
Object-Oriented Scripting
Avi Kak
kak@purdue.edu

2

Contents:

Part A: Object-Oriented Notions in General
(slides 3 --- 10)

Part B: Object-Oriented Scripting in Perl
(slides 11 --- 71)

Part C: Object-Oriented Scripting in Python
(slides 72 –- 143)

Part D: Some Applications of OO Scripting
(slides 144 --- 155)

3

Part A of this Tutorial

Object Oriented Notions in General

Slides 3 – 10

4

The Main OO Concepts

• Class

• Encapsulation

• Inheritance

• Polymorphism

The following fundamental notions of object-oriented
programming in general apply to object-oriented scripting
also:

5

• At a high level of conceptualization, a class can be thought of
as a category. We may think of “Cat” as a class.

• A specific cat would then be an instance of this class.

• For the purpose of writing code, a class is a data structure
with attributes.

• An instance constructed from a class will have specific values
for the attributes.

• To endow instances with behaviors, a class can be provided
with methods.

What is a Class?

6

• A method is a function you invoke on an instance of the class or the
class itself.

• A method that is invoked on an instance is sometimes called an
instance method.

• You can also invoke a method directly on a class, in which case it is
called a class method or a static method.

• Attributes that take data values on a per-instance basis are
frequently referred to as instance variables.

• Attributes that take on values on a per-class basis are called class
attributes or static attributes or class variables.

Methods, Instance Variables, and Class Variables

7

• Hiding or controlling access to the implementation-related
attributes and the methods of a class is called
encapsulation.

• With appropriate data encapsulation, a class will present a
well-defined public interface for its clients, the users of the
class.

• A client should only access those data attributes and invoke
those methods that are in the public interface.

Encapsulation

8

• Inheritance in object-oriented code allows a subclass to
inherit some or all of the attributes and methods of its
superclass(es).

• Polymorphism basically means that a given category of
objects can exhibit multiple identities at the same time, in the
sense that a Cat instance is not only of type Cat, but also of
type FourLegged and Animal, all at the same time.

Inheritance and Polymorphism

9

• As an example of polymorphism, suppose we make an array like

@animals = (kitty, fido, tabby, quacker, spot);

of cats, dots, and a duck --- instances made from different classes in
some Animal hierarchy --- and if we were to invoke a method
calculateIQ() on this list of animals in the following fashion

foreach my $item (@animals) {
$item.calculateIQ();

}

polymorphism would cause the correct implementation code for
calculateIQ() to be automatically invoked for each of the animals.

Polymorphism (contd.)

10

• In many object-oriented languages, a method such as
calculateIQ() would need to be declared for the root class
Animal for the control loop shown on the previous slide to work
properly.

• All of the public methods and attributes defined for the root class
would constitute the public interface of the class hierarchy and each
class in the hierarchy would be free to provide its own
implementation for the methods declared in the root class.

• Polymorphism in a nutshell allows us to manipulate instances
belonging to the different classes of a hierarchy through a common
interface defined for the root class.

Regarding the Previous Example on Polymorphism

11

Part B of this Tutorial

Object Oriented Scripting in Perl

Slides 11 – 71

12

• Packages

• References

• The notion of blessing an object into a packageblessing an object into a package

Defining a Class in Perl

We need to pull together the following three concepts in order to
understand the notion of a class in Perl:

13

• A class in Perl is a package that encloses the methods that
characterize the behavior of the class and of the instances
constructed from the class.

• Since, strictly speaking, a package is merely a namespace, it
does not allow us to directly incorporate the attributes that
can be used on a per-instance basis in the same sense that a
C++ or a Java class does. (Although, as we will see later, a
package does allow us to use attributes on a per-class basis,
meaning like the static data members in C++ and Java.)

• This limitation, however, does not prevent us from creating a
Perl instance with state.

Using a Perl Package as a Class

14

• Perl creates stateful objects through the expedient of
packaging the state variables (meaning the per-instance
variables) inside a standard data structure like a hash and
having an object constructor return such a hash as an
instance of the class.

• It is important to realize that just as much as Perl can use a
hash for a class instance, it can also use a scalar or an array
for the same purpose.

• The convenience of a hash is obvious --- it gives us named
placeholders for the instance variables of a class, just like the
data members in a C++ or a Java class.

Creating Stateful Objects in Perl

15

• Hashes, arrays, and scalars are free-standing objects in Perl,
meaning that they don’t ordinarily belong to any particular package.

• It is true that, in general, a variable inside a package would need to
be accessed with its package qualified name. But if the variable is
holding a reference to, say, a hash, that hash itself has no
particular package association.

• So how does Perl establish the needed association between a data
object that is to serve as an instance of a class and the class itself
(meaning the package that will be used as a class)?

Hashes, Arrays, and Scalars as Instance
Objects! How Can That be?

16

• The type labeling is needed if the behavior of an object must correspond
to what is specified for that class through its methods.

• In Perl, the type association between a data object and a package that
is to serve as a class is established through the mechanism of blessing.

• When an object is blessed into a package, the object becomes tagged
as belonging to the package.

• Subsequently, the object can be considered to be of the type that is the
name of the package.

So How Does Perl Acquire the Notion that a
Data Object is of a Certain Type?

17

• Note the type of reference held by $ref before and after it is
blessed:

my $ref = {name=>“Trillian”, age=>35};
print ref($ref); # Hash
bless $ref, Person;
print ref($ref); # Person

• Also note that the above call to bless will also create a class
named Person by the autovivification feature of Perl

• It is the object to which $ref is pointing that is getting blessed
and not the variable $ref itself

Blessing an Object into a Class

18

• After an object has been blessed into a class, a method invoked on a
reference to the object using the arrow operator will try to call on the
subroutine of that name from the package corresponding to the class:

What do we get by Blessing an Object into
a Class?

package Person;

sub get_name {
my $self = shift;
$self->{name}

}

package main;

my $ref = {name=>“Trillian”, age=>35};
bless $ref, Person;
print $ref->get_name(); # Trillian

19

• From the call syntax on the previous slide, it looks like we are calling
get_name() without any arguments.

• But because, we are invoking get_name() on a blessed reference,
get_name() is implicitly supplied with one argument, which is the
reference on which the subroutine is invoked.

• So it would be correct to say that the invocation of get_name() on
the previous slide is translated by Perl into the following function call

Person::get_name($ref)

which agrees with how the subroutine expects itself to be called.

Special Syntax for Methods

20

• Any reference whatsoever can be blessed. Here we are blessing an
array:

Can Any Reference to Any Sort of an
Object by Blessed ?

package StringJoiner;

sub wordjoiner {
my $self = shift;
join “”, @$self;

}

package main;
my $ref = [‘hello’, ‘jello’, ‘mello’, ‘yello’];
bless $ref, StringJoiner;
print $ref->wordjoiner(); # hellojellomelloyello

21

• A constructor’s job is to create instance objects from the class
definition

• A constructor must do the following:

--- select a storage mechanism for the instance variables

--- obtain a reference to the data object created (which will
serve as a class instance) for the values provided for the
instance variables

--- bless the data object into the class and return the
blessed reference to the object

Providing a Class with a Constructor

22

• While there are constraints on how a constructor is
named in Python and in mainstream OO languages like
C++ and Java, there are no such constraints in Perl.

• In Perl, if a class has a single constructor, it will typically
be named new. But a class is allowed to have any
number of constructors, a feature that Perl has in
common with C++ and Java.

How Should a Constructor be Named?

23

• Subsequently, the variable $person will hold a reference to an
instance of class Person.

Example of a Class with a Constructor
package Person;

sub new {
my ($class, $name, $age) = @_;
bless {
_name => $name;
_age => $age;

}, $class;
}

my $person = Person->new(“Zaphod”, 114);

• The constructor shown above is typically invoked with the following
arrow-operator based syntax:

24

• In the constructor call on the previous slide, we used the arrow
operator to invoke a method on the class itself, as opposed to on
a reference to an instance object. Perl translates this call into:

Constructor Example (contd.)

my $person = Person::new(Person, “Zaphod”, 114);

• If we so wanted, we could use this syntax directly for constructing
a Person instance.

• But that is not a recommended style for Perl OO because of its
ramifications in constructing instances of the subclasses of a
class.

25

• In the Person class on slide 23, the names we used for the
attributes started with an underscore.

• This is just a convention in Perl (and also Python) for
denoting those names that are internal to a class.

• Ideally, it should be nobody’s business how the various
attributes are represented inside a class, not even how they
are named.

• However, unlike in C++ and Java, there is no way to enforce
such privacy aspects of how data is stored in a class in Perl
(and in Python). Instead, we resort to conventions.

Data Hiding and Data Access Issues

26

• Convention regarding data hiding states that the names used
for the instance and the class variables begin with an
underscore and that these attributes of a class be only
accessible through the methods designated specifically for
that purpose.

Convention Regarding Data Hiding

package Person;
sub new {
my ($class, $name, $age) = @_;
bless {
_name = $name; _age = $age;

}, $class;
}
sub name { $_[0]->{_name} }
sub age {
my ($self, $age) = @_;
$age ? $self->{_age} = $age : $self->{_age};

}

27

• A package in Perl is merely a namespace and it is indeed
possible to have multiple packages in the same script file.

