() as shown below. The example call shown below is for the

case when you expect to see 3 clusters, you want cluster seeding

to be random, and you want to set an upper limit of 300 on EM

iterations:

my $clusterer = Algorithm::ExpectationMaximization->new(

datafile => $datafile,

mask => $mask,

K => 3,

max_em_iterations => 300,

seeding => ’random’,

terminal_output => 1,

debug => 0,

);

• The choice random for cluster seeding in the call to the

constructor shown above means that the clusterer will randomly

select K data points to serve as initial cluster centers.

• Other possible choices for the constructor parameter seeding

are kmeans and manual. With the kmeans option for seeding,

47

Expectation Maximization An RVL Tutorial

the output of a K-means clusterer is used for the cluster seeds

and the initial cluster covariances. If you use the manual option

for seeding, you must also specify the data elements to use for

seeding the clusters. See the CPAN documentation page for the

module for an example of manual seeding.

• After the invocation of the constructor, the following calls are

mandatory for reasons that should be obvious from the names

of the methods:

$clusterer->read_data_from_file();

srand(time);

$clusterer->seed_the_clusters();

$clusterer->EM();

$clusterer->run_bayes_classifier();

my $clusters = $clusterer->return_disjoint_clusters();

• In the sequence of mandatory calls shown in the previous bullet,

it is the call to EM() that invokes the

Expectation-Maximization algorithm for the clustering of data

using the three update formulas presented in Section 4.

• The call to srand(time) is to seed the pseudo random number

generator afresh for each run of the cluster seeding procedure. If

you want to see repeatable results from one run to another of

the algorithm with random seeding, you would obviously not

invoke srand(time).

48

Expectation Maximization An RVL Tutorial

• The call run bayes classifier() shown previously as one of

the mandatory calls carries out a disjoint clustering of all the

data points using the naive Bayes’ classifier.

• After you have run run bayes classifier(), a call to

return disjoint clusters() returns the clusters thus

formed to you. Once you have obtained access to the clusters in

this manner, you can display them in your terminal window by

foreach my $index (0..@$clusters-1) {

print ‘‘Cluster $index (Naive Bayes): \

@{$clusters->[$index]}\n\n’’

}

• If you would like to also see the clusters purely on the basis of

the posterior class probabilities exceeding a threshold $theta1,

you call

my $theta1 = 0.5;

my $posterior_prob_clusters =

$clusterer->return_clusters_with_posterior_\

probs_above_threshold($theta1);

where you can obviously set the threshold $theta1 to any value

you wish.

• When you cluster the data with a call to

return clusters with posterior probs above threshold($theta1) as shown

49

Expectation Maximization An RVL Tutorial

in the previous bullet, in general you will end up with clusters

that overlap. You can display them in your terminal window in

the same manner as shown previously for the naive Bayes’

clusters.

• You can write the naive Bayes’ clusters out to files, one cluster

per file, by calling

$clusterer->write_naive_bayes_clusters_to_files();

The clusters are placed in files with names like

naive_bayes_cluster1.dat

naive_bayes_cluster2.dat

...

• You can write out the posterior-probability based clusters to

files by calling:

$clusterer->write_posterior_prob_clusters_above_\

threshold_to_files($theta1);

• The threshold $theta1 in the call shown in the previous bullet

sets the probability threshold for deciding which data elements

to place in a cluster. The clusters themselves are placed in files

with names like

posterior_prob_cluster1.dat

posterior_prob_cluster2.dat

...

50

Expectation Maximization An RVL Tutorial

• The module allows you to visualize the clusters

when you do clustering in 2D and 3D spaces.

• In order to visualize the output of clustering, you must first set

the mask for cluster visualization. This mask tells the module

which 2D or 3D subspace of the original data space you wish to

visualize the clusters in.

• After you have decided on a mask, visualization typically

involves making the following calls:

my $visualization_mask = ‘‘111’’;

$clusterer->visualize_clusters($visualization_mask);

$clusterer->visualize_distributions($visualization_mask);

where the first call for the visualization of naive Bayes’ clusters

and the second for the visualization of posterior-probability

based clusters.

• When clustering in 2D or 3D spaces, you can also directly

create image PNG files that correspond to terminal

visualization of the output of clustering:

$clusterer->plot_hardcopy_clusters($visualization_mask);

$clusterer->plot_hardcopy_distributions($visualization_mask);

• The PNG image of the posterior probability distributions is

written out to a file named posterior prob plot.png and

51

Expectation Maximization An RVL Tutorial

the PNG image of the disjoint Naive Bayes’ clusters to a file

called cluster plot.png.

• The module also contains facilities for synthetic

data generation for experimenting with EM based

clustering.

• The data generation is controlled by the contents of a parameter

file that is supplied as an argument to the data generator

method of the module. The priors, the means, and the

covariance matrices in the parameter file must be according to

the syntax shown in the param1.txt file in the examples

directory. It is best to edit a copy of this file for your synthetic

data generation needs.

