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Abstract
Student learning in introductory science, technology, engineering, and mathematics
(STEM) courses is often self-regulated. For self-regulated learning to be effective,
students need to engage in accurate metacognitive monitoring to make appropriate
metacognitive control decisions. However, the accuracy with which individuals monitor
their task performance appears to largely overlap with their ability to perform that task.
This study examined the trajectories in the accuracy of students’ metacognitive monitor-
ing over the course of a semester, along with the effect of monitoring accuracy feedback.
The results indicate that some students improve the accuracy of their predictions over the
course of a semester. However, low-performing students are less accurate at predicting
their exam grades, and tend not to improve their metacognitive calibration over the course
of a semester. In addition, providing low-performing students with calibration feedback
may lead to greater overconfidence.
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Low-performing students

Introduction

Learning within authentic contexts such as introductory science, technology, engineering, and
mathematics (STEM) courses is considered self-regulated because students act as active participants
who largely control how they interact with their coursematerial (Tuysuzoglu&Greene, 2015). This
is particularly true for course homework and when studying for exams as these activities typically
occur outside of the classroom. Because students actively control their learning in these contexts,
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success within introductory STEM courses is largely due to the effectiveness with which a student is
able to engage in self-regulated learning, a process that requires effective metacognitive monitoring
and control processes (Greene & Azevedo, 2007; Winne & Hadwin, 1998; Zimmerman, 2008).

Imagine a student who has several exams to prepare for over the next two weeks in multiple
courses. This student must determine how to allocate their time studying to maximize their
performance across all of the classes. To prepare effectively for their upcoming exams, the
student needs to consider which courses will require more of their time to study, as well as
determine the topics on which they should focus. Students need to know how their current
knowledge compares to course expectations, what their academic goals are for each course,
and the amount of time it will take to learn the subject material. In other words, to be
successful, the student needs to engage in metacognitive monitoring to make judgments about
their current ability level, or knowledge state for each course and for each topic within the
courses. After making a metacognitive judgment about their current state, the student uses their
epistemological beliefs (i.e., knowledge and beliefs about the nature of learning), their
metacognitive knowledge (i.e., knowledge of, and beliefs about, potential cognitive strategies),
and their academic goal orientations (i.e., course specific performance or mastery goals) to
plan and enact a study strategy. Along with their academic goals for the course, the effective-
ness of their study strategies relies on the accuracy of their metacognitive knowledge and
monitoring, their beliefs about the speed at which learning can occur, and their beliefs about
the course expectations.

In many introductory STEM courses, a large percentage of a student’s grade comes from
two to five midterm and final exams. A low score on even one of these exams can lead to a
lower course grades, motivation, and even potentially lower persistence within STEM
(Cromley, Perez, & Kaplan, 2016; King, 2015). Given the importance of exams for course
outcomes, it is important to identify students who are inaccurately monitoring their under-
standing of course material before the first exam. While previous research has investigated the
link between metacognition and other psychological traits, little research has investigated
predictors of metacognitive monitoring accuracy and changes in monitoring accuracy.

Introductory STEM courses typically aim to cover a broad sampling of topics leaving little
room in the curriculum for additional topic instruction, such as metacognitive skill develop-
ment. In addition, the primary mode of instruction in these courses is through passive modes of
instruction such as lectures (Erdmann, Miller, & Stains, 2020). Further, systemic barriers
prevent the implementation of findings from cognitive science within these introductory
courses (Henderson, Mestre, & Slakey, 2015). To overcome these barriers, can a simple
intervention lead to improvements in monitoring accuracy or exam performance within an
introductory STEM course?

This study explores three research questions. First, to what extent do ability, episte-
mological beliefs, and goal orientations predict accuracy of metacognitive judgments of
physics exam performance? Second, what effect does metacognitive accuracy feedback
improve the accuracy of the students’ metacognitive monitoring? Third, to what extent do
epistemological beliefs and goal orientations predict changes in accuracy of
metacognitive judgments of physics exam performance over the course of a semester?
In the next section, we begin with an overview of metacognition within a self-regulated
learning framework, followed by brief reviews of prior research on the relationship
between metacognitive monitoring and ability, epistemological beliefs, and goal orienta-
tions. Finally, we briefly review the effect of feedback on metacognitive monitoring
accuracy.

90 J. W. Morphew



Literature review

Metacognition

Metacognition, or the act of thinking about and regulating cognitive processes, refers to the
ability to monitor one’s current learning, evaluate the learning against a criterion, and make
and execute plans to maximize one’s learning (Tobias & Everson, 2009). Metacognition was
initially seen as consisting of metacognitive knowledge (knowledge and informal theories
about human cognition in general), metacognitive experiences (individualized experiences one
has during their own cognition), goals (the objectives of a cognitive activity), and actions (the
specific behaviors used to achieve the goals; Flavel, 1979). Recently, most views of metacog-
nition break metacognition into metacognitive knowledge and metacognitive skills (Dunlosky
& Metcalfe, 2008; Scott & Levy, 2013; Veenman, Van Hout-Wolters, & Afflerbach, 2006).
Metacognitive knowledge refers to the declarative knowledge of different cognitive strategies,
the procedural knowledge of how to implement each cognitive strategy, and the beliefs and
heuristics concerning the contextual effectiveness of each strategy, all of which is derived from
prior learning experiences (Pintrich, 2002). Metacognitive skills refer to the ways in which
learners engage in self-regulated learning processes and include monitoring and control
processes (Dunlosky & Bjork, 2008). Learners engage in metacognitive monitoring when
they evaluate their current state of learning against a criterion, and engage in metacognitive
control when they select study strategies or items for study, or decide when to stop studying.

