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1: Introduction

• We live in the age of data driven algorithms and terms like priors,

posteriors, likelihood, log-likelihood, Bayesian, estimation,

prediction, etc., show up in practically all serious explanations of

how the algorithms are designed and under what conditions they

can be expected to work well.

• These terms are just as relevant to the modern deep-learning

based algorithms as they are to the more classical approaches.

Consider, for example, the generative diffusion networks that

learn to convert noise input into images that look like those in a

training dataset. The loss function for such network is based on

the rationale that we want those values for the learnable

parameters of the networks that maximize the log-likelihood of

the images used in training and, by extension, of the images

generated after training.

• The goal of this tutorial is to give the reader a good grounding in

this basic vocabulary of data engineering.

• The second half of this tutorial focuses on a couple of classical

approaches for data modeling and on estimating the parameters of

the models used with and without priors. Although these classical
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approaches now sound antiquated, I believe they are still relevant

in applications that do not lend themselves to deep learning based

solutions.
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2: Introduction to ML, MAP, and Bayesian
Estimation

• The three most famous algorithms for optimal estimation of

model parameters in a probabilistic framework are: (1) Maximum

Likelihood (ML); (2) Maximum a-Posteriori (MAP); and (3)

Bayesian.

• These algorithms answer the following question: Let’s say we have

somehow conjured up a probabilistic model for a set of recorded

observations and, as you would expect, this model involves a

certain number of parameters. The question then becomes, how

to optimally estimate the parameters of the model using the

recorded data — optimal in the sense that the model does the

best possible job of explaining the recorded observations.

• With ML, the parameter values you estimate are such that they

maximize the probability with which the model can predict the

data you have actually recorded.

• But what if you had strong intuitions about the possible values for

the model parameters? For example, what if you were convinced

that it made no sense the parameters value to lie outside of a

certain range of values? Is there some way to optimally estimate
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the values for the model parameters taking into account such

prior knowledge? The answer is “Yes,” with MAP algorithms.

• Both ML and MAP calculate the single best numerical value for

each model parameter. But what if you wanted to estimate a

probability distribution for the parameters? Such a probability

distribution could give you deeper insights into the relationship

between the model parameters and the recorded data. For

estimating such a distribution, you’ll have to implement the

Bayesian algorithm.

6
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2.1: Say We are Given Evidence X

• Let’s say that our evidence X consists of a set of independent

observations:

X =
{
xi

}|X |

i=1
(1)

where each xi is a realization of a random variable x.

• The notation |X | stands for the cardinality of X , meaning the

total number of observations in the set X .

• Each observation xi in Eq. (1) is, in general, a data point in a

multidimensional space.

• This is very important for what’s to come: Let’s also say that a

set Θ of probability distribution parameters best explains the

evidence X .

• In other words, we believe that we can use a probabilistic model

for the recorded evidence and Θ represents the parameters in this

model.
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2.2: What Can We Do With The Evidence?

• We may wish to estimate the parameters Θ mentioned on the

previous page with the help of the Bayes’ Rule:

prob(Θ|X ) =
prob(X|Θ) · prob(Θ)

prob(X )
(2)

where the notation prob(A) stands for the probability of A and

where prob(A|B) means the conditional probability of A given B.

• Or, given a new observation x̃, we may wish to compute the

probability of the new observation being supported by the

evidence:

prob(x̃|X ) (3)

• The former represents parameter estimation and the latter

data prediction.

8
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2.3: Focusing First on the Estimation of the
Parameters Θ

• We can interpret the Bayes’ Rule shown in Eq. (2) as

posterior =
likelihood · prior

evidence
(4)

• Comparing Eq. (2) and Eq. (4), we can say that the term

likelihood stands for:

likelihood = prob(X|Θ) (5)

• So the “likelihood” answers the question as to how probable the

recorded evidence is for given values for the model parameters.

• Given a choice between different models, we are likely to posit our

faith in the model that gives the highest value to the likelihood.

• In what follows, we will NOT be concerned about choosing

between the different models. On the other hand, we will focus on

wishing to do the best possible job of estimating the parameter

vector Θ for a given model.
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2.4: Maximum Likelihood (ML) Estimation of
Θ

• In ML estimation for the model parameters, we seek that value for

Θ that maximizes the likelihood of the recorded evidence. That is,

we seek that value for Θ which gives largest value to

prob(X|Θ) (6)

• We denote such a value for the model parameters Θ by Θ̂ML.

• We know that the joint probability of a collection of independent

random variables is a product of the probabilities associated with

the individual random variables in the collection.

• Recognizing that the evidence X consists of the independent

observations {x1,x2, .....}, we obviously seek that value for Θ

which maximizes

∏

xi∈X

prob(xi|Θ) (7)

• Because of the product in the expression shown above, it is

simpler to use its logarithm instead. (Note that the logarithm is a
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monotonically increasing function of its argument).