• But when it comes to using a package as a class in the
object-oriented sense, a common practice is to have a single
package --- and therefore a single class --- in a file, thus
creating a module file.

Packaging a Class into a Module

28

An Example of a Module File for a Class
package Person;
filename: Person.pm
use strict;

sub new {
my ($class, $name, $age) = @_;
bless {
_name = $name; _age = $age;

}, $class;
}
sub get_name { $_[0]->{_name} }
Sub get_age { $_[0]->{_age} }
sub set_age {
my ($self, $age) = @_;
$self->{_age} = $age;

}
1

Notes:

1. The module file for the class
name ends in the suffix ‘.pm’

2. The last statement in the file is
just the number ‘1’. It can also
be ‘return 1’.

3. Usually a class file name will
contain documentation before
the ‘package’ statement.

29

Importing a Class File into a Script

#!/usr/bin/perl -w
filename: TestPerson.pl
use strict;
use Person;

my ($person, $name, $age);
$person = Person->new(“Zaphod”, 114);
$name = $person->get_name;
$age = $person->get_age;
print “name: $name age: $age\n”; # name: Zaphod age: 114

$person->set_age(214);
$age = $person->get_age;
print “name: $name age: $age\n”; # name: Zaphod age: 214

Here is an example of how to use the class file shown on the previous slide:

30

• When a function takes a large number of arguments, it can be
difficult to remember the position of each argument in the
argument list of a function call.

• Perl scripts can take advantage of the built-in hash data
structure so that functions can be called with named
arguments.

• In addition to the convenience provided by attaching a name
with an argument, the name—argument pairs can be
specified in any positional order.

• The same can be done for a constructor, as shown next.

Constructors with Named Parameters

31

Example of a Constructor with Named Args
package Employee
filename: Employee.pm
use strict;
sub new {
my ($class, %args) = @_;
bless {
_name => $args{name},
_age => $args{age},
_gender => $args{gender},
_title => $args{title},

}, $class;
}
sub get_name { $_[0]->{_name} }
sub get_age { $_[0]->{_age} }
sub get_gender { $_[0]->{_gender} }
sub get_title { $_[0]->{_title} }
sub set_age{ $_[0]->{_age} = $_[1] }
sub set_ title{ $_[0]->{_title} = $_[1] }
1

32

• The constructor of the class shown on the previous slide can
be called with the following more convenient syntax:

Calling a Constructor with Named Args

my $emp = Employee->new(name => “Poly”,
title => “boss”,
gender => “female”,
age => 28,);

33

• If desired, it is possible to provide a constructor with default
values for one or more of the instance variables named in the
body of the constructor.

• When the constructor is meant to be called with the
arguments in a specific positional order, the default values
can only be specified for what would otherwise be the trailing
arguments in a normal constructor call.

• With a constructor that expects to be called with named
arguments, any arguments left unspecified can be taken care
of by its default value, as shown on the next slide.

Default Values for Instance Variables

34

Ex. of a Constructor with Defaults for Args
package Flower;
filename: Flower.pm
use strict; use Carp;
sub new {

my ($class, $name, $season, $frag) = @_;
bless {
_name => $name || croak(“name required”),
_season => $season || _ask_for_season($name),
_fragrance => $frag || ‘unknown’,

}, $class;
}
sub get_name { $_[0]->{_name} }
sub get_season { $_[0]->{_season} }
sub get_fragrance { $_[0]->{_fragrance} }
sub set_season{ $_[0]->{_season} = $_[1] }
sub set_ fragrance{ $_[0]->{_fragrance} = $_[1] }
sub _ask_for_season {

my $flower = shift;
print STDOUT “enter the season for $flower: “;
chomp(my $response = <>);
$response;

}
1

35

• The Flower class shown on the previous slide suffers from one
limitation: it does not make it difficult for a programmer to try to use
the subroutine _ask_for_season() directly even though that
subroutine is meant for just internal use by the class.

• A client of the Flower class could make the following invocation

Hiding Free-Standing Functions

my $flower = Flower->new(“rose”);
$flower->_ask_for_season();

• While the result of this external invocation of _ask_for_season()
would produce a meaningless result in this case (since the instance
object as opposed to the name of the flower will be passed as the
argument to the subroutine), in general anything could happen,
including the injection of a difficult to locate bug in a large script.

36

• Unfettered access to private subroutines can be controlled by
making such subroutines anonymous and having private
variables hold references to them:

Hiding Free-Standing Functions (contd.)

package Flower;
filename: Flower.pm
use strict;
my $ask = sub {
my $fl = shift;
print “enter season for $fl:”;
chomp(my $response = <>);
$response;

}
sub new {
my ($cls,$nam,$seas,$frag)=@_;

bless {
_name=>$nam || croak(“nam req”),
_seasn=>$seas || $ask($nam),
_fragrance=>$frag || ‘unknown’,
}, $cls;

}
sub get_name { $_[0]->{_name} }
Sub get_season { $_[0]->{_season} }
sub get_fragrance { ……… }
sub set_season {………}
sub set_fragrance { ………… }
1

37

• Perl comes with an automatic garbage collector for reclaiming
memory occupied by unreferenced objects.

• The garbage collector is invoked by the system automatically
through the mechanism of reference counting that is
associated with the objects.

• In the same spirit as a destructor in C++ and the finalize
method in Java, Perl allows a programmer to define a special
method named DESTROY() that is called automatically for
cleanup just before the system reclaims the memory occupied
by the object.

Object Destruction

38

• A programmer-provided DESTROY() can be important in
situations where an object contains open filehandles, sockets,
pipes, database connections, and other system resources.
The code to free up these resources can be placed in
DESTROY().

• In addition to being invoked when the reference count for an
object goes down to zero, DESTROY() would also be called if
the process or the thread in which the Perl interpreter is
running is shutting down.

Object Destruction (contd.)

39

• Except for the constructors and a few other functions embedded in
definitions, the subroutines shown in the previous class definitions
have mostly been those that are meant to be invoked on a per
instance basis. A constructor is obviously intended to be invoked
directly on a class.

• Methods that are meant to be invoked directly on a class are
commonly referred to as either class methods or as static methods.

• Just like class methods, we can also have class variables or class
attributes or static attributes. These variables are global with respect
to the class, meaning global with respect to all the instances made
from that class.

Class Variables and Methods

40

• Shown next is a Robot class that allows us to assign a
unique serial number to each Robot instance.

• The class has been provided with a class-based storage
(as opposed to instance-based storage) for keeping track
of the serial numbers already assigned so that the next
Robot instance would get the next serial number.

• The class has also been provided with a class method for
returning the total number of robots already made.

Class Variables and Methods (contd.)

41

Class Variables and Methods (contd.)
#!/usr/bin/perl –w
use strict;
filename: ClassData.pl

package Robot;

my $_robot_serial_num = 0;
my $_next_serial =

sub {++$_robot_serial_num };
my $_total_num =

sub { $_robot_serial_num };

Constructor:
sub new {
my ($class, $owner) = @_;
bless {
_owner => $owner,
_serial_num=>$_next_serial->();
}, $class;
}

for both set and get (instance)
sub owner {
my $self = shift;
@_ ? $self->{_owner} = shift

: $self->{_owner};
}

an instance method
sub get_serial_num {
my $self = shift;
$self->{_serial_num};

}

a class method
sub how_many_robots {
my $class = shift;
die “illegal call to static”

unless $class eq ‘Robot’;
$_total_num->();

}

42

• Shown below is the test code for the Robot class that
demonstrates the workings of class variables and methods.

Class Variables and Methods (contd.)

my $bot = Robot->new(“Zaphod”);
my $name = $bot->owner();
my $num = $bot->get_serial_num();
print “owner: $name serial number: $num”;

owner: Zaphod serial number: 1

$bot = Robot->new(“Trillian”);
$name = $bot->owner();
$num = $bot->get_serial_num();
print “owner: $name serial number: $num”;

owner: Trillian serial number: 2

invoke class method:
my $total_production = Robot->how_many_robots();
print $total_production; # 2

my $x = Robot::how_many_robots(); # ERROR

43

• Inheritance in mainstream OO languages such as C++ and Java
means that a derived class inherits the attributes and the methods of
all its parent classes.

• What the word “inherits” means in the above sentence is tighter than
what would be suggested by, say, a child class just acquiring the
attributes and the methods of its parent class.

• In the mainstream OO languages, the memory allocated to an
instance of a child class contains slots for all the instance variables in
all the parent classes.

Inheritance and Polymorphism in Mainstream OO

44

Inheritance and Polymorphism in Mainstream OO
(contd.)

• Therefore, in C++ and Java, an instance of a child class has built
into it “sub-instances” of the parent classes.

• It is for this reason that in C++ and Java the constructor of a child
class must explicitly or implicitly call the constructor of its parent
classes before it does anything else.

• The calls to the constructors of the parent classes are needed for
the initialization of that portion of the memory of a child class
instance that is meant to hold the parent-class slices.