The predominant framework in which metacognition research occurs assumes that a
dynamic and reciprocal relationship occurs between metacognitive monitoring and control
processes (Nelson and Narens, 1990, 1994). Within this framework, learners need to be able to
accurately monitor their learning, possess effective heuristics for determining when learning
has occurred, and utilize effective control strategies for altering their current cognitive pro-
cesses for learning to be effective. Models of self-regulated learning agree with the assertion
that metacognitive control processes are driven by the accuracy of the learners’ metacognitive
monitoring (Ariel, Dunlosky, & Bailey, 2009; Greene & Azevedo, 2007; Metcalfe & Kornell,
2005; Nelson & Narens, 1990, 1994; Soderstrom, Yue, & Bjork, 2015; Son &Metcalfe, 2000;
Winne & Hadwin, 1998, 2008). The relationship between metacognitive monitoring and
control is mediated by task conditions, learner goals, and metacognitive knowledge (Koriat,
Ma’ayan, & Nussinson, 2006; Koriat, Nussinson, & Ackerman, 2014). For example, learners
tend to allocate time to material that they judge to be more difficult when they are not under
time pressure (Finn & Metcalfe, 2008; Kelley & Jacoby, 1996), but items that are closest to
their current ability level when time pressured (Metcalfe & Kornell, 2005). Learners are also
strategic in adapting the time they allocate to items based on learning goals (Wilkinson,
Reader, & Payne, 2012), and perceived item value (Ackerman, 2014; Castel, Benjamin,
Craik, & Watkins, 2002; Koriat, 2007).

Within self-regulated learning tasks, it is important that learners have an accurate model of
their current understanding and how it relates to their goals for the specific learning task.
Research on monitoring processes often focus on the accuracy between monitoring and
performance. To study the accuracy of individuals’ metacognitive monitoring, learners are
asked to make judgments about the state of their learning at various times in the learning
process (Dunlosky & Thiede, 2013). In addition, metacognitive judgments can be made on
either an item by item-level basis (judgments for each problem), or by having learners provide
a single global judgement for the entire task (Dunlosky & Thiede, 2013). Judgment accuracy
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can be measured using either relative or absolute measures of accuracy. Relative accuracy, or
resolution, refers to the ability to distinguish between items that are known and unknown items
(Rhodes, 2015), and requires item-by-item judgments for a given exam. Absolute accuracy
refers to the magnitude of the discrepancy between judgment and performance. In this study,
measures of absolute accuracy are used because students are likely to have an overall goal for
an exam (i.e., to earn an A, or to pass) that help to determine when their current level of
learning matches their goal for the exam, meaning that they have sufficiently prepared.1

Metacognitive judgments are typically more accurate for judgments made after an exam
(postdictions) than those made before an exam (predictions), and are usually more accurate for
item-level judgments rather than global judgments (Dunlosky & Lipko, 2007). However,
students preparing for exams in introductory STEM courses are unlikely to know the individ-
ual questions in advance. As such, item-level judgments do not reflect the metacognitive
judgments that students are likely to make when preparing for course exams. In addition,
predictions are likely to reflect the metacognitive monitoring that influenced their studying
decisions. In this study, global predictions were used to measure metacognitive monitoring
accuracy because these judgments are more likely to reflect the metacognitive monitoring that
learners utilize when preparing for exams.

Metacognitive monitoring and ability

A large body of research has investigated the accuracy of individuals’ metacognitive judg-
ments. The accuracy of individual’s metacognitive judgments is often found to be related to
one’s domain knowledge (Fakcharoenphol, Morphew, & Mestre, 2015; Glaser & Chi, 1988;
Schneider, 2002). These studies have generally found that individuals tend to overestimate
their own performance, with the overestimates being more pronounced for low-performing
individuals (Kruger & Dunning, 1999; Morphew, Gladding, & Mestre, 2020; Rebello, 2012;
Serra & DeMarree, 2016). The asymmetry in the accuracy of learners’ metacognitive judg-
ments is thought to occur because the expertise and skills needed to make accurate
metacognitive judgments of performance are the same type of expertise and skills needed to
produce good performance on a task (Schlosser, Dunning, Johnson, & Kruger, 2013). From
this perspective, low performing students suffer from a double curse of being both unskilled
and unaware of their lack of skill (Kruger & Dunning, 1999). However, the less accurate
metacognitive monitoring judgments made by low-performing individuals are also likely
driven by the desire for positive outcomes and misconceptions about the normative difficulty
of the tasks as well as misconceptions about their own performance (Ehrlinger, Johnson,
Banner, Dunning, & Kruger, 2008; Serra, & DeMarree, 2016; Simons, 2013). Because
metacognitive judgements are used to make studying decisions, it is important for low-
performing individuals to improve the monitoring accuracy in order to help them to determine
when they have sufficiently learned the material.

Changes in metacognitive monitoring accuracy

Laboratory studies have generally demonstrated improvements in calibration over time (e.g,
Ariel & Dunlosky, 2011; Tauber & Dunlosky, 2015; Tauber & Rhodes, 2012). Similarly, over

1 A second reason was pragmatic given that course instructors did not want item-by-item local judgements used
on the high-stakes exams for this course.
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the course of a semester, one might expect exam predictions to become more accurate as
students anchor their predictions based on prior exam performance, and the adjust for their
experiences with the new course material (Hacker, et al., 2000; Huff & Nietfield, 2009;
Geurten & Meulmans, 2017). However, in classroom contexts, students often make predic-
tions of their exam score using a desire for a positive outcome or their desired grade (Saenz,
Geraci, Miller, & Tirso, 2017; Simons, 2013). In fact, students’ predictions are often more
strongly correlated with their desired grade than with their actual grade (Serra, & DeMarree,
2016), and often fail to use their prior exam performance when making exam predictions
(Foster, Was, Dunlosky, & Isaacson, 2017).

The anchoring of exam predictions in a desired grade rather than prior performance may be
why the results of previous classroom studies looking at changes in metacognitive monitoring
have been mixed, with some studies failing to demonstrate improvement in the accuracy of
metacognitive judgments over the course of a semester even with interventions designed to
focus student attention on the accuracy of their predictions and incentives for accurate
predictions (Foster, et al., 2017; Nietfeld, Cao, & Osborne, 2005). Conversely, other studies
have shown improvements in calibration over the course of the semester (e.g., Hacker, Bol, &
Bahbahani, 2008; Hacker, Bol, Horgan, & Rakow, 2000; Nietfeld, Cao, & Osborne, 2006).
Many of the studies analyzed judgment accuracy using group centered analyses (e.g., repeated
measures ANOVA or MANOVA) that do not take individual differences into account. A
notable exception is found in Foster, et al. (2017), who used multilevel modeling to examine
changes in bias (i.e., metacognitive monitoring accuracy) over the course of thirteen exams.
The authors found that on average students are overconfident before taking exams and the
magnitude of their overconfidence increased over time. However, they also noted that there
was significant variation in students bias before taking the first exam, and marginally signif-
icant variation in the change in bias over the course of the semester. In addition, there was
significant covariance between the initial bias and the change over time, suggesting that the
increase in bias over the course of the semester may be restricted to those who have lower
initial bias.