• Using the symbol L to denote the logarithm of the product in Eq.

(7), we can write:

L =
∑

xi∈X

log prob(xi|Θ) (8)

• We can now write for the ML solution for the model parameters:

Θ̂ML = argmax
Θ

L (9)

• That is, we seek those values for the parameters in Θ that

maximize L. The ML solution is usually obtained by setting

∂L

∂θi
= 0 ∀ θi ∈ Θ (10)
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2.5: Maximum a Posteriori (MAP)
Estimation of Θ

• For constructing the maximum a posteriori estimate for the

parameter set Θ, we first go back to the Bayes’ Rule in Eq. (2),

repeated here for convenience:

prob(Θ|X ) =
prob(X|Θ) · prob(Θ)

prob(X )
(11)

• We now seek that value for Θ which maximizes the posterior

prob(Θ|X ).

• We denote such a value of Θ by Θ̂MAP .

• Therefore, our solution can now be stated as shown below:

Θ̂MAP = argmax
Θ

prob(Θ|X )

= argmax
Θ

prob(X |Θ) · prob(Θ)

prob(X )

= argmax
Θ

prob(X |Θ) · prob(Θ)

= argmax
Θ

∏

xi∈X

prob(xi|Θ) · prob(Θ) (12)
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• As to why we dropped the denominator in the third re-write on

the right, that’s because it has no direct functional dependence on

the parameters Θ with respect to which we want the right-hand

side to be maximized.

• As with the ML estimate, we can make this problem easier if we

first take the logarithm of the posteriors. We can then write

Θ̂MAP=argmax
Θ

(
∑

xi∈X

log prob(xi|Θ) + log prob(Θ)

)
(13)

13
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2.6: What Does the MAP Estimate Get Us
That the ML Estimate Does NOT

• The MAP estimate allows us to inject into the estimation

calculation our prior beliefs regarding the possible values for the

parameters in Θ.

• To illustrate how useful incorporating our prior beliefs can be,

consider the following example provided by Gregor Heinrich:

• Let’s conduct N independent trials of the following Bernoulli

experiment: We will ask each person we see in the hallways of

this building whether they will vote Democratic or Republican

in the next election. Let p be the probability that an individual

will vote Democratic.

• In this example, each observation xi is a scalar. So it’s better to

represent it by xi. For each i, the value of xi is either

Democratic or Republican.

• We will now construct an ML estimate for the parameter p. The

evidence X in this case consists of

14
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X =



 xi =

∣∣∣∣∣∣

Democratic

Republican

, i = 1...N



 (14)

• The log-likelihood function in this case is

log prob(X |p) =

N∑

i=1

log prob(xi|p)

(15)

=
∑

i

log prob(xi = Demo)

+
∑

i

log prob(xi = Repub)

= nd · log p+ (N − nd) · log (1− p) (16)

where nd is the number of individuals who are planning to vote

Democratic this fall.

• Setting

L = log prob(X |p) (17)

we find the ML estimate for p by setting

∂L

∂p
= 0 (18)

• That gives us the equation

15
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nd

p
−

(N − nd)

(1− p)
= 0 (19)

whose solution is the ML estimate

p̂ML =
nd

N
(20)

• So if N = 20 and if 12 out of 20 said that they were going to vote

democratic, we get the following the ML estimate for p:

p̂ML = 0.6.

• Now let’s try to construct a MAP estimate for p for the same

Bernoulli experiment. Obviously, we now need a prior belief

distribution for the parameter p to be estimated.

• Our prior belief in possible values for p must reflect the following

constraints:

– The prior for p must be zero outside the [0, 1] interval.

– Within the [0, 1] interval, we are free to specify our beliefs in

any way we wish.

– In most cases, we would want to choose a distribution for the

prior beliefs that peaks somewhere in the [0, 1] interval.
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• The following beta distribution that is parameterized by two

“shape” constants α and β does the job nicely for expressing our

prior beliefs concerning p:

prob(p) =
1

B(α, β)
pα−1(1− p)β−1 (21)

where B = Γ(α)Γ(β)
Γ(α+β)

is the beta function, with Γ() denoting the

Gamma function. The Gamma function Γ() is a generalization of

the notion of factorial to the case of real numbers. [The

probability distribution shown above is also expressed as

Beta(p|α, β).]

• When both α and β are greater than zero, the above distribution

has its mode — meaning its maximum value — at the following

point

α− 1

α + β − 2
(22)

• Let’s now assume that we want the prior for p to reflect the

following belief: The state of Indiana (where Purdue is located)

has traditionally voted Republican in presidential elections.

However, on account of the prevailing economic conditions,

the voters are more likely to vote Democratic in the election

in question.