45

• Inheritance in Perl (and in Python also) works very differently
compared to how it works in mainstream OO languages such
as C++ and Java.

• Perhaps the biggest difference is caused by the fact that
when memory is allocated for a subclass instance in Perl (and
in Python also), it does not contain slots for the base class
attributes.

• In other words, a subclass instance in Perl is a completely
separate data object and it does not contain “slices” for the
data objects that could be formed from the parent classes.

Inheritance and Polymorphism in Perl

46

• Inheritance in Perl (and also in Python) means only that if a
method invoked on a subclass instance is not found within the
subclass definition itself, it will be search for in the parent
classes.

• This manner of search for a method in the parent classes
automatically allows class instances to behave
polymorphically, albeit with a subtle twist vis-à-vis how
polymorphism works in the mainstream OO languages. This
point is explained in further detail on the next slide.

Inheritance and Polymorphism in Perl
(contd.)

47

• The polymorphism that results from Perl’s (and also Python’s) search-
based approach to inheritance differs in a subtle way from how
polymorphism works in mainstream OO languages.

• Whereas a child class in mainstream OO is equally polymorphic – if one
could use that characterization – with respect to all its parent classes,
the polymorphic behavior in Perl is weighted toward the parent classes
that appear earlier in the recursive depth-first left-to-right search order
through the parent classes of a child class.

• Perl (and Python) shares with the mainstream OO languages many of
the other benefits derived from inheritance. This includes incremental
development of code, using abstract classes for defining interfaces that
the rest of the code can be programmed to, etc.

Inheritance and Polymorphism in Perl (contd.)

48

• The ISA array is fundamental to how inheritance works in Perl.

• A derived class is provided with a list of its parent classes through
the ISA array.

• The script shown on the next slide presents the following class
hierarchy

X Y

Z

where the child class Z is derived from the parent classes X and Y.

The ISA Array for Specifying the Parents of
a Class

49

An Example of a Class Hierarchy
#!/usr/bin/perl –w
use strict;
InheritanceBasic.pl

package X;
sub new { bless {}, $_[0] }
sub foo { print “X’s foo\n” }

package Y;
sub new { bless {}, $_[0] }
sub bar { print “Y’s bar\n” }

package Z;
@Z::ISA = qw(X Y);
sub new { bless {}, $_[0] }

package main;

print join ‘ ‘, keys %Z::; #ISA new

my $zobj = Z=>new();
$zobj->foo(); # X’s foo
print join ‘ ‘, keys %Z::;

ISA new foo
$zobj->bar(); # Y’s bar
print join ‘ ‘, keys %Z::;

bar ISA foo new
print join ‘ ‘, values %Z::;
*Z::bar *Z::ISA *Z::foo *Z::new

50

• In the example on the previous slide, if a method invoked on
a Z instance does not exist in class Z itself, the method is
searched for in the parent classes in the ISA array defined for
class Z. In other words, such a method call would be
dispatched up the inheritance tree.

• In general, when not found in the class itself, the search for a
method definition in the inheritance tree takes place through a
recursive left-to-right depth-first fashion.

How a Method is Searched For in a Class
Hierarchy

51

• Let’s say that the inheritance tree that converges on a class Z
looks like

A B

P Q

Z

Left-to-Right Depth-First Search for a
Method Definition

• When a method called on a Z instance is not found in Z’s definition, it
is searched for in the namespace of class P. If not found there, the
search goes to class A, and then to class B, and finally to class Q.

• This search takes place only once. Subsequently, a reference to that
method is cached in the namespace of the class itself.

52

• Write a script that implements the three level hierarchy:

Person

Employee ExecutivePerks

Manager

An Exercise in Class Derivation

• For this simple exercise, it is more convenient to place all of
your code in a single file.

53

• Use the hash as the storage mechanism for the instance objects.

• Place instance variables _name and _age in the Person class.
Accessor methods for these variables, get_name(), get_age(),
set_age(), will be inherited by all classes derived from Person.

• Provide the derived class Employee with one additional instance
variable, _position, and the associated get_position() and
set_position() methods.

• Also provide the Employee class with a hash %_promotion_table
whose key-value pairs show the current _position and the next
_position when an Employee is promoted. This class should also
come with a method called promote() that changes the value of the
_position of an Employee. This method should be inheritable by all
child classes of Employee.

An Exercise in Class Derivation (contd.)

54

• Define another base class ExecutivePerks with a class variable
_bonus and the get_bonus() and set_bonus() methods.

• Provide the Manager class with an instance variable called
_department, which stands for the department that a manager
is in charge of, and the associated get and set methods.

• For tutorial participants needing extra help, a starter file for this
exercise will be provided. The starter file includes the code for
Person and Employee, and a partial implementation of Manager.

An Exercise in Class Derivation (contd.)

55

• By placing Person in the ISA array of Employee and Employee in
the ISA array of Manager, an Employee instance inherits the
methods of Person and a Manager instance inherits the methods of
both Person and Employee. This allows an Employee to act like a
Person and a Manager to act like an Employee and a Person.
That is polymorphism in its most basic form.

• For strongly typed OO languages like C++ and Java, a particular
consequence of polymorphism is the following property: A derived
class type can be substituted wherever a base class type is expected.

Demonstration of Polymorphism for the
Person Class Hierarchy

56

• So in C++ and Java, if you write a function that needs a base
class argument, by virtue of polymorphism you are allowed to
call this function with a derived class object for the argument.
In other words, suppose you write a function in Java

void foo(Person p);

we are allowed to invoke this function in the following manner

Manager man = new Manager(……);
foo(man);

Demonstration of Polymorphism in Perl OO
(contd.)

57

• This manifestation of polymorphism is also exhibited by Perl OO
(and Python OO also).

• Suppose you write the following stand-alone function in Perl:

sub foo { # expects a Person arg
my ($arg) = @_;
my $nam = $arg->get_name();
print $nam;

}

Demo of Polymorphism in Perl OO (contd.)

• If you call this function with a Manager argument, it will do the right
thing even though get_name() is only defined for the parent class.

58

• A derived-class method can call a base-class method of the same
name for doing part of the work by using the keyword SUPER

• To illustrate, consider the Employee—Manager portion of the class
hierarchy shown previously. We could provide Employee with the
following print() method:

sub print {
my $self = shift;
print “$self->{_name} $self->{_position} ”;

}

A Derived-Class Method Calling a Base-Class
Method

• The print() for the derived class Manager could now be written as:
sub print {
my $self = shift;
$self->SUPER::print();
print “$self->{_department}”;

}

59

• The keyword SUPER causes Perl to search for print() in the
direct and indirect superclasses of Manager.

• This search proceeds in exactly the same manner as for any regular
method invocation, except that it starts with the direct superclasses.

• It is also possible to ask Perl to confine its search to a particular
superclass (and all the superclasses of that class). For example, if
we want Manager’s print() to specifically use Employee’s
print(), then we replace the SUPER statement by:

$self->Employee::print()

The Keyword SUPER

60

• Every class in Perl inherits implicitly from a base class called
UNIVERSAL.

• We can therefore say that UNIVERSAL is implicitly at the root of
every class hierarchy in Perl.

• UNIVERSAL plays the same role in Perl that object plays in
Python and Object in Java.

• Every Perl class inherits the following methods from UNIVERSAL:
--- isa(class_name)
--- can(method_name)
--- VERSION(need_version)

The UNIVERSAL Class

61

• Of the three methods, isa(), can(), and VERSION(), that every
class inherits from UNIVERSAL, only the first two can be invoked by a
programmer. The third, VERSION(), is invoked automatically by the
system if the programmer requests a particular version of a Perl class.

• The isa() method that every class inherits from UNIVERSAL can be
used to test whether a given object is an instance of a particular class.

• For example, for the Employee—Manager class hierarchy:

$man = Manager->new(“Trillian”, “manager”, “sales”);
print $man->isa(‘UNIVERSAL’) ? “yes” : “no”; # yes
print $man->isa(‘Manager’) ? “yes” : “no”; # yes
print $man->isa(‘Executive’) ? “yes” : “no”; # no
print $man->isa(‘Employee’) ? “yes” : “no”; # yes

The UNIVERSAL Class (contd.)

62

• The other programmer-usable class that every class inherits
from UNIVERSAL is can(). This method can be used to test
whether a given class supports a particular method, either
directly or through inheritance.

• A call to can() returns a reference to the supported method.

• On the next slide, the variable $which_func holds a
reference to the first available function from the alternatives
listed on the right hand side of the assignment.

The UNIVERSAL Class (contd.)

63

The can() Method of UNIVERSAL
#!/usr/bin/perl –w
use strict;
CanMethod.pl

package X;
sub new { bless {}, $_[0] }
sub foo { print “X’s foo\n” }

package Y;
sub new { bless {}, $_[0] }
sub bar { print “Y’s bar\n” }

package Z;
@Z::ISA = qw(X Y);
sub new { bless {}, $_[0] }
sub baz { print “Z’s baz\n” }

package main;

my $obj = Z->new();

print $obj->can(“foo”) ? “yes”:“no”;
yes

print Z->can(“foo”) ? “yes” : “no”;
yes

my $which_func = $obj->can(“boo”) ||
$obj->can(“bar”) ||
$obj->can(“baz”);

&$which_func; # Y’bar

64

• This method is invoked directly by the system when a programmer
requests that a specified version of a certain class file be loaded in.

