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PART 1: Introduction to ML, MAP, and

Bayesian Estimation
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1.1: Say We are Given Evidence X

Let’s say that our evidence X consists of a set

of independent observations:

X =
{
xi

}|X |

i=1

where each xi is a realization of a random vari-

able x. [The notation |X | stands for the cardinality of X ,

meaning the total number of observations in the set X .] Each

observation xi is, in general, a data point in a

multidimensional space.

Let’s also say that a set Θ of probability dis-

tribution parameters best explains the evidence

X .
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1.2: What Can We Do With The

Evidence?

• We may wish to estimate the parameters

Θ with the help of the Bayes’ Rule

prob(Θ|X) =
prob(X|Θ) · prob(Θ)

prob(X)

where the notation prob(A) stands for the

probability of A and where prob(A|B) means

the conditional probability of A given B.

• Or, given a new observation x̃, we may

wish to compute the probability of the new

observation being supported by the evidence:

prob(x̃|X)

The former represents parameter estimation

and the latter data prediction.
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1.3: Focusing First on the Estimation of

the Parameters Θ

We can interpret the Bayes’ Rule

prob(Θ|X) =
prob(X|Θ) · prob(Θ)

prob(X)

as

posterior =
likelihood · prior

evidence

Making explicit the formula for likelihood as

used above, we can write

likelihood = prob(X|Θ)
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1.4: Maximum Likelihood (ML)

Estimation of Θ

We seek that value for Θ which maximizes the

likelihood shown on the previous slide. That

is, we seek that value for Θ which gives largest

value to

prob(X|Θ)

We denote such a value of Θ by Θ̂ML.

We know that the joint probability of a col-

lection of independent random variables is a

product of the probabilities associated with the

individual random variables in the collection.

Recognizing that the evidence X consists of

the independent observations {x1,x2, .....}, we

seek that value Θ which maximizes
∏

xi∈X

prob(xi|Θ)
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Because of the product in the expression at

the bottom of the previous slide, it is simpler

to use its logarithm instead (since the logarithm is a

monotonically increasing function of its argument).

Using the symbol L to denote the logarithm:

L =
∑

xi∈X

log prob(xi|Θ)

we can now write for the ML solution:

Θ̂ML = argmax
Θ

L

That is, we seek those values for the parame-

ters in Θ which maximize L. The ML solution

is usually obtained by setting

∂L

∂θi
= 0 ∀ θi ∈ Θ
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1.5: Maximum a Posteriori (MAP)

Estimation of Θ

For constructing the maximum a posteriori es-

timate for the parameter set Θ, we first go

back to the Bayes’ Rule on Slide 6:

prob(Θ|X) =
prob(X|Θ) · prob(Θ)

prob(X)

We now seek that value for Θ which maximizes

the posterior prob(Θ|X).

We denote such a value of Θ by Θ̂MAP .

Therefore, our solution can now be stated as

shown on the next slide.
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Θ̂MAP = argmax
Θ

prob(Θ|X)

= argmax
Θ

prob(X|Θ) · prob(Θ)

prob(X)

= argmax
Θ

prob(X|Θ) · prob(Θ)

= argmax
Θ

∏

xi∈X

prob(xi|Θ) · prob(Θ)

As to why we dropped the denominator in the

third re-write on the right, that’s because it

has no direct functional dependence on the pa-

rameters Θ with respect to which we want the

right-hand side to be maximized.

As with the ML estimate, we can make this

problem easier if we first take the logarithm of

the posteriors. We can then write

Θ̂MAP=argmax
Θ


 ∑

xi∈X

log prob(xi|Θ) + log prob(Θ)




10



The Trinity Tutorial by Avi Kak

1.6: What Does the MAP Estimate Get
Us That the ML Estimate Does NOT

The MAP estimate allows us to inject into the
estimation calculation our prior beliefs regard-
ing the parameters values in Θ.

To illustrate the usefulness of such incorpo-
ration of prior beliefs, consider the following
example provided by Gregor Heinrich:

Let’s conduct N independent trials of the fol-
lowing Bernoulli experiment: We will ask each
person we see in the hallway outside this room
whether they will vote Democratic or Republi-
can in the next election. Let p be the proba-
bility that an individual will vote Democratic.