• We can represent the above belief by choosing a prior distribution

17
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for p that has a peak at 0.5. Setting α = β gives us a distribution

for p that has a peak in the middle of the [0, 1] interval.

• As a further expression of our beliefs, let’s now make the choice

α = β = 5. As to why, note that the variance of a beta

distribution is given by

αβ

(α + β)2(α + β + 1)
(23)

• When α = β = 5, we have a variance of roughly 0.025, implying a

standard deviation of roughly 0.16, which should do for us nicely.

• To construct a MAP estimate for p, we will now substitute the

beta distribution prior for p in Eq. (13) to get:

p̂MAP = argmax
p

(
∑

x∈X

log prob(x|p) + log prob(p)

)
(24)

which, with the help of the same rationale as used previously in

Eq. (16), can be rewritten for our specific experiment in the

following form

p̂MAP = argmax
p

(
nd · log p

+ (N − nd) · log (1− p)

+ log prob(p)
)

(25)

18
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• We can now substitute in the above equation the beta distribution

for prob(p) shown in Eq. (21). We must subsequently take the

derivative of the right hand side of the equation with respect to

the parameter p and set it to zero for finding best value for p̂MAP .

We can therefore write:

nd

p
−

(N − nd)

(1− p)
+

α− 1

p
−

β − 1

1− p
= 0 (26)

• The solution of this equation is

p̂MAP =
nd + α− 1

N + α + β − 2

=
nd + 4

N + 8
(27)

• With N = 20 and with 12 of the 20 saying they would vote

Democratic, the MAP estimate for p is 0.571 with α and β both

set to 5.

• Here is a summary of what we get from a MAP

estimate beyond what’s provided by an ML estimate:

– MAP estimation “pulls” the estimate toward the prior.

– The more focused our prior belief, the larger the pull toward

the prior. By using larger values for α and β (but keeping

19
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them equal), we can narrow the peak of the beta distribution

around the value of p = 0.5. This would cause the MAP

estimate to move closer to the prior.

– In the expression we derived for p̂MAP , the parameters α and

β play a “smoothing” role vis-a-vis the measurement nd.

– Since we referred to p as the parameter to be estimated, we

can refer to α and β as the hyperparameters in the

estimation calculations.

20
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2.7: Bayesian Estimation

• Given the evidence X , ML considers the parameter vector Θ to be

a constant and seeks out that value for the constant that provides

maximum support for the evidence. ML does NOT allow us to

inject our prior beliefs about the likely values for Θ in the

estimation calculations.

• MAP allows for the fact that the parameter vector Θ can take

values from a distribution that expresses our prior beliefs

regarding the parameters. MAP returns that value for Θ where

the probability prob(Θ|X ) is a maximum.

• Both ML and MAP return only single and specific

values for the parameter Θ.

• Bayesian estimation, by contrast, calculates fully the

posterior distribution prob(Θ|X ).

• Of all the Θ values made possible by the estimated posterior

distribution, it is our job to select a value that we consider best in

some sense. For example, we may choose the expected value of Θ

assuming its variance is small enough.
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• The variance that we can calculate for the parameter Θ from its

posterior distribution allows us to express our confidence in any

specific value we may use as an estimate. If the variance is too

large, we may declare that there does not exist a good estimate

for Θ.

22
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2.8: What Makes Bayesian Estimation
Complicated

• Bayesian estimation is made complex by the fact that now the

denominator in the Bayes’ Rule

prob(Θ|X ) =
prob(X |Θ) · prob(Θ)

prob(X )
(28)

cannot be ignored. The denominator, known as the probability

of evidence, is related to the other probabilities that make their

appearance in the Bayes’ Rule by

prob(X ) =

∫

Θ

prob(X |Θ) · prob(Θ) dΘ (29)

• This leads to the following thought critical to Bayesian

estimation: For a given likelihood function, if we have a

choice regarding how we express our prior beliefs, we

must use that form which allows us to carry out the

integration shown above. It is this thought that leads to

the notion of conjugate priors.

• Finally, note that, as with MAP, Bayesian estimation also requires

us to express our prior beliefs in the possible values of the

23
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parameter vector Θ in the form of a distribution.

• IMPORTANT PRACTICAL NOTE: Obtaining an algebraic

expression for the posterior is, of course, important from a

theoretical perspective. In practice, if you estimate a posterior

ignoring the denominator, you can always find the normalization

constant — which is the role served by the denomicator —

simply by adding up what you get for the numerator, assuming

you did a sufficiently good job of estimating the numerator. If you

have enjoyed this tutorial so far, you’ll like further discussion on

this point in my tutorial entitled “Monte Carlo Integration in

Bayesian Estimation.”
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2.9: An Example of Bayesian Estimation

• We will illustrate Bayesian estimation with the same Bernoulli

trial based example we used earlier for ML and MAP. Our prior

for that example is given by the following beta distribution:

prob(p|α, β) =
1

B(α, β)
pα−1(1− p)β−1 (30)

where the LHS makes explicit the dependence of the prior on the

hyperparameters α and β.