• You can associate a version number with a class file by using the
special variable $VERSION as follows

$class_name::VERSION = 1.2;

• Subsequently, when the same class file is loaded in through the use
directive, the load request can be customized to a special version of
the class by

use class_name 1.2;

The VERSION() Method of UNIVERSAL

65

• The use directive shown at the bottom of the previous slide
causes the invocation of the VERSION() method inherited
from UNIVERSAL through the following command:

class_name->VERSION(1.2)

which makes sure that the version number is met by the
class file.

The VERSION() Method (contd.)

66

• Earlier we talked about how a method is searched for in a class
hierarchy when the method is invoked on a derived-class object. There
our discussion focused on the direct and indirect superclasses of a
derived-class that are searched for a given method.

• Now we will generalize that discussion to include the UNIVERSAL
class in the search process.

• We will also address the issue of when exactly a method call is
shipped off to AUTOLOAD() of the derived class and the AUTOLOAD()
of the various direct and indirect superclasses of a derived class.

Summary of How a Method is Searched for
in a Class Hierarchy

67

• Let’s say we have

package Z;
@Z::ISA = qw(X Y);

• Now a method call like on a Z instance zobj:

zobj->foo();

will cause a search to be conducted for the method foo() in
the order shown on the next slide.

Method Resolution Order Summary (contd)

68

1. Perl will first look for foo() in the class Z. If not found there,
continue to the next step.

2. Perl will look for foo() in the parent class X. If not found
there, proceed to the next step.

3. Perl will look for foo() – and do so recursively in a depth-first
manner – in the direct and indirect superclasses of X. If not
found in any of those superclasses, proceed to the next step.

4. Perl will look for foo() in the next base class, Y, declared in
the ISA array shown on the previous slide. If not found there,
proceed to the next step.

MRO Summary (contd.)

69

5. Perl will look for foo() – and do so recursively in a depth-first
manner – in the parent classes of Y. If not found there, proceed to
the next step.

6. After searching through the programmer-specified superclass
hierarchy in the manner specified above, Perl will search for the
method in the root class UNIVERSAL. If not found there, proceed to
the next step.

7. Search for an implementation of AUTOLOAD() in exactly the same
manner as outlined in the previous six steps. Dispatch the call to
foo() to the first AUTOLOAD() implementation found. If no
AUTOLOAD() implementation is found, throw a run-time exception.

MRO Summary (contd.)

70

• Abstract classes and methods play a very important role in OO

• An abstract class can represent the root interface of a class
hierarchy. The concrete classes in the hierarchy can then be the
implementations of the interface, each implementation designed for
a different (although related) purpose.

• As an example, we can have a Shape hierarchy. A Shape
represents an abstract notion. The root class Shape may only
abstractly declare methods like area() and circumference().
The concrete classes such as Circle and Rectangle would then
provide specific implementations for these methods.

Abstract Classes and Methods

71

• A Perl class can be made abstract by having its constructor throw an
exception if it should get invoked by a client of the class. This would
prevent a client from constructing an instance of what is supposed to be
an abstract class. The same can be done for a method if it is supposed
to be abstract. (This can be done in Python also.)

• When using the above approach, you have to watch out for the fact that
should a client inadvertently try to create an instance of an abstract
class, your code will throw a run time error.

• A measure of protection against such run-time issues related to the use
of abstract classes can be addressed by providing the package file
containing the abstract class with its own import() method that
ensures that the concrete child classes have fulfilled their contract with
regard to providing the promised implementation code for the methods
declared in the abstract class.

Abstract Classes and Methods (contd.)

72

Part C of this Tutorial

Object Oriented Scripting in Python

Slides 72 – 143

73

• Python literature refers to everything as an object since
practically all entities in Python are objects in the sense of
possessing retrievable data attributes and invocable methods
using the dot operator that is commonly used in object-
oriented programming for such purposes.

• A user-defined class (for that matter, any class) in Python
comes with certain pre-defined attributes.

OO Terminology in Python

74

• The pre-defined attributes of a class are not to be confused
with the programmer-supplied attributes such as the class
and instance variables and the programmer-supplied
methods.

• By the same token, an instance constructed from a class is
an object with certain pre-defined attributes that again are
not be confused with the programmer-supplied instance
and class variables associated with the instance and the
programmer-supplied methods that can be invoked on the
instance.

OO Terminology in Python (contd.)

75

• What are commonly referred to as data attributes of a class in Perl
are frequently called instance variables and class variables in
Python. In Python, the word attribute is used to describe any
property, variable or method, that can be invoked with the dot
operator on either the class or an instance constructed from a
class.

• Obviously, the attributes available for a class include the
programmer-supplied class and instance variables and methods.
This usage of attribute makes it all encompassing, in the sense that
it now includes the pre-defined data attributes and methods, the
programmer-supplied class and instance variables, and, of course,
the programmer-supplied methods.

OO Terminology in Python (contd.)

76

• Our usage of method remains the same as before; these are
functions that can be called on an object using the object-
oriented call syntax that for Python is of the form
obj.method(), where obj may either be an instance of a
class or the class itself.

• Therefore, the pre-defined functions that can be invoked on
either the class itself or on a class instance using the object-
oriented syntax are also methods.

• The pre-defined attributes, both variables and methods,
employ a special naming convention: the names begin and
end with two underscores.

OO Terminology in Python (contd.)

77

• You may think of the pre-defined attributes as the external
properties of classes and instances and the programmer-
supplied attributes (in the form of instance and class variables
and methods) as the internal properties.

• Python makes a distinction between function objects and
callables. While all function objects are callables, not all
callables are function objects.

OO Terminology in Python (contd.)

78

• A function object can only be created with a def statement.

• On the other hand, a callable is any object that can be called
like a function.

• For example, a class name can be called directly to yield an
instance of a class. Therefore, a class name is a callable.

• An instance object can also be called directly; what that yields
depends on whether or not the underlying class provides a
definition for the system-supplied __call__() method.

OO Terminology in Python (contd.)

79

• We will present the full definition of a Python class in stages.

• We will start with a very simple example of a class to make the
reader familiar with the pre-defined __init__() method whose role
is to initialize the instance returned by a call to the constructor.

• First, here is the simplest possible definition of a class in Python:

class SimpleClass:
pass

An instance of this class may be constructed by invoking its pre-
defined default constructor:

x = SimpleClass()

Defining a Class in Python

80

• Here is a class with a user-supplied constructor initializer in the
form of __init__(). This method is automatically invoked to
initialize the state of the instance returned by a call to Person():

Defining a Class in Python (contd.)

#!/usr/bin/env python
#------------- class Person --------------
class Person:

def __init__(self, a_name, an_age):
self.name = a_name
self.age = an_age

#--------- end of class definition --------

#test code:
a_person = Person(“Zaphod”, 114)
print a_person.name # Zaphod
print a_person.age # 114

81

• Being on object in its own right, every Python class comes equipped
with the following pre-defined attributes:

__name__ : string name of the class

__doc__ : documentation string for the class

__bases__ : tuple of parent classes of the class

__dict__ : dictionary whose keys are the names of the class
variables and the methods of the class and whose
values are the corresponding bindings

__module__: module in which the class is defined

Pre-Defined Attributes for a Class

82

• Since every class instance is also an object in its own right, it also
comes equipped with certain pre-defined attributes. We will be
particularly interested in the following two:

__class__ : string name of the class from which the
instance was constructed

__dict__ : dictionary whose keys are the names of
the instance variables

• It is important to realize that the namespace as represented by the
dictionary __dict__ for a class object is not the same as the
namespace as represented by the dictionary __dict__ for an instance
object constructed from the class.

Pre-Defined Attributes for an Instance

83

• As an alternative to invoking __dict__ on a class name, one
can also use the built-in global dir(), as in

dir(MyClass)

which returns a tuple of just the attribute names for the class
(both directly defined for the class and inherited from a class’s
superclass).

__dict__ vs. dir()

84

• This extension of the previous script illustrates the values for the pre-
defined attributes for class and instance objects:

Illustrating the Values for System-Supplied Attributes

#!/usr/bin/env python
#------ class Person --------
class Person:

‘A very simple class’
def __init__(self,nam,yy):

self.name = nam
self.age = yy

#-- end of class definition --

#test code:
a_person = Person(“Zaphod”,114)
print a_person.name # Zaphod
print a_person.age # 114

print Person.__name__ #Person
print Person.__doc__

A very simple class
print Person.__module__ # main
print Person.__bases__ # ()
print Person.__dict__
{‘__module__’ : ‘__main__’,
‘__doc__’ : ‘A very simp..’,
‘__init__’:<function __init..’,
print a_person.__class__

__main__.Person
print a_person.__dict__

#{‘age’:114, ‘name’:’Zaphod’}

85

Class Definition: More General Syntax
class MyClass :
‘optional documentation string’
class_var1
class_var2 = var2

def __init__(self, var3 = default3):
‘optional documentation string’
attribute3 = var3
rest_of_construction_init_suite

def some_method(self, some_parameters):
‘optional documentation string’
method_suite

………
………

86

• Regarding the syntax shown on the previous slide, note the class variables
class_var1 and class_var2. Such variables exist on a per-class basis,
meaning that they are static.