In this example, each observation xi is a scalar.
So it’s better to represent it by xi. For each i,
the value of xi is either Democratic or Republican.
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We will now construct an ML estimate for the

parameter p. The evidence X in this case con-

sists of

X =





xi =

∣∣∣∣∣∣∣

Democratic

Republican

, i = 1...N





The log likelihood function in this case is

log prob(X|p) =
N∑

i=1

log prob(xi|p)

=
∑

i

log prob(xi = Demo)

+
∑

i

log prob(xi = Repub)

= nd · log p+ (N − nd) · log (1− p)

where nd is the number of individuals who are

planning to vote Democratic this fall.
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Setting

L = log prob(X|p)

we find the ML estimate for p by setting

∂L

∂p
= 0

That gives us the equation

nd

p
−

(N − nd)

(1− p)
= 0

whose solution is the ML estimate

p̂ML =
nd

N

So if N = 20 and if 12 out of 20 said that

they were going to vote democratic, we get the

following the ML estimate for p: p̂ML = 0.6.
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Now let’s try to construct a MAP estimate

for p for the same Bernoulli experiment.

Obviously, we now need a prior belief distribu-

tion for the parameter p to be estimated.

Our prior belief in possible values for p must

reflect the following constraints:

– The prior for p must be zero outside the

[0,1] interval.

– Within the [0,1] interval, we are free to

specify our beliefs in any way we wish.

– In most cases, we would want to choose a

distribution for the prior beliefs that peaks

somewhere in the [0,1] interval.
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The following beta distribution that is pa-

rameterized by two “shape” constants α and

β does the job nicely for expressing our prior

beliefs concerning p:

prob(p) =
1

B(α, β)
pα−1(1− p)β−1

where B = Γ(α)Γ(β)
Γ(α+β)

is the beta function, with

Γ() denoting the Gamma function. The Gamma

function Γ() is a generalization of the notion

of factorial to the case of real numbers. [The

probability distribution shown above is also ex-

pressed as Beta(p|α, β).]

When both α and β are greater than zero, the

above distribution has its mode — meaning its

maximum value — at the following point

α− 1

α+ β − 2
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Let’s now assume that we want the prior for

p to reflect the following belief: The state of

Indiana (where Purdue is located) has tradi-

tionally voted Republican in presidential elec-

tions. However, on account of the prevailing

economic conditions, the voters are more likely

to vote Democratic in the election in question.

We can represent the above belief by choosing

a prior distribution for p that has a peak at 0.5.

Setting α = β gives us a distribution for p that

has a peak in the middle of the [0,1] interval.

As a further expression of our beliefs, let’s now

make the choice α = β = 5. As to why, note

that the variance of a beta distribution is given

by

αβ

(α+ β)2(α+ β +1)

When α = β = 5, we have a variance of roughly

0.025, implying a standard deviation of roughly

0.16, which should do for us nicely.
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To construct a MAP estimate for p, we will
now substitute the beta distribution prior for
p in the following equation at the bottom of
Slide 10:

p̂MAP = argmax
p


 ∑

x∈X

log prob(x|p) + log prob(p)




which, with the help of the same rationale as used

on Slide 12, can be rewritten for our specific
experiment in the following form

p̂MAP = argmax
p

(
nd · log p

+ (N − nd) · log (1− p)

+ log prob(p)

)

We can now substitute in the above equation
the beta distribution for prob(p) shown at the
top of Slide 15. We must subsequently take
the derivative of the right hand side of the
equation with respect to the parameter p and
set it to zero for finding best value for p̂MAP .
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The steps mentioned at the bottom of the pre-

vious slide give us the following equation:

nd

p
−

(N − nd)

(1− p)
+

α− 1

p
−

β − 1

1− p
= 0

The solution of this equation is

p̂MAP =
nd + α− 1

N + α+ β − 2

=
nd +4

N +8

With N = 20 and with 12 of the 20 saying they

would vote Democratic, the MAP estimate for

p is 0.571 with α and β both set to 5.

The next slide summarizes what we get

from a MAP estimate beyond what’s pro-

vided by an ML estimate.
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• MAP estimation “pulls” the estimate to-

ward the prior.

• The more focused our prior belief, the larger

the pull toward the prior. By using larger

values for α and β (but keeping them equal),

we can narrow the peak of the beta distri-

bution around the value of p = 0.5. This

would cause the MAP estimate to move

closer to the prior.

• In the expression we derived for p̂MAP , the

parameters α and β play a “smoothing”

role vis-a-vis the measurement nd.

