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Although cancerous tumors usually originate from a
single cell, they normally evolve into a remarkably
heterogeneous agglomeration of cells. Heterogeneity
is a pervasive and almost universal feature of
tumors, but its origin and consequences remain
poorly understood. Tumor heterogeneity has been
usually associated with poor prognosis, but a better
understanding of it may lead to more personalized
diagnosis and therapy. Here, we study tumor
heterogeneity developing a computational model
in which different cell subpopulations compete
for space. The model suggests that aggressive
tumor subpopulations may become even more
aggressive when they grow with a non-aggressive
subpopulation. The model also provides a mechanistic
explanation of how heterogeneity drives growth. In
particular, we observed that even a mild heterogeneity
in the proliferation rates of different cell subpopulations
leads to a much faster overall tumor growth when
compared to a homogeneous tumor. The proposed
model may be a starting point to study tumor
heterogeneity computationally and to suggest new
hypotheses to be tested experimentally.

1. Introduction
Tumor heterogeneity has been systematically observed
for over five decades and is recognized to have profound
clinical consequences for disease diagnosis and therapy
design. Heterogeneity manifests itself at multiple levels
[1,2]. For example, tumors are different from patient to
patient even if the cancer type is nominally the same. This
kind of variability, known as inter-tumor heterogeneity,
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may have a genetic origin, but can also be caused by other factors. Indeed, recent research
has shown that differences in the tumor’s microenvironment — non-malignant cells, molecules
and vessels that surround the tumor — can also drive inter-tumor heterogeneity [3]. Another
major type of heterogeneity is related to the tumor’s progression. This refers to the variability
of a single tumor on a single patient as time evolves. The idea of tumor progression was first
highlighted by Foulds [4] and has been often used to explain the development of tumor drug
resistance. Although inter-tumor heterogeneity and tumor progression are very important for
cancer research, here we focus on a third type of heterogeneity, namely, intra-tumor heterogeneity
[5]. This refers to differences within a single tumor at one point in time. Because this is the focus
of the paper, we will simply use the word heterogeneity to refer to intra-tumor heterogeneity.
The differences between the cells of a tumor, can relate to their morphology [6], phenotype [7],
DNA [8,9] and other aspects, including microenvironmental factors [10–12]. Although there is
a lot of direct evidence showing that tumors are a remarkably heterogeneous cluster of cells,
the origin and consequences of this variability are not well understood [13]. Usual examples
of the importance of tumor heterogeneity include the failure of drugs that are effective only
against a specific cell subpopulation of the tumor, or misleading evaluation of the tumor severity
because the biopsy missed an aggressive cell type. Tumor heterogeneity is usually explained by
the existence of multiple clonal subpopulations within a single tumor [7]. Those subpopulations
will have different properties, including proliferation rates and motile capacities.

Here, we study tumor heterogeneity by using a computational model in which multiple clonal
subpopulations compete for space. When applied to a homogeneous tumor, the model becomes
the Fisher-Kolmogorov equation, a classical tumor-growth model that has been widely used
to model brain [14–16] and breast [17,18] cancer. The model suggests that an aggressive cell
subpopulation can become even more aggressive if it grows in combination with a non-aggressive
cell type. The model also predicts that even a mild heterogeneity in the growth rate of different
subpopulations can lead to a dramatic increase in the overall growth of the tumor, providing a
potential mechanism to explain how heterogeneity drives growth. We believe that the model can
be used to understand the role of heterogeneity in tumor growth and to design better therapies.