• A class variable can be given a value in a class definition, as shown for
class_var2.

• In general, the header of __init__() may look like:
def __init__(self, var1, var2, var3 = default3):
body_of_init

This constructor initializer could be for a class with three instance variables,
with the last default initialized as shown. The first parameter, typically named
self, is set implicitly to the instance under construction.

Class Definition: More General Syntax (contd.)

87

• If you do not provide a class with its own __init__(),
the system will provide the class with a default
__init__(). You override the default definition by
providing your own implementation for __init__().

• The syntax for a user-defined method for a class is the
same as for stand-alone Python functions, except for the
special significance accorded the first parameter, typically
named self. It is meant to be bound to a reference to the
instance on which the method is invoked.

Class Definition: More General Syntax (cond.)

88

• Python 2.2 introduced new-style classes while retaining the old-
style classes for backward compatibility.

• The old style classes are referred to as the classic classes.

• The basic motivation for new style classes is to allow subclassing
of built-in classes. It was not previously possible to extend, say,
the string class str to create a more customized string class. But
now you can do that with ease.

• All new style classes are subclassed, either directly or indirectly
from the root class object.

New-Style Versus Classic Classes in Python

89

• The object class defines a set of methods with default
implementations that are inherited by all classes derived from
object.

• A case in point is the __getattribute__() method that
gets invoked whenever a class method is invoked. Its
implementation in the object class is a do-nothing
implementation.

• A class that inherits from object can provide an override
implementation for __getattribute__() if something
special needs to be done because a method was invoked.

New Style vs. Classic Classes (contd.)

90

• The list of attributes defined for the object class can be seen by printing
out the list returned by the built-in dir() function:

print dir(object)
This call returns
[‘__class__’,‘__delattr__’,‘__doc__’,‘__getattribute__’
‘__hash__’,’__init__’,’__new__’,__reduce__’,
‘__reduce_ex__’,’__repr__’,’__setattr__’,’__str__’]

• We can also examine the attribute list available for the object class by
printing out the contents of its __dict__ attribute by

print object.__dict__
This will print out both the attribute names and their bindings.

What does a New Style Class get From the Root
Class object

91

Python uses the following two-step procedure for constructing
an instance from a new-style class:

STEP 1:

• The call to the constructor creates what may be referred to as a
generic instance from the class definition.

• The generic instance’s memory allocation is customized with the
code in the method __new__() of the class. This method may
either be defined directly for the class or the class may inherit it from
one of its parent classes.

How Python Creates an Instance from a
New Style Class

92

• The method __new__() is implicitly considered by Python to be a
static method. Its first parameter is meant to be set equal to the
name of the class whose instance is desired and it must return the
instance created.

• If a class does not provide its own definition for __new__(), a
search is conducted for this method in the inheritance tree that
converges on the class (more on that later).

STEP 2:

• Then the method __init__() of the class is invoked to initialize
the instance returned by __new__().

Creating an Instance for New-Style Classes (contd.)

93

• The script shown on slide 95 defines a class X and provides it with a static
method __new__() and an instance method __init__().

• We do not need any special declaration for __new__() to be recognized
as static because this method is special-cased by Python.

• Note the contents of the namespace dictionary __dict__ created for
class X as printed out by X.__dict__. This dictionary shows the
names created specifically for class X. On the other hand, dir(X) also
shows the names inherited by X.

Example Showing __new__() and __init__()
Working Together for Instance Creation

94

• Also note that the namespace dictionary xobj.__dict__
created at runtime for the instance xobj is empty --- for
obvious reasons.

• As stated earlier, when dir() is called on a class, it returns a
list of all the attributes that can be invoked on a class and on
the instances made from that class. The returned list also
includes the attributes inherited from the class’s parents.

• When called on a instance, as in dir(xobj), the
returned list is the same as above plus any instance variables
defined for the class.

Instance Construction Example (contd.)

95

Instance Construction Example (contd.)
#!/usr/bin/env python
#---------- class X ------------
class X (object): # X derived

from object
def __new__(cls):
print “__new__ invoked”
return object.__new__(cls)

def __init__(self):
print “__init__ invoked”

#----------- Test Code ---------
xobj = X() # __new__ invoked

__init__ invoked
print X.__dict__
#{‘__module__’: ‘__main__’,
‘__new__’: <static method ..>,
………

print xobj.__dict__ # {}

print dir(X)
#[‘__class__’,’__delattr__’,
‘__getattribute__’,
‘__hash__’,’__init__’
‘__module__’,’__new__’
…………….]

print dir(xobj)
#[‘__class__’,’__delattr__’,
‘__getattribute__’,
‘__hash__’,’__init__’,
‘__module__’,__new__’,
……………]

96

• There does not exist a separate __new__() method for constructing
an instance from a classic class.

• The call to the class itself results in the construction of an instance
object that is subsequently (and automatically) initialized by the class’s
__init__() method if the class is provided with such a method.

• The script shown on the next slide defines a classic Python class X. It
is classic because X is not subclassed from the root class object.

• The class is not provided with a __new__() method because it does
not need one for instance construction.

How Python Creates an Instance from a
Classic Class

97

Constructing an Instance of a Classic Class
(contd.)

#!/usr/bin/env python
#------------------ class X --------------------
class X :
def __init__(self):
print “__init__ invoked”

#----------------- Test Code --------------------
xobj = X() # __init__ invoked
print X.__dict__ # {‘__module__’ : ‘__main__’,

‘__doc__’ : None,
‘__init__’: <function ……> }

print xobj.__dict__ # {}

print dir(X) # [‘__doc__’,’__init__’,’__module__’]

print dir(xobj) # [‘__doc__’,’__init__’,’__module__’]

98

• A method defined for a class must have special syntax that reserves
the first parameter for the object on which the method is invoked.
This parameter is typically named self for instance methods, but
could be any legal Python identifier.

• In the script shown on the next slide, when we invoke the constructor
using the syntax

xobj = X(10)
the parameter self in the call to __init__() is set implicitly to the
instance under construction and the parameter nn to the value 10.

• A method may call any other method of a class, but such a call must
always use class-qualified syntax, as shown by the definition of
bar() on the next slide.

The Syntax for Defining a Method

99

• One would think that a function like baz() in the script below could
be called using the syntax X.baz(), but that does not work. (We will
see later how to define a class method in Python).

Defining a Method (contd.)

#!/usr/bin/env python
#---------- class X ------------
class X:
def __init__(self, nn):
self.n = nn

def getn(self):
return self.n

def foo(self,arg1,arg2,arg3=1000):
self.n = arg1 + arg2 + arg3

def bar(self):
self.foo(7, 8, 9)

def baz():
pass

#--- End of Class Definition ----

xobj = X(10)
print xobj.getn() # 10

xobj.foo(20,30)
print xobj.getn() # 1050

xobj.bar()
print xobj.getn() # 24

X.baz() # ERROR

100

• It is not necessary for the body of a method to be enclosed by
a class.

• A function object created outside a class can be assigned to a
name inside the class. The name will acquire the function
object as its binding. Subsequently, that name can be used
in a method call as if the method had been defined inside the
class.

• In the script shown on the next slide, the important thing to
note is that is that the assignment to foo gives X an attribute
that is a function object. As shown, this object can then serve
as an instance method.

A Method Can be Defined Outside a Class

101

Method Defined Outside a Class (contd.)

#!/usr/bin/env python

def bar(self,arg1,arg2, arg3=1000):
self.n = arg1 + arg2 + arg3

#---------- class X ------------
class X:
foo = bar

def __init__(self, nn):
self.n = nn

def getn(self):
return self.n

#--- End of Class Definition ----

xobj = X(10)
print xobj.getn() # 10

xobj.foo(20, 30)
print xobj.getn() # 1050

102

• When the Python compiler digests a method definition, it creates a
function binding for the name of the method.

• For example, for the following code fragment

class X:
def foo(self, arg1, arg2):
implemention_of_foo

rest_of_class_X

the compiler will introduce the name foo as a key in the namespace
dictionary for class X. The value entered for this key will be the function
object corresponding to the body of the method definition.

Only One Method for a Given Name Rule

103

• So if you examine the attribute X.__dict__ after the class is compiled,
you will see the following sort of entry in the namespace dictionary for X:

‘foo’ : <function foo at 0x805a5e4>

• Since all the method names are stored as keys in the namespace
dictionary and since the dictionary keys must be unique, this implies
that there can exist only one function object for a given method name.

• If after seeing the code snippet shown on the previous slide, the
compiler saw another definition for a method named for the same class,
then regardless of the parameter structure of the function, the new
function object will replace the old for the value entry for the method
name. (This is unlike what happens in C++ and Java where function
overloading plays an important role.)