• With this prior, the probability of evidence, defined in Eq. (29), is

given by

prob(X ) =

∫ 1

0

prob(X |p) · prob(p) dp

=

∫ 1

0

(
N∏

i=1

prob(xi|p)

)
· prob(p) dp

=

∫ 1

0

(
pnd · (1− p)N−nd

)
· prob(p) dp (31)

• As it turns out, the integration shown above is easy. That’s

because when we multiply a beta distribution with either a power

of p or a power of (1− p), you simply get a different beta

distribution.

25
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• So the probability of evidence for this example can be thought of

as a constant Z whose value depends on the values chosen for α,

β, and the measurement nd.

• We can now go back to the expression on the right side of the

equation for Bayesian estimation, as shown in Eq. (28), and

replace its denominator by Z, as shown below:

prob(p|X ) =
prob(X |p) · prob(p)

Z

=
1

Z
· prob(X |p) · prob(p)

=
1

Z
·

(
N∏

i=1

prob(xi|p)

)
· prob(p)

=
1

Z
·
(
pnd · (1− p)N−nd

)
· prob(p)

= Beta(p | α + nd, β +N − nd) (32)

where the last result follows from the observation made earlier

that a beta distribution multiplied by either a power of p or a

power of (1− p) remains a beta distribution, albeit with a

different pair of hyperparameters. [Recall the definition of Beta()

in Eq. (21).]

• The notation Beta() in the last equation above is a short form for

the same beta distribution you saw earlier. The hyperparameters

26
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of this beta distribution are shown to the right of the vertical bar

in the argument list.

• The formula shown above gives us a closed form expression for the

posterior distribution for the parameter to be estimated.

• If we wanted to return a single value as an estimate for p, that

could be the expected value of p calculated from the posterior

distribution shown above. Using the standard formula for the

expectation of a beta distribution, the expectation is given by the

expression shown below:

•

p̂Bayesian = E{p|X}

=
α + nd

α + β +N

=
5 + nd

10 +N
(33)

for the case when we set both α and β to 5.

• When N = 20 and 12 out of 20 individuals report that they will

vote Democratic, our Bayesian estimate yields a value of 0.567.

Compare that to the MAP value of 0.571 and the ML value of 0.6.

• One benefit of the Bayesian estimation is that we can also

calculate the variance associated with the above estimate. One

27
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can again use the standard formula for the variance of a beta

distribution to show that the variance associated with the

Bayesian estimate is 0.0079.
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3: ML, MAP, and Bayesian Prediction

• What I have described so far in this tutorial is how to optimally

estimate the parameters of a probabilistic model you have

conjured up for the observed data.

• Once you have constructed a functioning model in this manner,

you would want to do something useful with it. Something along

the lines of how much you should believe the next observation

assuming you have faith in the model you have built.

• Figuring out how much support your “trained model” lends to a

new observation is usually referred to as data prediction.

• It is important to realize that the goal of prediction is NOT to

foresee the future. That is, the goal of prediction in the sense I am

talking about here is not to tell what value will be generated next

by the same source that yielded the previous observations that

you used to construct the model. Only oracles have that kind of

power and most of them belong to mythology.
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3.1: What is Prediction in the Context of
ML, MAP, and Bayesian Estimation?

• Let’s say we are given the evidence

X = {xi}
|X |
i=1 (34)

and that next a new datum x̃ comes along. We want to know as

to what extent the new datum x̃ is supported by the evidence X .

• To answer this question, we can try to calculate the probability

prob(x̃|X ) (35)

and determine as to what extent the evidence X can predict the

new datum x̃. Prediction is also referred to as

regression.

30
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3.2: ML Prediction

• We can write the following equation for the probabilistic support

that the past data X provides to a new observation x̃:

prob(x̃|X ) =

∫

Θ

prob(x̃|Θ) · prob(Θ|X ) dΘ

≈

∫

Θ

prob(x̃|Θ̂ML) · prob(Θ|X ) dΘ

= prob(x̃|Θ̂ML) (36)

What this says is that the probability model for the new

observation x̃ is the same as for all previous observations that

constitute the evidence X . In this probability model, we set the

parameters to Θ̂ML to compute the support that the evidence

lends to the new observation.
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3.3: MAP Prediction

• For MAP, the derivation in Eq. (37) becomes

prob(x̃|X ) =

∫

Θ

prob(x̃|Θ) · prob(Θ|X ) dΘ

≈

∫

Θ

prob(x̃|Θ̂MAP ) · prob(Θ|X ) dΘ

= prob(x̃|Θ̂MAP ) (37)

This is to be interpreted in the same manner as ML prediction.