Feedback

Feedback from an external source is essential to development in models of self-regulated
learning. External feedback provides information about the contextual task standards and
motivates individuals to engage in reflection that critical for more accurate metacognitive
monitoring (Zimmerman, 2000). Much of the research on the effect of feedback on monitoring
accuracy has been focused on performance feedback. Several studies have found that provid-
ing individuals with performance feedback can lead to more accurate monitoring (Baars et al.
2014; Keren, 1990; Laburn, Zimmerman, & Hasselhorn, 2010; Lipko et al. 2009; Rawson &
Dunlosky 2007),. However, students in most introductory STEM courses receive detailed
correctness feedback on exams for both global (overall exam grade) and local (individual
question correctness) judgments, yet many studies have failed to demonstrate improvement in
monitoring (e.g., Foster, Was, Dunlosky, & Isaacson, 2017) despite receiving this performance
feedback. This failure to demonstrate more accurate judgments may be due to enhanced
monitoring being restricted to highly similar or repeated tasks (Thompson, 1998).

More extensive feedback involves providing individuals with calibration feedback
that shows the performance feedback, the participants prediction, and a brief interpretation
of the accuracy of the prediction can improve monitoring accuracy in lab settings for repeated
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tasks, (Geurten & Meulmans, 2017; Kim, 2018; Nietfeld, Cao, & Osborne, 2006; Urban &
Urban, 2018, 2019), and in classroom settings for exams (Callender, Franco-Watkins, &
Roberts, 2015; Miller & Geraci, 2011). In one example, Miller & Geraci (2011) provided
students with their exam score and their prediction after every exam in a cognitive psychology
course. They found that providing accuracy feedback led to low-performing students becom-
ing more accurate in monitoring over the course of the semester, even though these low-
performing students did not improve the exam performance. Callender, Franco-Watkins, &
Roberts (2015) showed similar results, although they used a pre-post design rather than a
randomized control design. However, the authors note that the improvements in monitoring
that they found may have been largely due to performance improvements, rather than simply
more accurate monitoring. Thus, the effect that providing students with monitoring feedback
(an easy-to-implement intervention for large enrollment introductory STEM courses) has on
monitoring accuracy is unclear.

Academic goal orientation, epistemological beliefs, and metacognition

From a self-regulated learning framework, accurate metacognitive monitoring implies two
acts. First, the learner must set criteria for what it means to know “enough” for the upcoming
test. Second, learners must monitor their learning against the standards they have established.
This implies that students’ beliefs about the nature of knowledge and learning are likely to
influence the accuracy of their metacognitive judgments made before taking an exam. In fact,
prior research suggests that overestimates of performance are likely due to individuals
overestimating their own ability as well as underestimating the difficulty of the problems on
the exam (Metcalfe & Finn, 2008). In addition, an individual whose goal is to earn a certain
grade in the course may be more motivated to make an accurate prediction. Conversely a
student who is simply focused on not failing may be more likely to inflate their judgement to
maintain a positive self-image. This suggests that a student’s academic goal orientation may
also influence the accuracy of their metacognitive judgments. While no study to date has
investigated the link between epistemological beliefs, academic goal orientation, and the
accuracy of metacognitive judgments, a few studies have investigated the relationship between
students’ epistemological beliefs, academic goal orientations, and metacognition in general.

Epistemological beliefs The relationship between metacognition and epistemological beliefs
has been studied by a number of researchers (e.g., Bromme, Pieschl, & Stahl, 2010; Hofer,
2004; Kitchner, 1983; Muis, & Franco, 2010). Kitchner (1983) viewed the relationship
between cognition, metacognition, and epistemology as a three-level system where at the
epistemological level individuals think on a “meta-meta level” (Barzilai & Zohar, 2014, p. 17),
reflecting on the limits of their knowing and the nature of knowledge in general. More recently
epistemology has been conceived as an integral component of metacognition. Hofer (2004)
utilized the classic distinction between metacognitive knowledge and skills or processes and
conceptualized epistemological beliefs as components of metacognition. She locates episte-
mological beliefs dealing with the nature of knowledge (the certainty of knowledge and
simplicity of knowledge) within metacognitive knowledge. Beliefs about the nature of know-
ing (the source of knowledge and the justification for knowing) are located with metacognitive
processes or skills. From this perspective an individual’s epistemological beliefs will affect
metacognitive processes. For example, consider an individual’s belief about the nature of
intelligence. Individuals adopt beliefs about the nature of intelligence, specifically whether
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intelligence is fixed (entity mindset) or is changeable through effort (incremental mindset;
Dweck, 1999). Beliefs about the malleability of intelligence likely affect how students engage
in learning strategies that require more effort. In other words, if a student believes that their
ability in physics is changeable, then they are more likely to adopt an incremental learning
goals approach (Dweck, 1999). This mindset can affect how they make predictions of the
performance, as individuals with an entity mindset tend to make lower predictions of their
performance than those who adopt an incremental mindset (Hong, Chiu, & Dweck, 1995).

Within self-regulated learning contexts, the relationship between epistemological beliefs,
metacognition, and learning is a primary concern. Several models have been proposed which
view learning as occurring in a cyclical process. The key assumption of these models is that an
individual’s epistemological beliefs are implicitly activated during the initial phases of a task
(e.g., studying for an exam). Once activated, these beliefs (along with the nature of the task)
determine the standards for learning. These standards in turn impact the amount of information
processed by learners (Pieschl, Stahl, & Bromme, 2008), the metacognitive knowledge which
is activated, and the metacognitive processes that one employs to complete a learning task
(Bromme, Pieschl, & Stahl, 2010; Mason, Boldrin, & Ariasi, 2010; Muis & Franco, 2010).

The ability to accurately monitor depends on the individual having substantial knowledge
both within and about the domain in which the task is situated (Veenman, Van Hout-Wolters,
& Afflerbach, 2006). This includes knowledge about what it means to know within a particular
domain. In other words, when monitoring cognition individuals must make two simultaneous
and related judgements. Learners must first decide what it means to know within a subject
(e.g., is knowledge in the domain complex and interrelated or is it simple and segmented).
Then learners must decide how their current level of knowledge aligns with the expectations of
the domain. Similarly, when selecting control strategies learners must draw upon their domain
specific epistemology in order to determine which strategies best align with the subject and
task demands.