2. Model of intra-tumoral heterogeneity

(a) Model derivation
We consider a tumor composed of Nc clonal subpopulations. We call ρi the cellular density
(number of cells per unit volume) of the i-th clone where i takes values from 1 to Nc. The motility
of the tumor cells of the i-th clone is represented by the constant Di and their proliferation by gi.
The system of partial differential equations that controls the dynamics of the tumor is assumed to
be

∂ρi
∂t

=Di∆ρi + giρi

(
1−

∑Nc
i=1 ρi/k

)
; i= 1, . . . , Nc (2.1)

where k is a constant parameter referred to as carrying capacity [19]. The carrying capacity
is a tissue property that represents the maximum cellular density for which additional cell
proliferation is favored. Thus, the last term in parentheses on the right hand side of Eq. (2.1)
can be interpreted as a measure of the available space in the tissue for cell proliferation. This term
is key in the model because it couples all the unknowns in the system. Note that we refer to the
tumor represented by Eq. (2.1) as heterogeneous because the proliferation rate and the cell motility
properties vary among different subpopulations of the tumor, not because they are functions of
space. The gi’s and the Di’s are constants. Notice that this is in contrast with [20] where the
authors study intra-tumor heterogeneity taking a carrying capacity that varies in space.

To gain further insight into the dynamics of the system, we define ρ=
∑Nc
i=1 ρi. If we apply

Eq. (2.1) to a homogeneous tumor with Di =D and gi = g for all i= 1, . . . , Nc, we would wish to
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retrieve a well-established model for homogeneous tumor growth. Summing all the equations in
(2.1), we obtain a relation for ρ=

∑Nc
i=1 ρi that defines the overall growth of the tumor as

∂ρ

∂t
=D∆ρ+ gρ(1− ρ/k) (2.2)

Eq. (2.2) is the Fisher-Kolmogorov model, which predicts logistic growth combined with
diffusion-like cell migration. The Fisher-Kolmogorov model has been widely used to study brain
[21–25] and breast tumors [26,27].

In contrast, if we assume homogeneous cell motility properties, i.e., Di =D for all i= 1, . . . , Nc,
but we allow the gi’s to be different, summing all the equations in (2.1), we get

∂ρ

∂t
=D∆ρ+ (1− ρ/k)

Nc∑
i=1

giρi (2.3)

As we will show later, the dynamics of Eq. (2.3) and Eq. (2.1) are dramatically different when the
gi’s are not equal to each other, even if 1

Nc

∑Nc
i=1 gi = g. Heterogeneity in the motility properties

also changes the overall growth kinetics, but to a lesser extent.

Further insight into the differences between the system (2.1) and the classical homogeneous
model (2.2) can be gained studying the following situation: Let the Di’s be arbitrary constants
and the proliferation rates be heterogeneous among different subpopulations. If we assume
that 1

Nc

∑Nc
i=1 gi = g and ρi(t) = ρ(t)/Nc for all i= 1, . . . , Nc and for all t, then the dynamics of

Eqns. (2.1) and (2.2) are identical. Although the condition ρi(t) = ρ(t)/Nc is very stringent and will
almost always be violated, this analysis provides a criterion to study the effect of heterogeneous
proliferation rates in a way that allows for direct comparison with the homogeneous model. This
criterion is given by the equation 1

Nc

∑Nc
i=1 gi = g and will be used repeatedly in the paper.

Another quantity of interest is the total number of cancerous cells in a given region of the tissue
Ω, irrespective of their spatial distribution. This can be defined as

Cg1g2...gNc
(t) =

∫
Ω

Nc∑
i=1

ρidx=

∫
Ω
ρdx (2.4)

By integrating all the equations in (2.1) on the domain Ω and summing over the clonal
subpopulations, we can show that if gi = g for all i= 1, . . . , Nc, then, under the assumption of
flux-free boundary conditions, Cg1g2...gNc

(t) =Cgg...g(t) for all t even if the Di’s are different.