• Since we referred to p as the parameter

to be estimated, we can refer to α and β

as the hyperparameters in the estimation

calculations.
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1.7: Bayesian Estimation

Given the evidence X , ML considers the pa-

rameter vector Θ to be a constant and seeks

out that value for the constant that provides

maximum support for the evidence. ML does

NOT allow us to inject our prior beliefs about

the likely values for Θ in the estimation calcu-

lations.

MAP allows for the fact that the parameter

vector Θ can take values from a distribution

that expresses our prior beliefs regarding the

parameters. MAP returns that value for Θ

where the probability prob(Θ|X) is a maximum.

Both ML and MAP return only single and

specific values for the parameter Θ.
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Bayesian estimation, by contrast, calcu-

lates fully the posterior distribution prob(Θ|X).

Of all the Θ values made possible by the es-

timated posterior distribution, it is our job to

select a value that we consider best in some

sense. For example, we may choose the ex-

pected value of Θ assuming its variance is small

enough.

The variance that we can calculate for the pa-

rameter Θ from its posterior distribution allows

us to express our confidence in any specific

value we may use as an estimate. If the vari-

ance is too large, we may declare that there

does not exist a good estimate for Θ.
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1.8: What Makes Bayesian Estimation

Complicated?

Bayesian estimation is made complex by the

fact that now the denominator in the Bayes’

Rule

prob(Θ|X) =
prob(X|Θ) · prob(Θ)

prob(X)

cannot be ignored. The denominator, known

as the probability of evidence, is related to

the other probabilities that make their appear-

ance in the Bayes’ Rule by

prob(X) =

∫

Θ
prob(X|Θ) · prob(Θ) dΘ
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This leads to the following thought critical to

Bayesian estimation: For a given likelihood

function, if we have a choice regarding how

we express our prior beliefs, we must use

that form which allows us to carry out the

integration shown at the bottom of the

previous slide. It is this thought that leads to

the notion of conjugate priors.

Finally, note that, as with MAP, Bayesian es-

timation also requires us to express our prior

beliefs in the possible values of the parameter

vector Θ in the form of a distribution.

IMPORTANT PRACTICAL NOTE: Obtain-

ing an algebraic expression for the posterior is, of course, important

from a theoretical perspective. In practice, if you estimate a poste-

rior ignoring the denominator, you can always find the normalization

constant — which is the role served by the denomicator — sim-

ply by adding up what you get for the numerator, assuming you

did a sufficiently good job of estimating the numerator. More on

this point is in my tutorial “Monte Carlo Integration in Bayesian

Estimation.”
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1.9: An Example of Bayesian Estimation

We will illustrate Bayesian estimation with the
same Bernoulli trial based example we used

earlier for ML and MAP. Our prior for that
example is given by the following beta distri-

bution:

prob(p|α, β) =
1

B(α, β)
pα−1(1− p)β−1

where the LHS makes explicit the dependence

of the prior on the hyperparameters α and β.

With this prior, the probability of evidence, de-
fined on Slide 22, is given by

prob(X) =
∫ 1

0
prob(X|p) · prob(p) dp

=

∫ 1

0




N∏

i=1

prob(xi|p)


 · prob(p) dp

=

∫ 1

0

(
pnd · (1− p)N−nd

)
· prob(p) dp
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As it turns out, the integration at the bottom

of the previous slide is easy.

When we multiply a beta distribution with ei-

ther a power of p or a power of (1 − p), you

simply get a different beta distribution.

So the probability of evidence for this example

can be thought of as a constant Z whose value

depends on the values chosen for α, β, and the

measurement nd.

We can now go back to the expression on the

right side of the equation for Bayesian estima-

tion, as shown by the first equation on Slide

22, and replace its denominator by Z as defined

above.
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With the step mentioned at the bottom of the

previous slide, the Bayes’ Rule for Bayesian es-

timation shown on Slide 22 becomes:

prob(p|X) =
prob(X|p) · prob(p)

Z

=
1

Z
· prob(X|p) · prob(p)

=
1

Z
·




N∏

i=1

prob(xi|p)


 · prob(p)

=
1

Z
·
(
pnd · (1− p)N−nd

)
· prob(p)

= Beta(p | α+ nd, β +N − nd)

where the last result follows from the observa-

tion made earlier that a beta distribution mul-

tiplied by either a power of p or a power of

(1− p) remains a beta distribution, albeit with

a different pair of hyperparameters. [Recall the

definition of Beta() on Slide 15.]
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As shown on Slide 15, the notation Beta() in

the last equation of the previous slide is a short

form for the same beta distribution you saw

before. The hyperparameters of this beta dis-

tribution are shown to the right of the vertical

bar in the argument list.