Using the framework of epistemic metacognition, we can imagine that two students with
the same metacognitive competency, and with the same ability, can make drastically different
judgments of their learning. These different judgments can lead to different strategy use even if
they are equally capable of employing the same metacognitive strategies. When individuals
make metacognitive judgments of learning before taking an assessment, they are actually
making two judgements; one epistemic and one metacognitive. Individuals must make an
epistemic judgement about what it means to know in a particular subject area, and then make a
metacognitive judgement to determine how their current knowledge relates to the expectations
of the domain. These judgments are likely used to determine when to study, how much time
and effort to put into studying, and what strategies to employ while studying.

Achievement goal orientation The way in which students approach learning within a given
context is, in part, related to the goals they set for learning. Achievement goal orientations
(AGOs) are the general orientation a student adopts when engaging in learning within a
specific context. There are two types of learning goals that a learner may choose to adopt;
mastery goals and performance goals (Dweck & Leggett, 1988; Elliot & Murayama, 2008).
For each of these goals, learners may adopt either an approach or avoidance valence resulting
in four distinct achievement goal orientations (Elliot & Murayama, 2008). Learners with
mastery-approach goals tend to focus on attaining task-based competence or mastering
conceptual understanding. Learners with mastery-avoidance goals tend to focus on avoiding
conceptual misunderstandings or developing task-based incompetence. Learners with
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performance-approach goals tend to focus on demonstrating normative competence (e.g.,
performing better than average). Learners with performance-avoidance goals tend to focus
on avoiding demonstrations of normative incompetence. Learners may adopt multiple achieve-
ment goals simultaneously and to different extents. For example, a student enrolled in an
introductory biology course, and who plans to apply to medical school, may adopt both
mastery-approach goals (focusing on developing a mastery of the material) and
performance-approach goals (wanting to score in the top quartile of the class).

AGOs have been found to be related to measures of course performance (e.g., Elliot &
Murayama, 2008) and transfer (Belenky & Nokes-Malach, 2013), however few studies have
looked at the relationship between AGOs and metacognition in general. Both Coutinho (2007)
and Gul and Shehzad (2012) conducted surveys of students’ metacognition using the
metacognitive awareness index, which measures metacognitive knowledge and strategies.
Both studies found that mastery goal orientation was correlated with academic performance
(as measured by self-reports of GPA) and with metacognitive awareness. Bipp, Steinmayr, and
Spinath (2012) investigated the link between AGOs and metacognitive monitoring by having
students complete measures of these constructs, estimate their intelligence, then complete an
intelligence test. They found that students’ performance, but not mastery goals, were related to
estimates of intelligence. In addition, students with performance approach goals tended to
overestimate their intelligence while those with performance-avoidance goals tended to un-
derestimate their intelligence. However, the estimates of intelligence were made using both
percentile and Likert scales, making measures of absolute calibration unwarranted.

Method

Participants

Participants were 284 Undergraduate students enrolled in an algebra-based introductory
physics course at a large Midwestern university who completed consent forms at the beginning
of the semester agreeing to participate in this study. Due to a glitch in the online survey
delivery platform demographics data are only available for 164 students. The demographics
indicated that the sample was relatively evenly distributed for gender (43% female, 57% male),
and representative of the course distribution for ethnicity (3.0% African American, 21.3%
Asian American, 12.8% International, 44.5% Caucasian, 5.5% Hispanic, 12.9% other ethnic-
ities). Neither the mean age nor socio-economic data were available. Students were randomly
assigned to either receive feedback about the accuracy of their predictions (feedback condition;
N = 141) or to a control conditions where they did not receive feedback (no feedback
condition; N = 143).

Procedure

Participants completed the surveys during the first week of the semester as part of the course
delivery system. Students completed three computerized midterm exams and one comprehen-
sive final exam (heretofore referred to as exam 4) on paper during the semester. The four
exams were all constructed in a similar format in that the questions were multiple-choice and
contained both calculational and conceptual questions. Before beginning each of the four
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exams, students were prompted to make a prediction about their expected performance on the
exam using the prompt: “Before you begin the exam, please take a second to think about what
grade you anticipate getting on this exam (0 - 100%). Try to be as accurate as you can with
your prediction.” To motivate accurate metacognitive judgments, students who predicted
within 3% of their actual exam grade were entered into a drawing for one of three $30 prizes
on each exam.

Students in the feedback condition received calibration feedback similar to the feedback in
Miller and Geraci (2011). After every exam, students in the feedback condition were sent an
email that indicated their exam score, their predicted score on the exam, and whether their
prediction was an overestimate or underestimate. Students were also instructed to compare the
prediction and the exam score. Students in the no feedback condition were given their exam
scores through the course management system, but did not receive any information about their
predictions.

Measures

At the beginning of the semester, students completed surveys that measured their goal
orientations and epistemological beliefs. The surveys are discussed in more detail below.
Due to a glitch in the online survey delivery platform, survey data were only available for 170
of the students.

Goal orientation Participants’ achievement goal orientations were measured using the Re-
vised Achievement Goal Questionnaire (AGQ) (Elliot &Murayama, 2008). This questionnaire
is intended to measure the participants’ approach and avoidance behaviors on two different
goal orientations; performance and mastery goals. The questionnaire asks students to consider
their goals for the introductory physics course and then rate their agreement to statements
reflecting the range of goal orientations using a 5-point Likert scale. All four subscales have
been reported to display high reliability (mastery-approach, α = .84, mastery-avoidance,
α = .88, performance-approach, α = .92, and performance-avoidance, α = .94). The reliabilities
were lower for this sample (mastery-approach, α = .74, mastery-avoidance, α = .69, perfor-
mance-approach, α = .76, and performance-avoidance, α = .75). The scores were slightly
negatively skewed. To aid in the interpretation of the results, the scores on all four subscales
were normalized by subtracting the mean and dividing by the standard deviation.