The probabilistic support for the new data x̃ is to be computed

by using the same probability model as used for the evidence X

but with the parameters set to ΘMAP .
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3.4: Bayesian Prediction

• In order to compute the support prob(x̃|X ) that the evidence X

lends to the new observation x̃, we again start with the

relationship:

prob(x̃|X ) =

∫

Θ

prob(x̃|Θ) · prob(Θ|X ) dΘ (38)

but now we must use the Bayes’ Rule for the posterior prob(Θ|X )

to yield

prob(x̃|X ) =

∫

Θ

prob(x̃|Θ) ·
prob(X |Θ) · prob(Θ)

prob(X )
dΘ (39)
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4: Conjugate Priors

• Conjugate prior is an important concept if you are interested in

an analytic expression for the posterior probability distribution

over the possible values for the model parameters in Eq. (28).

That, after all, is the ultimate goal of Bayesian estimation and

prediction.

• As was mentioned in Section 2.8, estimating the full probability

distribution over all possible values for the model parameters is

made complicated by the presence of the denominator in (28).

That denominator, given by Eq. (29), requires a distribution for

the likelihoods and the priors.

• As it turns out, in a large number of cases where you would want

to use estimation theoretic ideas, you have considerable latitude in

how you express the priors, meaning the probabilities p(Θ).

• You come up with priors on the basis of your intuitions that may

be rooted in phenomenological considerations or based on your

understanding of the source that is generating the observations.

When you specify p(Θ) for the model parameters, it is usually not

the case that you are either completely right or completely wrong.

As long as you are not violating the axioms of probability, you
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may have considerable freedom in how you express your prior

beliefs.

• The concept of conjugate priors allows you take advantage of this

freedom in such a way that you might end up with an analytic

formula for the Bayesian estimates for the model parameters.
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4.1: What is a Conjugate Prior?

• As you saw, Bayesian estimation requires us to compute the full

posterior distribution for the parameters of interest, as opposed

to, say, just the value where the posterior acquires its maximum

value. As shown already, the posterior is given by

prob(Θ|X ) =
prob(X |Θ) · prob(Θ)∫
prob(X |Θ) · prob(Θ) dΘ

(40)

The most challenging part of the calculation here is the derivation

of a closed form for the marginal in the denominator on the right.

• For a given algebraic form for the likelihood, the different forms

for the prior prob(Θ) pose different levels of difficulty for the

determination of the marginal in the denominator and, therefore,

for the determination of the posterior.

• For a given likelihood function prob(X|Θ), a prior prob(Θ) is

called a conjugate prior if the posterior prob(Θ|X ) has the

same algebraic form as the prior.

• Obviously, Bayesian estimation and prediction becomes much

easier should the engineering assumptions allow a conjugate prior
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to be chosen for the applicable likelihood function.

• When the likelihood can be assumed to be Gaussian,

a Gaussian prior would constitute a conjugate prior

because in this case the posterior would also be

Gaussian.

• You have already seen another example of a conjugate prior

earlier in this review. For the Bernoulli trail based experiment we

talked about earlier, the beta distribution constitutes a conjugate

prior. As we saw there, the posterior was also a beta distribution

(albeit with different hyperparameters).

• As we will see later, when the likelihood is a multinomial, the

conjugate prior is the Dirichlet distribution.
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5: Multinomial Distributions

• I wrote the material in the subsections that follow before we were

all buried under the deep-learning avalanche. Lest you think that

all the material that is in the subsections that follow is now

outdated, here are some thoughts:

• There was a time when multinomial distributions were considered

to be powerful new approaches to document (and, to a smaller

degree, image) classification. However, the default choice today

for all types of classification would be the methods based on deep

learning (DL). If you have not yet surrendered to the might of DL

(highly unlikely), here is a link to Purdue’s class on DL that

covers both image and text classification during the Weeks 12

through 15:

https://engineering.purdue.edu/DeepLearn

• Having said that, it is important to realize that the power of deep

learning does not render entirely useless the classical approaches.

As everyone knows, in most cases, DL requires tons of annotated

data for effective learning to take place and annotating the data

can be an expensive proposition for specialized applications.
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• As a case in point, during the last decade, my lab at Purdue has

worked extensively in computer vision techniques applied to

satellite images. Unlike their ground-based counterparts, we do

not have millions of satellite images that could be annotated for

training classifiers. Additionally, their relatively low resolution

and the properties of the sensors used for forming the images can

make it difficult for regular folks to annotate them. In most cases

of object recognition, if the objects are important enough, you are

likely to fall back on the traditional tools for creating classifiers for

such images.