The result on the previous slide gives us a

closed form expression for the posterior dis-

tribution for the parameter to be estimated.

If we wanted to return a single value as an esti-

mate for p, that would be the expected value of

the posterior distribution we just derived. Us-

ing the standard formula for the expectation of

a beta distribution, the expectation is given by

expression shown at the top of the next slide.
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p̂Bayesian = E{p|X}

=
α+ nd

α+ β +N

=
5+ nd

10 +N

for the case when we set both α and β to 5.

When N = 20 and 12 out of 20 individu-

als report that they will vote Democratic, our

Bayesian estimate yields a value of 0.567. Com-

pare that to the MAP value of 0.571 and the

ML value of 0.6.

One benefit of the Bayesian estimation is that

we can also calculate the variance associated

with the above estimate. One can again use

the standard formula for the variance of a beta

distribution to show that the variance associ-

ated with the Bayesian estimate is 0.0079.
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PART 2: ML, MAP, and Bayesian

Prediction
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2.1: What is Prediction in the Context

of ML, MAP, and Bayesian Estimation?

Let’s say we are given the evidence

X = {xi}
|X |
i=1

and that next a new datum x̃ comes along.

We want to know as to what extent the new

datum x̃ is supported by the evidence X .

To answer this question, we can try to calcu-

late the probability

prob(x̃|X)

and determine as to what extent the evidence

X can predict the new datum x̃. Prediction

is also referred to as regression.

30



The Trinity Tutorial by Avi Kak

2.2: ML Prediction

We can write the following equation for the

probabilistic support that the past data X pro-

vides to a new observation x̃:

prob(x̃|X) =

∫

Θ
prob(x̃|Θ) · prob(Θ|X) dΘ

≈
∫

Θ
prob(x̃|Θ̂ML) · prob(Θ|X) dΘ

= prob(x̃|Θ̂ML)

What this says is that the probability model

for the new observation x̃ is the same as for all

previous observations that constitute the evi-

dence X . In this probability model, we set the

parameters to Θ̂ML to compute the support

that the evidence lends to the new observa-

tion.
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2.3: MAP Prediction

With MAP, the derivation on the previous slide

becomes

prob(x̃|X) =

∫

Θ
prob(x̃|Θ) · prob(Θ|X) dΘ

≈
∫

Θ
prob(x̃|Θ̂MAP) · prob(Θ|X) dΘ

= prob(x̃|Θ̂MAP)

This is to be interpreted in the same manner

as the ML prediction presented on the previous

slide. The probabilistic support for the new

data x̃ is to be computed by using the same

probability model as used for the evidence X

but with the parameters set to ΘMAP .
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2.4: Bayesian Prediction

In order to compute the support prob(x̃|X) that

the evidence X lends to the new observation

x̃, we again start with the relationship:

prob(x̃|X) =
∫

Θ
prob(x̃|Θ) · prob(Θ|X) dΘ

but now we must use the Bayes’ Rule for the

posterior prob(Θ|X) to yield

prob(x̃|X) =

∫

Θ
prob(x̃|Θ)·

prob(X|Θ) · prob(Θ)

prob(X)
dΘ
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PART 3: Conjugate Priors
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3.1: What is a Conjugate Prior?

As you saw, Bayesian estimation requires us to

compute the full posterior distribution for the

parameters of interest, as opposed to, say, just

the value where the posterior acquires its max-

imum value. As shown already, the posterior

is given by

prob(Θ|X) =
prob(X|Θ) · prob(Θ)

∫
prob(X|Θ) · prob(Θ) dΘ

The most challenging part of the calculation

here is the derivation of a closed form for the

marginal in the denominator on the right.
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For a given algebraic form for the likelihood,

the different forms for the prior prob(Θ) pose

different levels of difficulty for the determina-

tion of the marginal in the denominator and,

therefore, for the determination of the poste-

rior.

For a given likelihood function prob(X|Θ), a

prior prob(Θ) is called a conjugate prior if

the posterior prob(Θ|X) has the same algebraic

form as the prior.