(b) Model problem
We use the following model problem to study the impact of heterogeneity on tumor growth

∂ρi
∂t

=Di∆ρi + giρi

(
1−

∑Nc
i=1 ρi/k

)
; i= 1, . . . , Nc in Ω × [0, T ] (2.5)

∇ρi · n= 0; i= 1, . . . , Nc on Γ × [0, T ] (2.6)

ρi(x, 0) = kkfi exp(−di(x)/`); i= 1, . . . , Nc; x∈Ω (2.7)

where Ω = [0, L]2 is the problem domain, Γ is the boundary of Ω, n its unit outward normal and
[0, T ] the time interval of interest. We will takeL= 250 mm for all the simulations in the paper. The
constant `= 10 mm is a measure of the initial size of the clones and di(x) represents the Euclidean
distance between the points x and pi. Here, the point pi identifies the center of the i-th clone. The
definition of the initial cellular density includes the additional parameter kfi , which denotes the
fraction of the carrying capacity occupied by the i-th clone at the initial time. Our model problem
allows us to study four types of intra-tumor heterogeneity varying the parameters gi, Di, pi and
kfi among the different clones.
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(c) Computational method
We use a semi-implicit, first-order accurate time stepping scheme to perform the time
discretization. We divided the time interval of interest [0, T ] into equal-size subintervals (tn, tn+1)

where n= 0, . . . , N − 1, and such that t0 = 0 and tN = T . If we define the time step as ∆t=
tn+1 − tn and ρni denotes the time-discrete approximation to ρ(x, tn), the algorithm can be
written as

ρn+1
i − ρni
∆t

=Di∆ρ
n+1
i + giρ

n
i (1− ρ

n/k) (2.8)

This scheme combines advantages of implicit and explicit methods. It allows to take larger time
steps than explicit algorithms, but it avoids the nonlinearity of a fully-implicit method.

Eq. (2.8) can be rewritten as

(Id −∆tDi∆)ρn+1
i = ρni +∆tgiρ

n
i (1− ρ

n/k) (2.9)

where Id represents the identity operator. Note that Eq. (2.9) is still continuous in space and, thus,
we are yet to perform spatial discretization. The space discretization will transform the operator
(Id −∆tDi∆) into a matrix, which will be different for each subpopulation when the motility
properties of the tumor are heterogeneous. When we use standard second-order accurate central
differences on a uniform grid, we can determine analytically the eigenvalues and the eigenvectors
of the matrix1 and use the concept of fast Poisson solver, which provides an algorithm with
optimal complexity; see [29,30] for more details. Here, we also approximate the right-hand side
of Eq. (2.9) using direct collocation at the grid points. Listing 1, provided below, is a MATLAB R©

implementation of the algorithm for a problem with Nc = 20 subpopulations. The computations
really take place in lines 19-27. The remaining lines of code define the mesh, model parameters,
initial conditions and the eigenvalues of the matrix. The code executes the 1500 time steps
necessary to reach a simulated time of 1.5 y in a few seconds on a regular desktop. Note that the
code neither saves nor plots the solution, but those capabilities can be added straightforwardly.

Listing 1: MATLAB R© code to solve the proposed model

1 N = 6 4 ; L = 2 5 0 ; dx = L/(N−1) ; dx2 = dx ^2; x = ( 0 : dx : L ) ’ ; [ xx , yy]= meshgrid ( x ’ , x ) ;
2 LEV = ( ( ( 2∗ cos ( pi ∗ ( 0 :N−1) ’/(N−1) ) )−2)∗ones ( 1 ,N) ) ; LEV = LEV + LEV ’ ;
3 dt = 1e−3; L1 = dt/dx2 ; Tmax = 1 . 5 ; ntmax = round (Tmax/dt ) + 1 ;
4

5 Nc = 2 0 ; % Number of subpopulations
6 k = 2e6 ; D0 = 1 ; Dm = 1000 ; g = 4 . 8 2 ; e l l = 1 0 ; % Homogeneous parameters
7

8 ux = rand ( 1 ,Nc) ; ux = (2∗ux−1) /10; px = ( 0 . 5 + ux )∗L ;
9 uy = rand ( 1 ,Nc) ; uy = (2∗uy−1) /10; py = ( 0 . 5 + uy )∗L ;