• The same would apply to a small-scale text classifier (or a search

tool) for an application that uses highly specialized jargon. We

can expect that people using such a tool would already be familiar

with the jargon. A text classifier based on the traditional

approaches is likely to do better than some heavy-duty DL based

implementation you might download from GitHub.
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5.1: When Are Multinomial Distributions
Useful for Likelihoods?

• Multinomial distributions are useful for modelling the evidence

when each observation in the evidence can be characterized by

count based features.

• As a stepping stone to multinomial distributions, let’s first talk

about binomial distributions.

• Binomial distributions answer the following question: Let’s carry

out N trials of a Bernoulli experiment with p as the probability of

success at each trial. Let n be the random variable that denotes

the number of times we achieve success in N trials. The questions

is: What’s the probability distribution for n?

• The random variable n has binomial distribution that is given by

prob(n) =

(
N

n

)
pn(1− p)N−n (41)

with the binomial coefficient
(
N
n

)
= N !

k!(N−n)!
.

• A multinomial distribution is a generalization of the binomial

distribution.
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• Now instead of a binary outcome at each trial, we have k possible

mutually exclusive outcomes at each trial. Think of rolling a

k-faced die (that is possibly biased).

• At each trial, the k outcomes can occur with the probabilities p1,

p2, ..., pk, respectively, with the constraint that they must all add

up to 1.

• We still carry out N trials of the underlying experiment and at

the end of the N trials we pose the following question: What is

the probability that we saw n1 number of the first outcome, n2

number of the second outcome, ...., and nk number of the kth

outcome? This probability is a multinomial distribution and is

given by

prob(n1, ..., nk) =
N !

n1!...nk!
pn1

1 · ·pnk

k (42)

with the stipulation that
∑k

i=1 nk = N . The probability is zero

when this condition is not satisfied. Note that there are only k− 1

free variables in the argument to prob() on the left hand side.

• We can refer to the N trials we talked about above as constituting

one multinomial experiment in which we roll the die N times as

we keep count of the number of times we see the face with one

dot, the number of times the face with two dots, the number of

times the face with three dots, and so on.
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• If we wanted to actually measure the probability

prob(n1, ..., nk) experimentally, we would carry out a large

number of multinomial experiments and record the number of

experiments in which the first outcome occurs n1 times, the

second outcome n2 times, and so on.

• If we want to make explicit the conditioning variables in

prob(n1, ..., nk), we can express it as

prob(n1, ..., nk | p1, p2, ..., pk, N) (43)

• This form is sometimes expressed more compactly as

Multi(~n | ~p,N) (44)
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5.2: What is a Multinomial Random
Variable?

• A random variable X is a multinomial random variable if its

probability distribution is a multinomial. The vector ~n shown in

Eq. (44) is a multinomial random variable.

• A multinomial random variable is a vector. Each element of the

vector stands for a count for the occurrence of one of k possible

outcomes in each trial of the underlying experiment.

• Think of rolling a die 1000 times. At each roll, you will see one of

six possible outcomes. In this case, X = (n1, ..., n6) where ni

stands for the number of times you will see the face with i dots.
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5.3: Multinomial Modelling of Likelihoods for
Images and Text Data

• If each image in a database can be characterized by the number of

occurrences of a certain preselected set of features, then the

database can be modeled by a multinomial distribution. Carrying

out N trials of a k-outcome experiment would now correspond to

examining N most significant features in each image and

measuring the frequency of occurrence of each feature —

assuming that the total number of distinct features is k.

Therefore, each of the N features in each image must be one of

the k distinct features. We can think of each image as the result

of one multinomial experiment, meaning one run of N trials with

each trial consisting of ascertaining the identities of the N most

significant features in the image and counting the number of

occurrences of the different features (under the assumption that

there can only exist k different kinds of features).

• A common way to characterize text documents is by the

frequency of the words in the documents. Carrying out N trials of

a k-outcome experiment could now correspond to recording the N

most prominent words in a text file. If we assume that our

vocabulary is limited to k words, for each document we would

record the frequency of occurrence of each vocabulary word. We

can think of each document as a result of one multinomial
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experiment.

• For each of the above two cases, if for a given image or text file

the first feature is observed n1 times, the second feature n2 times,

etc., the likelihood probability to be associated with that image or

text file would be

prob
(
image|p1, ..., pk

)
=

k∏

i=1

pi
ni (45)

where, as mentioned previously, pi is the probability of occurrence

of the ith feature in an image. All the pi values must add up to 1.

Obviously, the higher the value of pi, the greater the likelihood

that you may see multiple instances of that feature in a given

image. But, note that pi is NOT the same thing as ni/N .

• Think of the k different types of features as being represented by

the faces of a loaded k-faced die. Thinking in the abstract, given

an image and given a die that knows magically about the

properties of that image, when we roll the die, the probability

with which the ith face shows up at the top is the value of pi.