Only One Method Per Name Rule (contd.)

104

• We just talked about how there can only be one method of a
given name in a class --- regardless of the number of
arguments taken by the method definitions.

• As a more general case of the same property, a class can
have only one attribute of a given name.

• What that means is that if a class definition contains a class
variable of a given name after a method attribute of the same
name has been defined, the binding stored for the name in
the namespace dictionary will correspond to the definition that
came later.

Method Names can be Usurped by Data
Attribute Names

105

• To understand how you can endow a Python class with static
methods, it is important to understand what is meant by bound and
unbound methods.

• In general, when a method is invoked on an instance object or on the
class itself, Python creates a method object and associates with it the
following attributes: im_self, im_func, and im_class.

• When the method object is first initialized, the im_self attribute is set
to None.

• Subsequently, if the first argument supplied to the method call is an
instance object, the im_self attribute is set to a reference to that
instance. In this case, we say that method object is bound.

Bound and Unbound Methods

106

• Since, in general, a method can be called on any object, what if a
method is called directly on the class itself? In this case, the im_self
attribute is set to None and the method object is said to be unbound.

• In both cases, the im_class attribute would be set to the name of the
class. Again in both cases, the im_func attribute would be set to the
function object in question.

• As shown on the next slide, a method that would ordinarily be called as
a bound method on an instance object may also be invoked as an
unbound method directly on the class.

• As we will see later, calling a method as an unbound method is
particularly useful when a subclass needs to call a particular base class
method.

Bound and Unbound Methods (contd.)

107

Bound and Unbound Methods (contd.)
#!/usr/bin/env python
#---------- class X ------------
class X:
def foo(self, mm):
print “mm = “, mm

#--- End of Class Definition ---

xobj = X()
print X.foo # <unbound method X.foo>
print xobj.foo

<bound method X.foo of <__main__.X instance at Ox403b51cc>

#call foo() as a bound method:
xobj.foo(10) # mm = 10

#call foo() as an unbound method:
X.foo(xobj, 10) # mm = 10

108

• The role played by AUTOLOAD() in Perl OO is played by the system-
supplied __getattr__() method for a Python class.

• If a non-existent method is invoked on an instance object, Python
farms out that call to the __getattr__() method provided a class
possesses, either directly or through inheritance, a definition for this
method.

• By a non-existent method call we mean a method call whose
definition cannot be found either in the class or through a search in
the inheritance tree that converges on the class.

Using __getattr__() as a Catch-All for
Non-Existent Methods

109

• To trap calls with __getattr__(), this method must be defined
with two parameters. The system would set the first to the instance
object on which a non-existent method is called and set the second
to the name of the non-existent method.

• Additionally, __getattr__() must return a callable object. As
mentioned previously, an object is considered callable if it can be
called with a function-call syntax, that is with the ‘()’ operator, with
or without arguments.

Trapping Non-Existent Method Calls (contd.)

110

• For new style classes, Python also makes available the
__getattribute__() method that is called whenever a method
is invoked.

• The __getattribute__() method is defined for the root class
object with a do-nothing implementation. It can however be
overridden in your own class to provide any set-up operations
before the code in a method is actually executed.

• As for the difference between __getattr__() and
__getattribute__(), the former is called only when a non-
existent method is invoked on an instance object, the latter is called
whenever a method is referenced.

__getattr__() vs. __getattribute__()

111

• Here is an interesting difference between Perl and Python:
the difference between just accessing a callable defined for a
class and subjecting the callable to a function call operation
with the ‘()’ operator.

• This distinction also applies to any callable object, whether or
not it is defined for a class.

• For a class X with method foo, calling just X.foo returns a
result different from what is returned by X.foo(). The
former returns the method object itself that X.foo stands for
and the latter will cause execution of the function object
associated with the method call.

Subjecting a Callable to a Function Call Operation

112

• Just like Perl, Python also comes with an automatic garbage collector.
The basic principle on which the Python garbage collector works is the
same as in Perl.

• Each object created is kept track of through reference counting. Each
time an object is assigned to a variable, its reference count goes up by
one, signifying the fact that there is one more variable holding a reference
to the object.

• And each time a variable whose referent object either goes out of scope
or is changed, the reference count associated with the object is
decreased by one. When the reference count associated with an object
goes to zero, it becomes a candidate for garbage collection.

• Python provides us with __del__ () that works the same way as
DESTROY() in Perl.

Destruction of Instance Objects

113

• Encapsulation is one of the cornerstones of OO. How does it work in
Python?

• The same as in Perl OO. All of the attributes defined for a class are
available to all.

• So the language depends on programmer coopration if software
requirements, such as those imposed by code maintenance and code
extension considerations, dictate that the class and instance variables
be accessed only through get and set methods.

• As with Perl, a Python class and a Python instance object are so open
that they can be modified after the objects are brought into existence.

Encapsulation Issues for Classes

114

• A class definition usually includes two different kinds of attributes:
those that exist on a per-instance basis and those that exist on a
per-class basis. That latter, as we mentioned in the Perl portion of
the tutorial, are also called static.

• In Python, a variable becomes static if it is declared outside of any
method in a class definition.

• For a method to become static, it needs the staticmethod()
wrapper.

• Shown on the next slide is a class with a class variable (meaning a
static data attribute) next_serial_num

Defining Static Attributes for a Class

115

Static Attributes (contd.)
#!/usr/bin/env python
#---------- class Robot ------------
class Robot:
next_serial_num = 1

def _init_(self, an_owner):
self.owner = an_owner
self.idNum = self.get_next_idNum()

def get_next_idNum(self):
new_idNum = Robot.next_serial_num
Robot.next_serial_num += 1
return new_idNum

def get_owner(self):
return self.owner

def get_idNum(self):
return self.idNum

#----- End of Class Definition -----

robot1 = Robot(“Zaphod”)
print robot1.get_idNum() # 1

robot2 = Robot(“Trillian”)
print robot2.get_idNum() # 2

robot3 = Robot(“Betelgeuse”)
print robot3.get_idNum() # 3

116

• A static method is created by supplying a function object to
staticmethod() as its argument. For example, to make a method
called foo() static, we’d do the following

def foo():
print “foo called”

foo = staticmethod(foo)
The function object returned by staticmethod() is static.

• In the above example, when foo is subsequently called directly on the
class using the function call operator ‘()’, it is the callable object bound
to foo in the last statement above that gets executed.

• The same idea works for static methods with args and for static
methods that need to call other static methods in the same class.

Static Attributes (contd.)

117

• When the self.attribute notation is used to access a
data attribute of the class, an instance variable of a given
name will hide a class variable of the same name.

• When a class variable gets hidden in this manner, it can still
be accessed with the class.attribute notation.

An Instance Variable Hides a Class
Variable of the Same Name

118

• Python provides a mechanism for endowing a class with private data
and method attributes.

• This is done through name mangling in such a way that a private
attribute becomes “inaccessible” outside the class.

• Any data-member name or a method name that has at least two leading
underscores and at most one trailing underscore is private to that class.

• However, it is important to bear in mind that the “privateness” achieved
in this manner still depends on programmer cooperation. Since the
result of name mangling is predictable, the names can still be reached
outside the class through their mangled versions.

Private Attributes in a Class

119

• A name that has at least two leading underscores and at most
one trailing underscore is renamed by the compiler by
attaching to the name an underscore followed by the class
name.

• For example, an attribute name such as

__m

in a class called X will be mangled into

_X__m

Private Attributes (contd.)

120

• New style classes allow the __slots__ attribute of a class to be
used to name a list of instance variables. Subsequently, no
additional variables can be assigned to the instances of such a
class.

• In the example on the next slide, we try for __init__() to declare
an instance variable c. This is in addition to the instance variables
already defined through the __slots__ attribute. However, this
becomes a source of error at runtime.

• Accessing an instance variable that is declared as a slot but that
has not yet been initialized will evoke the AttributeError from
Python. Doing the same for a classic class returns None.

Defining a Class with Slots

121

A Class with Slots (contd.)

#!/usr/bin/env python

class X(object):
__slots__ = [‘a’, ‘b’]

def _init_(self, aa, bb, cc):
self.a = aa
self.b = bb
self.c = cc # Will cause error

#----- Test Code -----

xobj = X(10, 20, 30)
AttributeError: ‘X’ object has no attribute ‘c’

122

• A descriptor class is a new-style class with override
definitions for at least one of the special system-supplied
methods: __get__(), __set__(), and
__delete__().

• When an instance of such a class is used as a static
attribute in another class, accesses to those values are
processed by the __get__() and the __set__() methods
of the descriptor class.

• The class whose static attributes are the instances of a
descriptor class is known as the owner class.

Descriptor Classes in Python

123

• Slide 125 shows a simple descriptor class, a new style class
obviously since it is derived from object, that stores a single data
value.

• The print statements in the override definitions of __get__() and
__set__() are merely to see these methods getting invoked
automatically.

• The calls to the __get__() and __set__() methods of a descriptor
class are orchestrated by the __getattribute__() method of the
owner class. (It is therefore possible for __get__() and
__set__() to not get called depending on the override definition for
__getattribute__() of the owner class.)