Obviously, Bayesian estimation and prediction

becomes much easier should the engineering

assumptions allow a conjugate prior to be cho-

sen for the applicable likelihood function.

When the likelihood can be assumed to be

Gaussian, a Gaussian prior would consti-

tute a conjugate prior because in this case

the posterior would also be Gaussian.
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You have already seen another example of a

conjugate prior earlier in this review. For the

Bernoulli trail based experiment we talked about

earlier, the beta distribution constitutes a con-

jugate prior. As we saw there, the posterior

was also a beta distribution (albeit with differ-

ent hyperparameters).

As we will see later, when the likelihood is a

multinomial, the conjugate prior is the Dirich-

let distribution.
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PART 4: Multinomial Distributions
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4.1: When Are Multinomial

Distributions Useful for Likelihoods?

Multinomial distributions are useful for mod-

elling the evidence when each observation in

the evidence can be characterized by count

based features.

As a stepping stone to multinomial distribu-

tions, let’s first talk about binomial distribu-

tions.

Binomial distributions answer the following ques-

tion: Let’s carry out N trials of a Bernoulli ex-

periment with p as the probability of success

at each trial. Let n be the random variable

that denotes the number of times we achieve

success in N trials. The questions is: What’s

the probability distribution for n?
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The random variable n has binomial distribu-

tion that is given by

prob(n) =
(N
n

)
pn(1− p)N−n

with the binomial coefficient
(
N
n

)
= N !

k!(N−n)!
.

A multinomial distribution is a generaliza-

tion of the binomial distribution.

Now instead of a binary outcome at each trial,

we have k possible mutually exclusive outcomes

at each trial. Think of rolling a k-faced die

(that is possibly biased).

At each trial, the k outcomes can occur with

the probabilities p1, p2, ..., pk, respectively,

with the constraint that they must all add up

to 1.
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We still carry out N trials of the underlying

experiment and at the end of the N trials we

pose the following question: What is the proba-

bility that we saw n1 number of the first outcome,

n2 number of the second outcome, ...., and nk num-

ber of the kth outcome? This probability is a

multinomial distribution and is given by

prob(n1, ..., nk) =
N !

n1!...nk!
p
n1
1 · ·p

nk
k

with the stipulation that
∑k

i=1 nk = N . The

probability is zero when this condition is not

satisfied. Note that there are only k − 1 free

variables in the argument to prob() on the left

hand side.

We can refer to the N trials we talked about

above as constituting one multinomial ex-

periment in which we roll the die N times as

we keep count of the number of times we see

the face with one dot, the number of times the

face with two dots, the number of times the

face with three dots, and so on.
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If we wanted to actually measure the proba-

bility prob(n1, ..., nk) experimentally, we would

carry out a large number of multinomial exper-

iments and record the number of experiments

in which the first outcome occurs n1 times, the

second outcome n2 times, and so on.

If we want to make explicit the conditioning

variables in prob(n1, ..., nk), we can express it

as

prob(n1, ..., nk | p1, p2, ..., pk, N)

This form is sometimes expressed more com-

pactly as

Multi(~n | ~p,N)
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4.2: What is a Multinomial Random

Variable?

A random variable W is a multinomial r.v. if its

probability distribution is a multinomial. The

vector ~n shown at the end of the last slide is a

multinomial random variable.

A multinomial r.v. is a vector. Each element

of the vector stands for a count for the occur-

rence of one of k possible outcomes in each

trial of the underlying experiment.

Think of rolling a die 1000 times. At each roll,

you will see one of six possible outcomes. In

this case, W = (n1, ..., n6) where ni stands for

the number of times you will see the face with

i dots.
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4.3: Multinomial Modelling of
Likelihoods for Images and Text Data

If each image in a database can be character-
ized by the number of occurrences of a certain
preselected set of features, then the database
can be modeled by a multinomial distribution.
Carrying out N trials of a k-outcome experi-
ment would now correspond to examining N

most significant features in each image and
measuring the frequency of occurrence of each
feature — assuming that the total number of
distinct features is k. Therefore, each of the
N features in each image must be one of the
k distinct features. We can think of each im-
age as the result of one multinomial experi-
ment, meaning one run of N trials with each
trial consisting of ascertaining the identities of
the N most significant features in the image
and counting the number of occurrences of
the different features (under the assumption
that there can only exist k different kinds of
features).