• Modeling an image dataset with a multinomial distribution would

require us to estimate the values for p1, p2, . . . , pk that

characterize the dataset.

• We will refer to the probability on the left-hand-side in Eq. (45)

as the multinomial likelihood of the image. We can think of p1, ...
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, pk as the parameters that characterize the database.

• Before ending this section, note a fundamental weakness of

multinomial modeling: It assumes that each instance of each

feature occurs iindependently of other instances of the same

feature and other instances of all other features. That would be

a difficult condition to satisfy in real-life image datasets. Consider

images of the outdoors. Detecting a car (as a feature) in an image

increases the likelihood that you will see other cars in the same

image, just as much as it increases the likelihood that you will find

a road in the image.
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5.4: Conjugate Prior for a Multinomial
Likelihood

• The conjugate prior for a multinomial likelihood is the Dirichlet

distribution:

prob(p1, ..., pk) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏

i=1

pαi−1
i (46)

where αi, i = 1, ..., k, are the hyperparameters of the prior.

Review the comments after Eq. (45) in the previous subsection for

what the parameters pi stand for.

• In the context of image and text datasets, in the formula for the

prior shown above, our interpretation of pi is the same as before:

we are dealing with k different types of features in an image or in

a document, and pi is the probability that ith feature will pop up

in the image or the document. The hyperparameters αi are

evidently related to how many instances of the ith feature can be

expect to find in an image or a document. The exponents of pi in

the formula are dictated by the normalization constraints on the

probabilities prob(p1, ..., pk).

• The Dirichlet is a generalization of the beta distribution from two
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degrees of freedom to k degrees of freedom. (Strictly speaking, it

is a generalization from the one degree of freedom of a beta

distribution to k − 1 degrees of freedom. That is because of the

constraint
∑k

i=1 pi = 1.)

• The Dirichlet prior is also expressed more compactly as

prob(~p|~α) (47)

• For the purpose of visualization, consider the case when an image

is only allowed to have three different kinds of features and we

make N feature measurements in each image. In this case, k = 3.

The Dirichlet prior would now take the form

prob(p1, p2, p3 | α1, α2, α3) =
Γ(α1 + α2 + α3)

Γ(α1)Γ(α2)Γ(α3)
pα1−1
1 pα2−1

2 pα3−1
3 (48)

under the constraint that p1 + p2 + p3 = 1.

• When k = 2, the Dirichlet prior reduces to

prob(p1, p2 | α1, α2) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
pα1−1
1 pα2−1

2 (49)

which is the same thing as the beta distribution shown earlier.

Recall that now p1 + p2 = 1. Previously, we expressed the beta

distribution as prob(p|α, β). The p there is the same thing as p1
here.
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6: Modelling Text

• The goal of this section is to quickly review some of the classical

approaches to text modeling. As I mentioned in Section 5, these

days you are likely to use the deep learning approaches for doing

the same.

• And, again as I mentioned at the beginning of Section 5, the

popularity of deep-learning based modeling tools does not imply

that the classical approaches have lost their place under the sun.

For specialized text application that are rich in jargon and

especially when it is difficult to create annotated datasets for

training, one of the classical approaches mentioned in the

subsections that follow might still be the way to go.
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6.1: A Unigram Model for Documents

• Let’s say we wish to draw N prominent words from a document

for its representation.

• We assume that we have a vocabulary of V prominent words.

Also assume for the purpose of mental comfort that V << N .

(This latter assumption is not necessary for the theory to work.)

• For each document, we measure the number of occurrences ni for

wordi of the vocabulary. It must obviously be the case the∑V
i=1 ni = N .

• Let the multinomial random vector. W represent the word

frequency vector in a document. So for a given document, the

value taken by this random variable can be shown as the vector

(n1, ..., nV ).

• Let our corpus (database of text documents) be characterized by

the following set of probabilities: The probability that wordi of

the vocabulary will appear in any given document is pi. We will

use the vector ~p to represent the vector (p1, p2, ..., pV ). The vector

~p is referred to as defining the Unigram statistics for the

documents.

50



ML, MAP, and Bayesian An RVL Tutorial by Avi Kak

• We can now associate the following multinomial likelihood with a

document for which the random variable W takes on the specific

value W = (n1, ..., nV ):

prob(W|~p) =
V∏

i=1

pnii (50)

• If we want to carry out a Bayesian estimation of the parameters ~p,

it would be best if we could represent the priors by the Dirichlet

distribution:

•
prob(~p|~α) = Dir(~p|~α) (51)

• Since the Dirichlet is a conjugate prior for a multinomial

likelihood, our posterior will also be a Dirichlet.

• Let’s say we wish to compute the posterior after observing a single

document with W = (n1, ..., nV ) as the value for the r.v. W .