Descriptor Classes (contd.)

124

• Next, the script on the next slide defines an owner class, UserClass,
again a new style class, with three static attributes, d1, d2, and d3.
The first two of these are set to instances of the DescriptorSimple
class.

• Finally, the script constructs an instance of UserClass. When we try
to retrieve the value of the d1 attribute of the class, the following
message is displayed on the screen:

Retrieving with owner instance: <__main__.UserClass
object at …> and owner type: <class __main__.User Cl
ass’>
100

Descriptor Classes (contd.)

125

Descriptor Classes (contd.)
#!/usr/bin/env python

#---- class DescriptorSimple -----
class DescriptorSimple(object):
def __init__(self, initVal=None):
self.val = initVal

def __get__(self, owner_inst, \
owner_type):

print “Retrieving with owner \
instance: “, owner_inst, \

“ and owner type”, owner_type
return self.val

def __set__(self,owner_inst,val):
print “Setting attribute for \

owner instance: “, owner_inst
self.val = val

An owner class:
class UserClass(object):
d1 = DescriptorSimple(100)
d2 = DescriptorSimple(200)
d3 = 300

#---------- Test Code --------
u = UserClass()
print u.d1 # 100
print u.d2 # 200
print u.d3 # 300
print UserClass.d1 #100
u.d1 = 400 # does the
u.d2 = 500 # expected thing

UserClass.d1 = 600 #This does
NOT do what you think
it does.

126

• An inheritance chain in Python is constructed by including the name of
the superclass in the header of the subclass, as in

class SomeSubClass(SomeSuperClass):

• A derived-class method overrides a base-class method of the same
name.

• Sometimes it is useful for a derived-class method to get a part of its
work done by a base-class method of the same name.

• When a derived-class method makes a call to a base-class method of
the same name, we say that the derived class is extending the base-
class method. Doing so is straightforward in a single-inheritance chain.

Extending a Class in Python

127

• Method extension for the case of single-inheritance is illustrated in the
Employee-Manager class hierarchy on the next slide. Note how the
derived-class promote() calls the base-class promote(), and how
the derived-class myprint() calls the base-class myprint().

• Extending methods in multiple inheritance hierarchies requires calling
super(). To illustrate, suppose we wish for a method foo() in a
derived class Z to call on foo() in Z’s superclasses to do part of the
work:

class Z(A, B, C, D):
def foo(self):

….do something….
super(Z, self).foo()

Extending a Class (contd.)

128

Extending a Class (contd.)
#!/usr/bin/env python
#------ base class Employee ---------
class Employee:

def __init__(self, nam, pos):
self.name = nam
self.position = pos

promotion_table = {
‘shop_floor’ : ‘staff’,
‘staff’ : ‘management’,
‘manager’ : ‘executuve’

}

def promote(self):
self.position = \

Employee.promotion_table[self.position]

def myprint(self):
print self.name, “ “, self.position,

#----- derived class Manager ------
class Manager(Employee):

def __init__(self, nam, pos, dept):
self.name = nam
self.position = pos
self.dept = dept

def promote(self):
if self.position == ‘executive’:
print “not possible”
return

Employee.promote(self)

def myprint(self):
Employee.myprint(self)
print self.dept

#---------- Test Code ------------
emp = Employee(“Orpheus”, “staff”)
emp.promote()
print emp.position # management

129

• As previously mentioned, Python now supports two different kinds of
classes: classic classes and new-style classes

• A new style class is subclassed from the system-supplied object
class or from a child of the object class

• All of the built-in classes are new style classes. That is, the built-in
types such as list, tuple, dict, etc., are now new style classes.
This allows them to be subclassed for defining more specialized utility
classes.

• An instance of a new style class is created by the static method
__new__(). If a user-defined class is not provided with an
implementation for this method, its inherited definition from a
superclass is used.

New Style Classes Revisited

130

• An instance returned by __new__() is automatically initialized by
the class’s __init__() method. If a class does not directly provide
a definition for this method, its inherited definition from a superclass
is used.

• For new style classes, an instance xobj’s class can be ascertained
by calling xobj.__class__. For classic classes, the same is
accomplished by calling type(xobj). By the way, type(xobj)
also works for new style classes.

• To ascertain whether an instance xobj is of a certain specific type,
we can use the function isinstance() as in

isinstance(xobj, className)

New Style Classes Revisited (contd.)

131

• Using multiple inheritance, a subclass derived from a mixture of classic
and new-style classes is treated like a new style class.

• You cannot multiply inherit from the different built-in types. For
example, you cannot construct a class that inherits from both the built-in
dict and the built-in list.

• When a constructor of a built-in type is called without arguments, it
results in an instance with an appropriate default state. For example,
str() returns an empty string and int() returns 0.

• The built-in types staticmethod, super, classmethod, and
property have special roles in Python OO. The calls to their
constructors return function objects.

New Style Classes Revisited (contd.)

132

• As mentioned already, all of the built-in classes are now new-style
classes. That allows for them to be extended for creating more
specialized classes.

• Let’s say you want a variation on the built-in dict class that would allow
us to construct a dictionary from two arguments, one a list of keys and
another a separate list of the corresponding values. That can done
easily by extending dict into, say, MyDict, and providing an
appropriate override for the __init__() method.

• In general, extending a built-in type may involve overriding just the
__new__(), or just the __init__(), or both. If the extension
requires customization of memory allocation, you’d need to override
__new__().

Extending the Built-In Types

133

• The next slide shows us subclassing the built-in int class. We call the
new class size_limited_int.

• We want the size_limited_int constructor to raise an exception if
an attempt is made to construct an integer instant whose integer value is
outside the range permitted by the class.

• We also want to provide the class with an override definition for the ‘+’
operator that would allow us to add two of size_limited_int’s, with
the summation being of type size_limited_int.

• For the override for the ‘+’ operator through the implementation for
__add__(), note the call to super(). This causes the parent class’s
__add__() to be invoked for the addition operation. (Call to super()
returns a subclass type object if it is supposed to return anything at all.)

Extending the Built-In Types (contd.)

134

Extending the Built-In Types (contd.)
#!/usr/bin/env python

class size_limited_int(int):

maxSize = 100

def __new__(cls, intVal, size = 100):
cls.maxSize = size
if intVal < -cls.maxSize or

intVal > cls.maxSize:
raise MyException(“out of range”)

return int.__new(cls, intVal)

def __add__(self, arg):
res = super(size_limited_int,

self).__add__(arg)
res = int.__and__(self, arg)

return size_limited_int(res,
self.maxSize)

#---------- Test Code ---------------

n1 = size_limited_int(5)

print n1 # 5

print isinstance(n1,size_limited_int)
True

print isinstance(n1, int) # True
print isinstance(n1, object) # True

try:
n2 = size_limited_int(1000)

except Exception, error:
print error # out of range

n3 = size_limited_int(10)
n4 = n1 + n3
print n4 # 15
print isinstance(n4, size_limited_int)

True

135

• The comments made earlier in the Perl section with regard to the
general importance of abstract classes and methods apply to Python
also.

• The NotImplementedError exception is used in Python to
designate abstract classes and methods.

• A Python class is made abstract by having its constructor raise the
NotImplementedError exception.

• A method is made abstract by having its body do the same. When a
method is made abstract in this manner, there is the expectation that
the full implementation of the method will be supplied in a derived
class.

Abstract Classes and Methods in Python

136

• Like Perl, Python allows a class to be derived from multiple base
classes. The header of such a derived class would look like

class MyDerivedClass(Base1,Base2,Base3,……):
…body of the derived class…

• Suppose we invoke a method on a derived-class instance and the
method is not defined directly in the derived class, in what order will
the base classes be searched for a definition for the method?

• The order in which the class and its bases are searched for an
applicable definition is called the Method Resolution Order (MRO).

• MRO are different for classic classes and for new style classes

Multiple Inheritance in Python OO

137

• The search for a method is carried out in a left-to-right depth-
first fashion.

• Since this is the same as for Perl, we will not go further into
this MRO here, except for showing some of its shortcomings
in the next few slides.

MRO for Classic Classes

138

• We will refer to the left-to-right depth-first MRO for classic
classes as the LRDF lookup algorithm.

• Although straightforward, LRDF has some serious
shortcomings for complex class hierarches, especially when
hierarchies contain inheritance loops:

A

B C

D
This sort of an inheritance loop is also referred to as
diamond inheritance.

The LRDF based MRO

139

• With regard to the diamond inheritance loop shown on the previous
slide, let’s say that both A and C provide separate definitions for a
method named foo().

• When we call foo() on a C instance, we will obviously invoke C’s
foo().

• Now let’s say that B and D do not provide their own definitions for
foo().

• If we call foo() on a D instance, the LRDF rule will invoke A’s
foo() even though D is “closer” to C than to A.

A Shortcoming of LRDF

140

• The behavior of LRDF described on the previous slide is
counterintuitive in the sense that after you get used to C
exhibiting its foo(), you’d expect D -- since it is derived
from C – to exhibit the same behavior.