44



The Trinity Tutorial by Avi Kak

A common way to characterize text documents
is by the frequency of the words in the docu-

ments. Carrying out N trials of a k-outcome
experiment could now correspond to recording
the N most prominent words in a text file. If

we assume that our vocabulary is limited to
k words, for each document we would record
the frequency of occurrence of each vocabu-

lary word. We can think of each document as
a result of one multinomial experiment.

For each of the above two cases, if for a given
image or text file the first feature is observed
n1 times, the second feature n2 times, etc.,

the likelihood probability to be associated with
that image or text file would be

prob(image|p1, ..., pk) =
k∏

i=1

pi
ni

We will refer to this probability as the multino-
mial likelihood of the image. We can think of

p1, ... , pk as the parameters that characterize
the database.
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4.4: Conjugate Prior for a Multinomial

Likelihood

The conjugate prior for a multinomial likeli-

hood is the Dirichlet distribution:

prob(p1, ..., pk) =
Γ(

∑k
i=1αi)∏k

i=1Γ(αi)

k∏

i=1

p
αi−1
i

where αi, i = 1, ..., k, are the hyperparameters

of the prior.

The Dirichlet is a generalization of the beta

distribution from two degrees of freedom to k

degrees of freedom. (Strictly speaking, it is

a generalization from the one degree of free-

dom of a beta distribution to k − 1 degrees of

freedom. That is because of the constraint∑k
i=1 pi = 1.)
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The Dirichlet prior is also expressed more com-

pactly as

prob(~p|~α)

For the purpose of visualization, consider the

case when an image is only allowed to have

three different kinds of features and we make

N feature measurements in each image. In

this case, k = 3. The Dirichlet prior would

now take the form

prob(p1, p2, p3 | α1, α2, α3)

=
Γ(α1 + α2 + α3)

Γ(α1)Γ(α2)Γ(α3)
p
α1−1
1 p

α2−1
2 p

α3−1
3
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under the constraint that p1 + p2 + p3 = 1.

When k = 2, the Dirichlet prior reduces to

prob(p1, p2 | α1, α2)

=
Γ(α1 + α2)

Γ(α1)Γ(α2)
p
α1−1
1 p

α2−1
2

which is the same thing as the beta distribution

shown earlier. Recall that now p1 + p2 = 1.

Previously, we expressed the beta distribution

as prob(p|α, β). The p there is the same thing

as p1 here.
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PART 5: Modelling Text
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5.1: A Unigram Model for Documents

Let’s say we wish to draw N prominent words

from a document for its representation.

We assume that we have a vocabulary of V

prominent words. Also assume for the purpose

of mental comfort that V << N . (This latter

assumption is not necessary for the theory to

work.)

For each document, we measure the number

of occurrences ni for wordi of the vocabulary.

It must obviously be the case the
∑V

i=1 ni = N .

Let the multinomial r.v. W represent the word

frequency vector in a document. So for a given

document, the value taken by this r.v. can be

shown as the vector (n1, ..., nV ).
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Let our corpus (database of text documents)

be characterized by the following set of prob-

abilities: The probability that wordi of the vo-

cabulary will appear in any given document is

pi. We will use the vector ~p to represent the

vector (p1, p2, ..., pV ). The vector ~p is referred

to as defining the Unigram statistics for the

documents.

We can now associate the following multino-

mial likelihood with a document for which the

r.v. W takes on the specific value W = (n1, ..., nV ):

prob(W|~p) =
V∏

i=1

p
ni
i

If we want to carry out a Bayesian estimation

of the parameters ~p, it would be best if we

could represent the priors by the Dirichlet dis-

tribution:
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prob(~p|~α) = Dir(~p|~α)

Since the Dirichlet is a conjugate prior for a

multinomial likelihood, our posterior will also

be a Dirichlet.

Let’s say we wish to compute the posterior

after observing a single document with W =

(n1, ..., nV ) as the value for the r.v. W . This

can be shown to be

prob(~p|W, ~α) = Dir(~p|~α+ ~n)
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5.2: A Mixture of Unigrams Model for

Documents

In this model, we assume that the word proba-

bility pi for the occurrence of wordi in a docu-

ment is conditioned on the selection of a topic

for a document. In other words, we first as-

sume that a document contains words corre-

sponding to a specific topic and that the word

probabilities then depend on the topic.