• Here is an example of a sequence of calls that you would use for

generating synthetic data:

my $parameter_file = ‘‘param1.txt’’;

my $out_datafile = ‘‘mydatafile1.dat’’;

Algorithm::ExpectationMaximization->cluster_data_generator(

input_parameter_file => $parameter_file,

output_datafile => $out_datafile,

total_number_of_data_points => $N);

where the value of $N is the total number of data points you

would like to see generated for all of the Gaussians. How this

total number is divided up amongst the Gaussians is decided by

52

Expectation Maximization An RVL Tutorial

the prior probabilities for the Gaussian components as declared

in input parameter file.

• The synthetic data may be visualized in a terminal window and

the visualization written out as a PNG image to a disk file by

my $data_visualization_mask = ‘‘11’’;

$clusterer->visualize_data($data_visualization_mask);

$clusterer->plot_hardcopy_data($data_visualization_mask);

53

Expectation Maximization An RVL Tutorial

Back to TOC

6: Convenience Scripts in the examples

Directory of the Module

Algorithm::ExpectationMaximization

• Even if you are not a Perl programmer, you can use the module

Algorithm::ExpectationMaximization for clustering your data through

the convenience scripts that you will find in the examples

directory of the module. You would just need to edit one of the

scripts to suit your needs and then all you have to do is to

execute the script.

• And even if you are a Perl programmer, becoming familiar with

the scripts in the examples directory is possibly the best

strategy for becoming familiar with this module (and its future

versions).

• The rest of this section presents a brief introduction to the five

scripts in the examples directory:

– canned example1.pl:

The goal of this script is to show EM-based clustering of overlapping clusters
starting with randomly selected seeds. As programmed, this script clusters the
data in the datafile mydatafile.dat. The mixture data in the file corresponds to
three overlapping Gaussian components in a star-shaped pattern.

54

Expectation Maximization An RVL Tutorial

– canned example2.pl:

This goal of this script is to use the output of the K-Means clusterer to serve as
seeds for the EM-based clusterer. The data fed to this script consists of two well
separated blobs.

– canned example3.pl:

This script gives a demonstration of how you would structure a call to the module
constructor when you want to specify the cluster seeds manually.

– canned example4.pl:

Whereas the three previous scripts demonstrate EM based clustering of 2D data,
this script uses the module to cluster 3D data. This script is meant to
demonstrate how the EM algorithm works on well-separated but highly
anisotropic clusters in 3D.

– canned example5.pl:

This script also demonstrates clustering in 3D but now we have one Gaussian
cluster that “cuts” through the other two Gaussian clusters.

55

Expectation Maximization An RVL Tutorial

Back to TOC

7: Some Clustering Results Obtained with

Algorithm::ExpectationMaximization

This section presents some results obtained with the

Algorithm::ExpectationMaximization module. We will show five different

results obtained with the five canned example scripts in the examples

directory.

Results Produced by the Script canned example1.pl:

Shown next is a 2D scatter plot that consists of three overlapping

Gaussian clusters that was fed into the script canned example1.pl. As

the reader will recall from the previous section, this canned script

uses random seeding for the initialization of the cluster centers.

56

Expectation Maximization An RVL Tutorial

When you execute the script canned example1.pl using the data shown

in the scatter plot in the previous figure, you will get two types of

clusters: the disjoint Naive Bayes’ clusters and the clusters based

on the posterior class probabilities exceeding a specified threshold.

Shown in the next figure are the three Naive Bayes’ clusters as

produced by the call to canned example1.pl.

And for the same input data, shown in the next figure are the three

posterior-probability based clusters produced by the module.

57

Expectation Maximization An RVL Tutorial

For the Naive Bayes’ clusters shown at the top on the previous

page, each data point gets a single label (a single color in our case).

On the other hand, for the posterior-probability clusters shown

above, it is possible for a single pixel to acquire multiple class

labels. In trying to visually discern the color identities of the pixels

in the figure on this page, note that when a color is assigned

multiple colors, it is likely that the color one actually sees at the

pixel is the last color that was applied to the pixel. It is important

to mention that this ambiguity would exist only in the visualization

of the clusters. On the other hand, when you actually write out the

clusters to disk files, you can see all the pixels in each cluster.

Results Produced by the Script canned example2.pl:

I’ll now show results obtained with the script canned example2.pl with

K-Means based seeding for the initialization of the cluster centers

and the cluster covariances. The figure shown below is a scatter

58

Expectation Maximization An RVL Tutorial

plot of the data that we will feed into canned example2.pl.

When we run canned example2.pl, as with the previous example, we

end with two different clustering results (which in this case look

identical because the clusters are so well separated). One of these is

for Naive Bayes’ clustering, which we show in the figure below:

59

Expectation Maximization An RVL Tutorial

And the other is clustering on the basis of the posterior probabilities

exceeding a given threshold. We show this result in the figure

shown at the top on the next figure when the threshold is set to 0.2.

As is to be expected for this example, since the two clusters are so

widely separated, the Naive Bayes’ clusters and the

posterior-probability based clusters here are identical.