• If B’s insertion in the superclass list of D --- knowing fully well
that D does not possess foo() --- causes D to acquire its
foo() behavior from a different class, you’d be perplexed.

• This limitation of LRDF-based MRO can be formalized by
saying that LRDF lacks monotonicity.

LRDF Shortcoming (contd.)

141

• For a more precise definition of monotonicity in name lookup in
inheritance graphs, we need to introduce the notion of superclass
linearization.

• A superclass linearization (of the inheritance graph) for a class
C, denoted L[C], is the list of all the classes, starting with C, that
should be searched sequentially from left to right for given name.

• Here are the superclass linearizations produced by LRDF-based
MRO for the ABCD diamond hierarchy

L[A] = A L[B]=BA L[C] = CA L[D] = DBACA
When we examine L[C], C’s methods get priority over A’s. But
when we examine L[D], exactly the opposite is true.

Superclass Linearization

142

• A good MRO algorithm must be monotonic.

• A good MRO algorithm must also preserve local precedence ordering.

• Preserving local precedence ordering means that the order in which
the immediate bases of a class P appear in the linearization for P or for
any of its subclasses must not violate the base class order of P.

• So whereas monotonicity refers to the priority accorded to the names in
a class vis-à-vis the names in a superclass, local precedence order
deals with the priority to be accorded to the names in one base class
vis-à-vis the names in another base class at the same level of
inheritance.

Desirable Properties for MRO

143

• For some class hierarchies, it can be shown trivially that they
would not admit good superclass linearizations regardless of
what MRO rules are used for the purpose.

• This happens particularly if two different classes inherit from
two separate bases but in opposite order.

• Python uses the C3 algorithm to derive superclass
linearizations for new-style classes.

Desirable Properties for MRO (contd.)

144

Some Applications of OO Scripting
Slides 144 – 155

Part D of this Tutorial

145

• If you want to create a graphical user interface with Perl or
Python, a commonly used toolkit for that is Tk.

• With Perl, Tk is used through its object-oriented wrapper
module Perl/Tk. The Perl module file for the wrapper is
Tk.pm

• With Python, Tk is used through the object-oriented wrapper
module Tkinter. The Python module file for the wrapper is
Tkinter.py

Writing GUI Scripts

146

• Write Perl and Python scripts for the following GUI:

The GUI should display two windows side-by-side, one for text entry
and the other for displaying geometric figures. As the user enters
text in text-entry window, certain words should automatically cause
the drawing of some related geometric figure in the other window.

For example, if the user entered the following phrase in the text
window:

The red herring became green with envy
when it saw the orange fox jump over a blue
fish ….

That should cause the appearance of red, green, orange, and blue
tiles to appear at random locations in the draw window.

Writing GUI Scripts

147

Writing GUI Scripts
#!/usr/bin/perl –w
CrazyWindow.pl
use strict;
use Tk;

my $mw = MainWindow->new(-title
=> “CrazyWindow”);

my $textWin = $mw->Scrolled(‘Text’,
-width => 45,
-scrollbars => ‘e’,

)->pack(-side => ‘left’);

my $drawWin = $mw->Canvas()
->pack(-side => ‘right’,

-fill => ‘y’,
-expand => 1);

$textWin->focus;
$textWin->bind(‘<KeyPress>’ =>

\&word_accumulator);
…………
…………

#!/usr/bin/env python
CrazyWindow.py
import random
from Tkinter import *

mw = Tk()
mw.title(“CrazyWindow”)
scrollbar = Scrollbar(mw, \

orient = ‘vertical’)
textWin = Text(mw, width = 45,

yscrollcommand = \
scrollbar.set)

scrollbar.config(command = \
textWin.yview)

scrollbar.pack(side = ‘left’,fill=‘y’)
textWin.focus()
textWin.pack(side = ‘left’)
drawWin = Canvas(mw)
drawWin.pack(side = ‘right’,fill=‘y’)
…………
…………

148

• Scripts for network programming are based on the client-
server model of communications.

• Central to the client-server model is the notion of a port and
the notion of communicating over a socket through a port.

• A server monitors a designated port for incoming requests
from clients.

• A client wishing to communicate with a server sends the
server its socket number that is a combination of the client’s
IP address and the port number on which the client expects to
hear back from the server.

Scripting for Network Programming

149

• There are two fundamentally different types of communication
links one can establish through a port:

• A one-to-one open and continuous connection that uses
handshaking, sequencing, and flow control to ensure that all
the information packets sent from one end are received at the
other. (The TCP Protocol)

• And a simpler and faster one-shot messaging link that may be
operating in one-to-many or many-to-many modes. (The UDP
Protocol)

Scripting for Network Programming (contd.)

150

• In Perl, an internet socket (TCP or UDP) is made by
constructing an instance of the IO::Socket::INET class.

• In Python, the socket module that comes with the standard
distribution of Python provides support for socket
programming. One typically constructs a socket object by
invoking the function socket() with appropriate arguments.

• A socket constructor (in both Perl and Python) usually takes
the following three arguments (all of them are provided with
defaults): the socket address family, the socket type, and the
protocol number.

Scripting for Network Programming (contd.)

151

Client Side Sockets for Fetching Docs
#!/usr/bin/perl –w
ClientSocketFetchDocs.pl
use strict;
use IO::Socket;
die “usage: $0 host doc” unless @ARGV >1;
my $host = shift @ARGV;
my $EOL = “\r\n”;
my $BLANK = $EOL x 2;
foreach my $doc (@ARGV) {

my $sock = IO::Socket::INET->new(
Proto => “tcp”,
PeerAddr => $host,
PeerPort=>“http(80)”,

) or die $@;
$sock->autoflush(1);
print $sock “GET $doc HTTP/1.1”.$EOL .

“Host: $host” . $EOL .
“Connection: closed” . $BLANK;

while (<$sock>) {print};
close $sock;

}

#!/usr/bin/env python
ClientSocketFetchDocs.py
import sys
import socket
if len(sys.argv) < 3:sys.exit(“error”)
host = sys.argv[1]
EOL = “\r\n”
BLANK = EOL * 2
for doc in sys.argv[2:]:

try:
socket=socket.socket(socket.AF_INET,

socket.SOCK_STREAM)
socket.connect(host, 80)

except socket.error, (value,message):
print message;sys.exit(1)

sock.send(str(“GET %s HTTP/1.1 %s” +
“Host: %s%s Connection: closed %s”)

% (doc, EOL, host, EOL, BLANK)
while 1:
data = sock.recv(1024)
if data = ‘’: break
print data

152

• Small databases (for personal or small-business use) can be
efficiently stored as fixed-length or variable-length records in flat
files.

• For variable length records, the information in each record is
usually stored in either comma-separated or tab-separated form.

• For a flat-file database to be useful, you need scripts for reading
from and writing into the database. Although GUI based
frameworks are the most convenient for such purposes,
command-line based can also do the job. (Even for the GUI front-
ends, the user choices must be translated into commands under
the hood.)

Interacting with a Flat-File Database

153

The next slide shows us creating a Perl and a Python class with the
following functionalities:

Interacting with a Flat-File Database (contd)

• It allows a user to view a specific column of the database by the
name of that column

• It allows for the flat file to be read into the script in its entirely and for
the updated/modified database to be written back out to the file.

• It allows specific entries to be changed by the user in any of the
records.

• etc.

154

Interacting with a Flat-File Database (contd)
package CSV;
CSV.pm
use strict;
sub new {

my ($class, $db_file) = @_;
bless {
_dbfile => $db_file,
_db => [],

}, $class;
}
sub show_schema {

my $self = shift;
my @schema = @{$self->{_db}[0];
print join “ “, @schema;

}
sub retrieve_row { ……… }
sub retrieve_column { ……… }
sub populate_database_from_disk_file {…}
sub write_database_to_file { ……… }
sub show_row_for_last_name { ………… }
sub interactive { ……… }

CSV.pm
import re
class CSV(object):

def __init__(self, db_file):
self._dbfile = db_file
self._db = []

def show_schema(self):
schema = self._db[0]
print “ “.join(schema)

def retrieve_column(self,col_index):
for i in range(1, len(self._db):
print self._db[i][col_index]

def retrieve_row(self, row_index): ……
def populate_db_from_file(…):…
def write_database_to_file(……): ………
def show_row_for_last_name(……):………
def interactive(self): ………

155

For further information on OO modules for Perl and Python, visit

For further information:

• For Perl modules: http://www.cpan.org
This is the web site for Comprehensive Perl Archive Network, a
repository for all information related to Perl.

• Many of the Python modules you are likely to use for GUI, network,
database, and other applications come with the standard distribution.
More specialized modules are available from

http://cheeseshop.python.org/pypi/

• Also visit http://www.activestate.com for comprehensive and easily
navigable information regarding both Perl and Python. This web site
also includes Perl and Python compilers for the Windows platform.

156

• Any comments, feedback, suggestions, etc., regarding this
tutorial would be most welcome. Please send them to

Avi Kak
kak@purdue.edu

• This tutorial was excerpted from a forthcoming book
“Scripting With Objects” by Avinash Kak.

END OF THE TUTORIAL