Epistemological beliefs Investigations on epistemological beliefs initially focused on devel-
opmental issues and assumed that epistemology was unidimensional. Schommer (1990) noted
that this assumption was unlikely and proposed that that personal epistemology was composed
of a set of independent beliefs which may be thought of as existing on a continuum from less-
adaptive to more adaptive positions. Schommer proposed that epistemological beliefs are
comprised of five dimensions of beliefs that are interrelated; (a) the simplicity/complexity of
knowledge, (b) the certainty of knowledge, (c) the source of knowledge, (d) innate ability, and
(e) the speed of learning. Participants’ epistemological beliefs were measured using the
Connotative Aspects of Epistemological Beliefs questionnaire (CAEB) developed by Stahl
and Bromme (2007), and the Theories of Intelligence (TOI) scale designed by Dweck (1999).

The CAEB is intended to measure individuals’ epistemological beliefs about the simplicity/
complexity of knowledge, the certainty of knowledge, and the source of knowledge. The
questionnaire asks students to indicate how they believe knowledge in physics might be best
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described using a seven-point (1–7) Likert-scale with 24 adjective pairs (e.g., negotiated-
discovered) as the end-points. On this scale, a score of 1 indicates that knowledge in physics is
represented by only the first adjective (e.g., negotiated), while a score of 7 indicates that
knowledge in physics is represented by only the first adjective (e.g., discovered). A score of 4
indicates that knowledge in physics is represented by both adjectives equally. Two questions
were removed from the calculation of the scores because their inclusion lowered the reliability
of the scales. The reliabilities for this sample were acceptable (Simple, α = .74, Certainty,
α = .62, and Source, α = .61). The scores were normally distributed. To aid in the interpreta-
tion of the results, the scores on all four subscales were normalized by subtracting the mean
and dividing by the standard deviation.

The TOI asks students to think about learning in Physics, read 7 philosophical statements,
and rate their level of agreement using a six-point Likert scale ranging from strongly agree to
strongly disagree. For example; “Your intelligence is something about you that you can’t
change very much.” The reliability was relatively high for this sample (α = .89), and the scores
were normally distributed. To aid in the interpretation of the results, the scores were normal-
ized by subtracting the mean and dividing by the standard deviation.

Ability group The exams for this course varied in difficulty as the means for the four exams
were 72.2%, 61.3%, 78.5%, and 65.1% respectively.2 To determine whether high or low
performing students show better metacognitive calibration or more improvement over time the
ability level of each student was estimated by calculating their exam average across the four
exams. Students were divided into quartiles using the average of the four exams. The average
exam scores for each quartile were as follows: First quartile [35% - 61%], second quartile
[61% - 69%], third quartile [69% - 79%], and fourth quartile [79% - 99%].

Bias Students’ metacognitive bias was calculated by subtracting their exam score from their
prediction so that positive scores represent overconfidence and negative scores represent
underconfidence.

Data analysis

For ethical reasons, students were not required to make predictions, therefore, not all students
made predictions for every exam. The majority of the students made predictions for every
exam. Of the 284 students who consented, 279 made predictions for the first exam, 268 made
predictions for the second exam, 258 made predictions for the third exam, and 241 made
predictions for the final exam. One student provided letter grade predictions rather than
percentage predictions. This student’s letter grade predictions were converted to the mean of
the letter grade (e.g., scores between 86% and 88% are awarded a B, thus an estimate of a B
was converted to a prediction of 87%). Two students did not make a prediction for any of the
four exams given in the course, and an additional 11 students dropped the course after having
made at least one prediction. The data for these 13 students were not included in the data

2 The Physics department generally aims to write exams that have a mean score between 70 and 75%. The
second and final exams had lower means than desired by course instructors. While course instructors aim for a
mean in this range, students are not made aware of this goal. Historically, the mean varies and may fall outside of
this this desired range
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analysis. The responses to the survey data were matched to the exam and prediction data for
each individual.

Pearson correlations, Analyses of Variance (ANOVAs), Multivariate Analyses of Variance
(MANOVAs), and Chi-Square tests were used to analyze differences for all variables except
goal orientation, which were analyzed using Kruskal-Wallis tests. Descriptive statistics, Chi-
Square tests, Kruskal-Wallis tests, and ANOVAs were calculated with SAS Version 9.4. The
trajectory of metacognitive bias of exam predictions were tested in a structural equation
modeling framework to analyze change over time. Since there was missing data Mplus
Version 7.11 was used to conduct the growth curve modeling and growth mixture modeling
since the default analysis utilizes full information maximum likelihood estimation which
handles missing data well.

Examination of spaghetti plots suggested non-linear trajectories, so a sequence of models
was tested to fit the shape of growth. A no-growth model, unconditional growth model, and a
quadratic growth model were fit using the maximum likelihood (ML) estimator. The models
were compared using the change in chi-squared test. To assess model fit, we analyzed the CFI,
RMSEA, and Chi-Square Goodness of fit tests. Cutoffs of CFI ≥ .95 and the lower bound of
the 90% CI for RMSEA ≤ .05 were used to determine the model fit (Hooper, Coughlan, &
Mullen, 2008). These results, along with the multiple trajectories suggested by the spaghetti
plots indicated that a model with a single trajectory for all students was inappropriate, so
several growth mixture models were run to determine the optimum number of trajectories
(classes). Multiple models with different variance and covariance structures were fit. However,
due to convergence problems with the other models, Nagin models were fit to the data where
intraclass variances and covariances were fixed at zero (Nagin, 2005; Nagin & Odgers, 2010).
In the final model, the intercept, slope, quadratic, and cubic slopes were freely estimated using
the ML estimator for three of the classes, while only the intercept was estimated for the fourth
class (i.e., the linear, quadratic, and cubic slopes were fixed for this class) because examination
of the spaghetti plots suggested a large group of students that exhibited no change in bias
across the exams.

Results

To address the first research question, Pearson correlations were conducted and the results are
shown in Table 1. Students’ bias scores among the exams were all positively correlated
suggesting that the students were relatively consistent in their calibration. However, neither
academic goal orientations nor epistemological beliefs were consistently correlated with bias
scores.