Results Produced by the Script canned example3.pl:

Our next demonstration involves manual seeding of the clusters for

the data that is displayed in the scatter plot figure shown next. The

data consists of three overlapping clusters, with the cluster at the

bottom cutting across the other two.

60

Expectation Maximization An RVL Tutorial

When you execute canned example3.pl, you’ll again get two outputs for

the two different types of clusters the module outputs. Shown

below are the Naive Bayes’ clusters for this data:

And shown below are the clusters based on the posterior class

probabilities exceeding 0.2 threshold.

61

Expectation Maximization An RVL Tutorial

In the clusters shown above, if you look carefully at some of the

data points in the overlap regions, you will notice that some of the

pixels have more than one colored marker, illustrating the notion of

soft clustering that is achieved with posterior class probabilities.

Results Produced by the Script canned example4.pl:

The three clustering examples we have presented so far have all

dealt with 2D data. Now I’ll show some results of clustering 3D

data. When clustering is carried out in 3D or a larger number of

dimensions, visualization of result of clustering becomes a bigger

challenge — especially when you show the visualizations in

hardcopy as we do here. Talking about 3D, when you visualize the

clusters on a computer terminal, you can at least rotate the figure

and look at the clusters from different viewpoints to gain a better

sense of how good the clusters look. In hardcopy, as is the case with

62

Expectation Maximization An RVL Tutorial

us here, all you can do is to show the results from one viewpoint.

Shown in the next figure is a 3D scatter-plot of the data for the

script canned example4.pl.

As you can see, in this case the data consists of three isolated

clusters. We will ask the script canned example4.pl to cluster this data

with random seeding for initialization.

When you run the script, you will again two clustering outputs, one

for the Naive Bayes’ clusters and the posterior-probability based

clusters. Shown at the top on the next figure are the Naive Bayes’

clusters for this data.

63

Expectation Maximization An RVL Tutorial

And shown in the next figure are the clusters based on the posterior

class probabilities exceeding 0.2 threshold.

64

Expectation Maximization An RVL Tutorial

Both the Naive Bayes’ clusters and the posterior-probability-based

clusters are identical in this case, as you would expect, since the

clusters are so well separated.

Results Produced by the Script canned example5.pl:

That brings us to the final example of this section. While the

previous example showed clustering of 3D data consisting of well

separated clusters, now let’s take up the case of overlapping 3D

clusters.

65

Expectation Maximization An RVL Tutorial

Shown in the previous figure is a scatter plot of the 3D data we will

now take up. The data consists of three elongated blobs, two

oriented parallel to each other and one perpendicular to the other

two.

When we run the script canned example5.pl with the data shown in the

previous figure, for the Naive Bayes’ clusters we get the clusters

shown below:

66

Expectation Maximization An RVL Tutorial

And shown below are the clusters based on the posterior class

probabilities exceeding 0.2 threshold.

67

Expectation Maximization An RVL Tutorial

If you look carefully at the rightmost cluster shown above, you will

notice some red points interspersed with the green points. Of the

various demos included in this section, this is the probability the

best example of the difference between Naive Bayes’ and

posterior-probability based clustering.

68

Expectation Maximization An RVL Tutorial

Back to TOC

8: Acknowledgments

If you enjoyed the discussion in Section 3, the credit for that must go entirely to Richard
Duda, Peter Hart, and David Stork for their introduction to EM on pages 126 through 128
of their book “Pattern Classification.”

And if you enjoyed the discussion in Section 4, the credit for that must go entirely to Jeff
Bilmes for his technical report entitled “A Gentle Tutorial of the EM Algorithm and its
Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models”
(TR-97-021, University of California, Berkeley).

The discussion presented in Sections 3 and 4 is merely a further elaboration of the material
at the two sources mentioned above. If you are a reader who believes that the original
authors listed above had already explained the material in sufficient detail and that my
tutorial here merely amounts to belaboring the obvious, please accept my apologies.

If there is any pedagogical merit to this tutorial, it lies in using the EM example presented
by Duda et al. as a stepping stone to my explanation of Bilmes’s derivation of EM for
Gaussian Mixture Models.

I was first exposed to EM a very long time back by Jennifer Dy, a former Ph.D. student
(co-supervised by Carla Brodley and myself) who is now a well-known professor at
Northeastern University. Jennifer was using EM for unsupervised feature selection in the
context of content-based image retrieval. Here is a citation to that work: Jennifer Dy,
Carla Brodley, Avi Kak, Lynn Broderick, and Alex Aisen “Unsupervised Feature Selection

Applied to Content-Based Retrieval of Lung Images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2003.

69

	What Makes EM Magical?
	EM: The Core Notions
	An Example of EM Estimation in Which the Unobserved Data is Just the Missing Data
	EM for Clustering Data That Can be Modeled as a Gaussian Mixture
	Algorithm::ExpectationMaximization — a Perl Module
	Convenience Scripts in the examples Directory of the Module Algorithm::ExpectationMaximization
	Some Clustering Results Obtained with Algorithm::ExpectationMaximization
	Acknowledgments