This can be shown to be

prob(~p|W , ~α) = Dir(~p|~α + ~n) (52)
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6.2: A Mixture of Unigrams Model for
Documents

• In this model, we assume that the word probability pi for the

occurrence of wordi in a document is conditioned on the selection

of a topic for a document. In other words, we first assume that a

document contains words corresponding to a specific topic and

that the word probabilities then depend on the topic.

• Therefore, if we are given, say, 100,000 documents on, say, 20

topics, and if we can assume that each document pertains to only

one topic, then the mixture of unigrams approach will partition

the corpus into 20 clusters by assigning one of the 20 topics labels

to each of the 100,000 documents.

• We can now associate the following likelihood with a document

for which the r.v. W takes on the specific value W = (n1, ..., nV ),

with ni as the number of times wordi appears in the document:

prob(W|~p, ~z) =
∑

z

prob(z) ·
V∏

i=1

(p(wordi|z))
ni (53)

• Note that the summation over the topic distribution does not

imply that a document is allowed to contain multiple topics
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simultaneously. It simply implies that a document, constrained to

contain only one topic, may either contain topic z1, or topic z2, or

any of the other topics, each with a probability that is given by

prob(z).
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6.3: Document Modelling with PLSA

• PLSA stands for Probabilistic Latent Semantic Analysis.

• PLSA extends the mixture of unigrams model by considering the

document itself to be a random variable and declaring that a

document and a word in the document are conditionally

independent if we know the topic that governs the production

of that word.

• The mixture of unigrams model presented in the previous

subsection required that a document contain only one topic.

• On the other hand, with PLSA, as you “generate” the words in a

document, at each point you first randomly select a topic and

then select a word based on the topic chosen.

• The topics themselves are considered to be the hidden variables in

the modelling process.

• With PLSA, the probability that the word wn from our

vocabulary of V words will appear in a document d is given by
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prob(d, wn) = prob(d)
∑

z

prob(wn|z)prob(z|d) (54)

where the random variable z represents the hidden topics. Now a

document can have any number of topics in it.
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6.4: Modelling Documents with LDA

• LDA takes a more principled approach to expressing the

dependencies between the topics and the documents on the one

hand and between the topics and the words on the other.

• LDA stands for Latent Dirichlet Allocation. The name is

justified by the fact that the topics are the latent (hidden)

variables and our document modelling process must allocate the

words to the topics.

• Assume for a moment that we know that a corpus is best modeled

with the help of k topics.

• For each document, LDA first “constructs” a multinomial whose k

outcomes correspond to choosing each of the k topics. For each

document we are interested in the frequency of occurrence of of

each of the k topics. Given a document, the probabilities

associated with each of the topics can be expressed as

θ = [p(z1|doc), ..., p(zk|doc)] (55)

where zi stands for the i
th topic. It must obviously be the case

that
∑k

i=1 p(zi|doc) = 1. So the θ vector has only k− 1 degrees of

freedom.
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• LDA assumes that the multinomial θ can be given a Dirichlet

prior:

prob(θ|α) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏

i=1

θαi−1
i (56)

where θi stands for p(zi|doc) and where α are the k

hyperparameters of the prior.

• Choosing θ for a document means randomly specifying the topic

mixture for the document.

• After we have chosen θ randomly for a document, we need to

generate the words for the document. This we do by first

randomly choosing a topic at each word position according to θ

and then choosing a word by using the distribution specified by

the β matrix:

β =




p(word1|z1) p(word2|z1) ... p(wordV |z1)

p(word1|z2) p(word2|z2) ... p(wordV |z2)
... ... ...

... ... ...
p(word1|zK) p(word2|zK) ... p(wordV |zK)




(57)

• What is interesting is that these probabilities cut across all of the

documents in the corpus. That is, they characterize the entire

corpus.
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• Therefore, a corpus in LDA is characterized by the parameters α

and β.

• Folks who do research in LDA have developed different strategies

for the estimation of these parameters.
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7: What to Read Next?

• Here is a link to what’s now a 10-year old talk. Several of the

points I made in this talk are still relevant today in the context of

text modeling for software engineering: “Importance of Machine

Learning to the SCUM of Large Software” that you can access

here:

https://engineering.purdue.edu/kak/AviKakInfyTalk2013_Handout.pdf

• If you would like to go deeper into the practical aspects of

Bayesian estimation, you might wish to read my tutorial “Monte

Carlo Integration in Bayesian Estimation,” that is available at

https://engineering.purdue.edu/kak/Tutorials/MonteCarloInBayesian.pdf

• On the other hand, if you came to this tutorial for reviewing the

basic terminology of probabilistic estimation and inference as used

in the loss functions for deep-learning networks, and that now you

are ready to get back to the neural-network based approaches, you

might like to visit my lecture slides for Weeks 12, 13, 14, and 15 at

the following website:

https://engineering.purdue.edu/DeepLearn
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