To address the second research question, Two-way ANOVAs (Ability x Feedback) were
conducted for each exam. Descriptive statistics for the bias scores for each feedback condition
are shown in Table 2. The ANOVAs showed differences in bias between ability groups for
exam 1, F(3, 260) = 46.89, p < .001, η2p = .34, exam 2, F(3, 256) = 19.87, p < .001, η2p = .18,

exam 3, F(3, 247) = 8.02, p < .001, η2p = .09, and exam 4, F(3, 233) = 36.00, p < .001, η2p =

.31.3 Post-hoc Tukey’s HSD tests indicated that the low-ability group was more overconfident
than the high-ability group and the medium-high ability group on all four exams. The low-

3 The same conclusions are reached if only those who made predictions on all four exams are used in the
analysis.
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ability group was also more overconfident than the medium-low ability group on all but the
second exam. The high-ability group was less overconfident than the other three ability groups,
except for exam 3, where they were only less overconfident than the low-ability group.

A small, but significant main effect for feedback condition was found for exam 4, F(1,
232) = 4.82, p = .03, η2p = .01, indicating that those who received metacognitive monitoring

accuracy feedback were more overconfident on the final exam compared to those who did not
receive accuracy feedback. However, no differences in bias between feedback conditions were
detected for exam 1, F(1, 260) < 0.01, p = .98, η2p < .001, exam 2, F(1, 256) = 1.68, p = .20, η2p
= .005, or exam 3, F(1, 247) = 1.40, p = .24, η2p = .005.4 A marginally significant

interaction between ability group and feedback was found for exam 4, F(3, 233) = 2.25,
p = .08, η2p = .02, and is visualized in Fig. 1. The interaction was not significant for exam 1,

F(3, 260) = 1.44, p = .23, η2p = .01, exam 2, F(3, 256) = 1.87, p = .13, η2p = .02, or exam 3, F(3,

246) = 1.50, p = .22, η2p = .02.5 To investigate the marginally significant interaction term,

differences in the bias scores between the feedback conditions for each ability group was
tested using two independent samples t-tests. The results indicate that students who received
accuracy feedback were more overconfident than students who did not receive feedback for
the low-ability and medium-low ability groups, t(115) = 2.77, p < .01, d = 0.51, but not for the
high-ability and medium-high ability groups, t(121) = −0.46, p = .65, d = 0.08.

To address the third research question, growth curve modeling analysis was conducted
following the procedure outlined above. The fit indices and change in chi squared tests are
shown in Table 3. Chi-square tests indicate that the unconditional linear model fit better than
the no-growth model. In addition, the quadratic model fit significantly better than the linear
model. However, the model fit statistics (CFI and RMSEA) were unacceptable, indicating that
one single model was inappropriate to model these data. Because a cubic model could not be
fit with only four time points, and the spaghetti plots suggest both a cubic model and multiple

Table 2 Means and Standard Deviation of the Bias Scores for Each Ability Group by Feedback Condition

No Feedback Condition Mean(SD) Feedback Condition Mean(SD)

Low Med-Low Med-High High Low Med-Low Med-High High

Exam
1

21.7 (11.4) 12.8 (12.2) 9.8 (10.6) 3.1 (9.3) 24.1 (12.0) 13.3 (10.4) 11.5 (11.1) −1.5 (8.6)

Exam
2

19.2 (14.4) 17.9 (14.6) 15.1 (15.5) 4.9 (10.1) 27.2 (15.4) 19.4 (15.5) 11.7 (12.7) 6.8 (10.4)

Exam
3

7.2 (13.2) −2.1 (12.2) 2.3 (12.6) 0.8 (9.7) 7.9 (14.4) −0.2 (9.2) −3.1 (13.1) −3.2 (9.0)

Exam
4

17.8 (14.3) 12.3 (10.1) 6.7 (8.4) 2.3 (11.1) 25.8 (16.4) 18.1 (10.3) 7.0 (8.4) 0.3 (10.3)

Note: Sample sizes for the no feedback condition by each exam respectively: Low ability (n = 33, 31, 30, 29),
Medium-Low ability (n = 34, 32, 32, 30), Medium-High ability (n = 34, 34, 32, 32), High ability (n = 30, 31, 30,
27). Sample sizes for the feedback condition for each exam respectively: Low ability (n = 34, 33, 30, 28),
Medium-Low ability (n = 31, 32, 32, 30), Medium-High ability (n = 36, 36, 33, 30), High ability (n = 36, 35, 36,
35)

4 The same conclusions are reached if only those who made predictions on all four exams are used in the
analysis.
5 The same conclusions are reached if only those who made predictions on all four exams are used in the analysis
though the marginal interaction for exam 4 results in p = .10.
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trajectories, growth mixture modeling was conducted to determine the optimum number of
classes. The results can be found in Table 4.

A four-class model was selected because, although the sample-size adjusted BIC was
slightly higher than the three-class model, the entropy was higher, and the resultant models
reflected the observed patterns in the data from the spaghetti plots more accurately. In the four-
class model 20.7% belonged to the first class, 52.0% belonged to the second, 15.9% belonged
to the third class, and 11.4% to the fourth. Fitted growth trajectories for the four classes are
shown in Fig. 2. Individuals in class 1 had the lowest bias scores on three of the fours exams
and were relatively consistent across the four exams compared to the other three classes.
Individuals in both classes 2 and 3 showed similar patterns of large alternating increases and
decreases in overconfidence across the four exams. Both groups were least overconfident on
the third exam, and much more overconfident on the other three exams. However, individuals
in class 2 were between 10 and 20 percentage points more overconfident on every exam than
individuals in class 3. Finally, individuals in class 4 were about 20 percentage points
overconfident on the first exam, then became more accurate on the second exam, and even
displayed underconfidence on the third exam. This class was overconfident on the final exam,
but notably reduced their bias by more than ten percentage points on average as compared to
the first exam. To investigate the demographic characteristics of the individuals in each class
trajectory three Chi-Square tests of independence were conducted. There were no differences
in class membership between feedback condition, χ2(3) = 4.40, p = .22, indicating that pro-
viding feedback did not seem to affect the trajectory group that an individual was in. However,
there were significant differences in class membership by ability group, χ2(9) = 135.51,
p < .001. Students in class 3, the most overconfident class, were primarily students in the
bottom quartile (77%) and did not include any students in the top quartile. Conversely,

Table 3 Comparative Model Fit across a Series of Models

Model AIC BIC χ2 df p CFI RMSEA (90% CI)

A. No-growth model 8365.97 8376.78 240.13 11 < .001 −.517 .277 .242, .314
B. Unconditional linear growth model 8314.31 8335.92 182.47 8 < .001 −.156 .284 .241, .327
χ2 test of difference vs. Model A 57.66 3 < .001
C. Unconditional quadratic model 8293.20 8329.22 153.35 4 < .001 .011 .371 .312, .432
χ2 test of difference vs. Model B 29.12 4 < .001

Fig. 1 Exam 4 Prediction Bias by Ability and Feedback Condition

102 J. W. Morphew



students in class 1, the most accurate class, were primarily students in the top quartile (66%),
and only included two students from the bottom quartile. The four ability groups were
represented in class 4, as 23% were from the lowest quartile, 29% from the second quartile,
32% from the third quartile, and 16% from the top quartile. Students in class 2 were also
relatively evenly represented among the ability groups, with 18%, 35%, 30%, and 18%
respectively.