Therefore, if we are given, say, 100,000 doc-

uments on, say, 20 topics, and if we can as-

sume that each document pertains to only one

topic, then the mixture of unigrams approach

will partition the corpus into 20 clusters by as-

signing one of the 20 topics labels to each of

the 100,000 documents.
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We can now associate the following likelihood

with a document for which the r.v. W takes

on the specific value W = (n1, ..., nV ), with ni

as the number of times wordi appears in the

document:

prob(W|~p, ~z) =
∑

z

prob(z) ·
V∏

i=1

(p(wordi|z))
ni

Note that the summation over the topic dis-

tribution does not imply that a document is

allowed to contain multiple topics simultane-

ously. It simply implies that a document, con-

strained to contain only one topic, may either

contain topic z1, or topic z2, or any of the other

topics, each with a probability that is given by

prob(z).
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5.3: Document Modelling with PLSA

PLSA stands for Probabilistic Latent Semantic

Analysis.

PLSA extends the mixture of unigrams model

by considering the document itself to be a ran-

dom variable and declaring that a document

and a word in the document are conditionally

independent if we know the topic that governs

the production of that word.

The mixture of unigrams model presented on

the previous slide required that a document

contain only one topic.

On the other hand, with PLSA, as you “gen-

erate” the words in a document, at each point

you first randomly select a topic and then se-

lect a word based on the topic chosen.
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The topics themselves are considered to be the

hidden variables in the modelling process.

With PLSA, the probability that the word wn

from our vocabulary of V words will appear in

a document d is given by

prob(d, wn) = prob(d)
∑

z

prob(wn|z)prob(z|d)

where the random variable z represents the hid-

den topics. Now a document can have any

number of topics in it.
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5.4: Modelling Documents with LDA

LDA is a more modern approach to modelling

documents.

LDA takes a more principled approach to ex-

pressing the dependencies between the topics

and the documents on the one hand and be-

tween the topics and the words on the other.

LDA stands for Latent Dirichlet Allocation.

The name is justified by the fact that the top-

ics are the latent (hidden) variables and our

document modelling process must allocate the

words to the topics.

Assume for a moment that we know that a

corpus is best modeled with the help of k top-

ics.
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For each document, LDA first “constructs” a

multinomial whose k outcomes correspond to

choosing each of the k topics. For each doc-

ument we are interested in the frequency of

occurrence of of each of the k topics. Given

a document, the probabilities associated with

each of the topics can be expressed as

θ = [p(z1|doc), ..., p(zk|doc)]

where zi stands for the ith topic. It must obvi-

ously be the case that
∑k

i=1 p(zi|doc) = 1. So

the θ vector has only k−1 degrees of freedom.

LDA assumes that the multinomial θ can be

given a Dirichlet prior:

prob(θ|α) =
Γ(

∑k
i=1 αi)∏k

i=1Γ(αi)

k∏

i=1

θ
αi−1
i
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where θi stands for p(zi|doc) and where α are

the k hyperparameters of the prior.

Choosing θ for a document means randomly

specifying the topic mixture for the document.

After we have chosen θ randomly for a docu-

ment, we need to generate the words for the

document. This we do by first randomly choos-

ing a topic at each word position according to

θ and then choosing a word by using the dis-

tribution specified by the β matrix:

β =




p(word1|z1) p(word2|z1) ... p(wordV |z1)
p(word1|z2) p(word2|z2) ... p(wordV |z2)

... ... ...

... ... ...

p(word1|zK) p(word2|zK) ... p(wordV |zK)



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What is interesting is that these probabilities

cut across all of the documents in the corpus.

That is, they characterize the entire corpus.

Therefore, a corpus in LDA is characterized by

the parameters α and β.

Folks who do research in LDA have developed

different strategies for the estimation of these

parameters.
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PART 6: What to Read Next?
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Recommendations for Further Reading

• If you are interested in recent research re-

sults on the precision with which bugs can

be automatically localized (using bug re-

ports as queries) through the modeling of

large software libraries using the methods

of Part 5 of this tutorial, see the slides

of my recent talk on the subject: “Im-

portance of Machine Learning to the

SCUM of Large Software” at https://engineering.

purdue.edu/kak/AviKakInfyTalk2013_Handout.pdf

• If you would like to go deeper into the prac-

tical aspects of Bayesian estimation, you

might wish to read my tutorial “Monte

Carlo Integration in Bayesian Estima-

tion,” that is available at https://engineering.

purdue.edu/kak/Tutorials/MonteCarloInBayesian.pdf
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