To investigate potential characteristics that might determine class membership, differences
between the trajectory classes were investigated. A one-way ANOVA was conducted to
investigate differences on the TOI, and a one-way MANOVA was conducted to investigate
differences on the CAEB. Class membership did not differ in scores one the TOI, F(3, 163) =
1.56, p = .20, or the CAEB, F(3, 163) = 0.37, p = .78. Because the distributions for academic
goal orientations were not normally distributed, four Kruskal-Wallis tests were conducted to
investigate differences in academic goal orientations with a Bonferroni correction made to the
critical alpha level such that α = 0.012. Class membership did not differ by Mastery Approach,
χ2(3) = 2.35, p = .50, Mastery Avoidance goals, χ2(3) = 7.78, p = .05, Performance Approach,
χ2(3) = 1.45, p = .69, or Performance Avoidance, χ2(3) = 1.10, p = .78.

Discussion

This study is the first to model changes in metacognitive calibration using growth mixture
modeling, and, along with Foster, et al., (2017), among the first studies to investigate changes
in metacognitive calibration using person-centered techniques. Similar to Foster, et al. (2017),

Fig. 2 Fitted Growth Trajectories for Calibration for the Four Classes

Table 4 Comparative Model Fit across a Series of Models

Models AIC BIC Sample-Size Adjusted BIC Entropy Smallest Class Percentage

Model 1 (1 class) Did not converge
Model 2 (2 class) 8196.25 8253.89 8203.16 .611 33.1
Model 3 (3 class) 8176.81 8266.86 8187.59 .601 14.6
Model 4 (4 class) 8180.20 8306.07 8195.10 .615 11.4
Model 5 (5 class) 8189.15 8347.64 8208.13 .613 0.4
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this study found that individual changes in metacognitive calibration vary greatly across
individuals. As such, person centered analyses (e.g., multi-level or hierarchical modeling)
may be more appropriate for identifying individual factors which are related to the ability to
improve one’s metacognitive monitoring. In addition, four classes were found to model
changes in metacognitive bias across four exams. Although three of these classes did not
exhibit significant decreases in bias, the fourth class – consisting of just over 11% of the
students – demonstrated improved monitoring accuracy over the course of the semester.

Many models of self-regulated learning indicate that metacognitive monitoring is related to
the goals, motivations, and epistemological beliefs of the learner (e.g., Hofer, 2004; Kitchner,
1983; Winne & Hadwin, 1998). These models suggest that interventions aimed at improving
metacognitive monitoring and calibration may also need to address these other factors as well.
When making predictions about upcoming exam grades, students must have substantial
knowledge both within and about the domain in which the task is situated in order to make
accurate predictions (Veenman, et al., 2006). This suggests that prediction accuracy should
rely on the accuracy of beliefs about knowledge within a domain as well as accurate
metacognitive monitoring. In this study, students who were more likely to report that they
held a mastery-approach orientation were also more likely to report that ability was changeable
and that knowledge in physics was simple. However, academic goal orientations largely did
not correlate with epistemological beliefs. There was also not a consistent correlation between
metacognitive bias, and epistemological beliefs, or academic goal orientations. In addition,
these constructs were not predictive of class membership. This suggests that metacognitive
monitoring accuracy (at least as measured by bias using single global exam predictions) may
be orthogonal to these constructs. Alternatively, it could be that the relationship between these
constructs and metacognitive monitoring accuracy may be obscured by the variation in exam
difficulty, which made it more difficult to use prior exam performance to make accurate
predictions about future exam performance.

Consistent with prior research, this study found that metacognitive bias was related to
ability (Dunning, Heath, & Suls, 2004; Kruger & Dunning, 1999). Specifically, the lowest
performing students were the least accurate, and were consistently overconfident, while the
highest performing individuals were the most accurate and tended towards underconfidence.
This study also found that students in the top quartile were more likely to be in class 1, which
was consistently well calibrated (i.e., bias close to zero) on every exam. In contrast, students in
the bottom quartile were more likely to be in class 3, which was consistently poorly calibrated
and overconfident by one to three letter grades on every exam. In other words, students who
earned D’s and F’s on the exams, generally came into the exam believing that they had
prepared enough to earn B’s and C’s. While students in classes 2 and 4 were represented by
students of all ability groups, at least 60% of the class membership was from the two middle
ability groups. Students in class 4 improved their grades on the second and third exams by
about ten percentage points compared to the first exam, however their bias decreased by more
than 20 percentage points. This suggests that the improvements in monitoring accuracy may
have been the result of improvements in both performance and metacognition monitoring.
Alternatively, the observed improvements in performance could be the result of improved
monitoring accuracy. Future research should look to investigate these possibilities.

One common explanation for the pattern where individuals overestimate their own perfor-
mance on exams, with the overestimates being more pronounced for low-performing students,
is that the expertise and skills needed to produce good performance on a task are the same type
of expertise and skills needed to produce accurate judgments of performance (Schlosser, et al.,
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2013). In other words, low-performing students suffer from the dual curse of being both
unskilled and unaware of their lack of skill (Kruger & Dunning, 1999). This interpretation
suggests that providing students with feedback about the accuracy of their exam predictions
may help students gain metacognitive awareness, which could either help students improve
their performance, or at least to regulate their overconfidence. However, in contrast to Miller
and Geraci (2011), providing students with feedback did not lead to improvements in
monitoring accuracy. In fact, paradoxically, the results suggest that providing students with
accuracy feedback may have resulted in greater overconfidence by low-performing students.

While this study was not designed to investigate the causes for inflated overconfidence, there are
a few possible explanations for this finding. One explanation is that providing students with
feedback about prediction accuracy does not help them develop productive study strategies. Prior
research has found that low-performing students tend to utilize more passive and less effective study
strategies when studying for exams (Hartwig & Dunlosky, 2012; Karpicke, Butler & Roediger,
2009). Passive study strategies such as reviewing notes, or rewatching online lectures can lead to
increased familiarity with the content without leading to enhanced learning. Because familiarity and
fluency are heuristic-based cues commonly used to make metacognitive judgments, these study
methods may result in overconfident predictions about one’s preparation (Koriat, 1997). Providing
students with prediction feedback without social interaction or instruction on how to use this
feedback to make changes to their studying may prompt students to engage in more studying using
the same ineffective strategies that theywere using, then use the increase in the amount of study time
to make higher predictions about exam performance. As noted by Labuhn, Zimmerman, and
Hasselhorn (2010), feedback may prompt individuals to use self-regulatory processes, but does
not necessarily direct individuals on which processes will be helpful or productive for self-
regulation. In other words, low-performing students may make overconfident predictions on
subsequent exams because they engaged in more studying than for previous exams, even though
the additional studying was not helpful in improving performance. This explanation is consistent
with recent experimental findings showing that providing low-performing students with accuracy
feedback can lead to greater overconfidence and less accurate control choices (Raaijmakers, Baars,
Paas, van Merrienboer, & van Gog, 2019). All of this suggests that future research should focus on
using metacognitive strategy training and self-assessment monitoring to help students improve
metacognitive monitoring (e.g., Dunlosky & Metcalfe, 2008; Kostons, VanGog & Paas, 2012).

An alternative explanation for this finding is that providing feedback about prediction
accuracy may motivate students to make overconfident predictions in an attempt to maintain a
positive self-image. A final explanation is that students who received feedback may have been
more likely to use the feedback from the third exam, which was also the easiest exam, when
making predictions for the final exam compared to those who did not receive feedback.
Because this was an unanticipated finding, future research should attempt to replicate this
finding using experimental methods designed to investigate students’ study habits and ratio-
nale for student predictions.

Should the findings from this study prove to be robust, it would suggest that interventions
aimed at improving calibration need to be sensitive to differences in ability levels. Lower-
performing students may need interventions that incorporate reality checks, such as required
practice tests that ask students to predict their performance followed by accuracy feedback and
suggested study strategies. While much of the literature on metacognitive calibration has
focused on the correlations with performance, the extent to which overconfidence or
underconfidence are related to availing constructs such as self-efficacy or persistence has not
been extensively studied. For example, students who make overconfident predictions may
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exhibit overconfidence, in part, to maintain a positive self-image. If their overconfidence is
related to their self-efficacy for a task, overconfidence could potentially encourage persistence,
as long as the student can maintain a reasonable level of success.

In addition to students’ general belief for when they are sufficiently prepared for an exam,
the ability to resolve easy and difficult items is equally important for students as they prepare
for an exam. In fact, Schwartz and Efkides (2015) suggest that metacognitive judgments of
learning are very effective when students use them for making decisions on what to study,
suggesting that measures of relative accuracy are important for investigating the effect of
metacognition on studying. This study used measures of absolute accuracy to investigate the
magnitude of the discrepancy between judgment and performance for both practical and
theoretical reasons. However, measures of absolute and relative accuracy sometimes yield
different findings. For example, relative accuracy does not seem to vary by ability the same
way as absolute accuracy (e.g., Keleman, Winningham, & Weaver, 2007; Maki, Shields,
Wheeler, & Zacchilli, 2005; Ozuru, Kurby, McNamara, 2012). An area for future research
would be to incorporate local item-by-item judgments on exams to investigate how measures
of relative accuracy change over the course of a semester, in addition to, correlations between
measures of relative accuracy and goal orientations and epistemological beliefs.

Another area for future research is the degree to which low-performing students demon-
strate metacognitive awareness. While inaccurate metacognitive predictions could indicate a
lack of awareness, it may also simply reflect a lack of understanding of the material that will
appear on the exam. One way to measure metacognitive awareness could be to look at how
individuals change their estimate of performance after taking an exam. A student who initially
overpredicts may demonstrate metacognitive awareness by adjusting their estimate downward
after completing an exam. If Kruger and Dunning (1999) are correct in asserting that lower
performing individuals are less accurate in their metacognitive monitoring, then we would
expect higher performing individuals to make more appropriate adjustments in their perfor-
mance estimates from before the exam to after the exam. Future research should have students
make predictions both before and after an exam to determine the type of student who is more
accurate in adjusting their performance estimates and what factors are associated with
accuracy in these adjustments.

There were limitations to this study. First, measures of goal orientation, epistemological
beliefs, and demographic information was obtained for only about 60% of the sample. While
the demographic data of those that completed the surveys was representative of the entire
course, there may be a systematic difference on these measures between those who complete
assignments early and those who wait until later in the week to complete their assignments.
The lack of association between the motivational variables we collected and the trajectories of
growth suggests the need to search for other covariates. For example, it is likely that an
individual’s prediction before knowing the specific questions on an exam is influenced by both
their metacognitive abilities and their epistemological beliefs about the complexity of knowl-
edge and the speed of learning. Future work should investigate the effect of epistemological
beliefs on initial metacognitive accuracy and improvement over time. Another limitation of the
study is that there was not a way to measure how strongly (or if) students considered the
feedback. It is possible that some of the students did not meaningfully consider the accuracy
feedback because of a lack of social interaction or scaffolding to ensure that the feedback was
meaningfully attended to and considered. Future research should investigate how providing
accuracy feedback with scaffolding and instruction for students impacts the development of
metacognitive monitoring accuracy.

106 J. W. Morphew



A final limitation is that no model that was run for the growth curve modeling exhibited ideal
model fit. One reason for this lack of fit likely lies in the large variation in monitoring accuracy
trajectories between individuals. This suggests that models assuming a single trajectory type my not
be sufficient for analyzing change in monitoring accuracy over time. Another reason for the lack of
fit during growth curve monitoring is the variation in exam difficulty between exams 2 and 3. The
exams for this course, were written by course instructors with the goal of having the mean on the
exam between 70 and 75%. Individual variations by course instructors result in exams with mean
scores higher or lower than this target. Future work should investigate monitoring by using exams
with known psychometric properties to control for differences in exam difficulty between exams
over the course of a semester.
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