10 kf = rand ( 1 ,Nc) ; sk = sum( kf ) ; kf = .05∗k∗kf/sk ;
11 r = rand ( 1 ,Nc) ; gf = Nc∗r∗g/sum( r ) ;
12 z = rand ( 1 ,Nc) ; df = z/sum( z ) ; D = D0 + Dm∗df ;
13

14 f o r i = 1 :Nc ; d ( : , : , i ) = s q r t ( ( xx−px ( i ) ) .^2 + ( yy−py ( i ) ) . ^ 2 ) ; end
15 f o r i = 1 :Nc ; U( : , : , i ) = kf ( i )∗exp(−d ( : , : , i ) / e l l ) ; end
16 f o r i = 1 :Nc ; LHS ( : , : , i ) = ones (N,N) − D( i )∗L1∗LEV ; end
17

18 t = 0 ; i t = 0 ;
19 while i t < ntmax
20 t = t +dt ; i t = i t + 1 ;
21 Ut = sum(U, 3 ) ;
22 f o r i =1:Nc
23 hatRHS ( : , : , i ) = dct2 (U( : , : , i ) + dt∗gf ( i )∗(1−Ut ( : , : ) /k ) .∗U( : , : , i ) ) ;
24 hatU ( : , : , i ) = hatRHS ( : , : , i ) ./LHS ( : , : , i ) ;
25 U( : , : , i ) = i d c t 2 ( hatU ( : , : , i ) ) ;
26 end
27 end

1If we discretize the Laplace operator using finite elements with a uniform mesh of linear triangular elements we obtain an
identical matrix [28]
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Figure 1: Growth dynamics of aggressive (A) and non-aggressive (N) cell subpopulations when
interacting with each other (solid lines) or with themselves (dashed lines). The simulations
were performed assuming homogeneous motility properties with D1 =D2 = 50 mm2/y [22] and
taking kf1 = 0.8070, kf2 = 0.1930, u1 =−0.0500, u2 = 0.0840, v1 =−0.0120, v2 = 0.0680, but the
described interaction mechanism is independent of the values taken for the parameters Di, k

f
i

and pi.

3. Results

(a) Aggressive clones become more aggressive when they interact with
non-aggressive subpopulations

As a first illustration of how the interaction between two different subpopulations can change
the growth kinetics of the individual clones, we simulated the model problem (2.5)–(2.7) taking
Nc = 2. The two clonal subpopulations correspond to a non-aggressive cell type (N) represented
by a proliferation rate gN = 2.377 y−1 and a more aggressive subpopulation (A) represented by
gA = 7.263 y−1. We performed four simulations taking the parameters g1 = gA, g2 = gN for the
first one; g1 = g2 = gA for the second one; g1 = gN , g2 = gA for the third one; and g1 = g2 = gN
for the fourth one. The plot shows that an aggressive cell subpopulation grows faster when
it interacts with a non-aggressive subpopulation than when it interacts with itself. Conversely,
non-aggressive cells grow more slowly when they do so in combination with aggressive cells
than when they interact with themselves. This simple example illustrates non-trivial interactions
between subpopulations with different growth rates and can provide useful information to
interpret experimental data showing that co-cultures of tumor subpopulations grow at different
rates than they do when they grow by themselves [6].

(b) Heterogeneity of the proliferation rate significantly increases overall
tumor growth

We will now use the model problem (2.5)–(2.7) to study how a heterogeneous proliferation rate
drives growth. To model heterogeneous growth rates, and compare the growth kinetics with
those of a single-clone tumor we will always use values of the gi’s that satisfy the constraint
1
Nc

∑Nc
i=1 gi = g, where g is the proliferation rate of the single-clone model. To satisfy this

constraint we defined the random variable r with uniform distribution in the interval [0, 1]. Then,
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Figure 2: A. Overall growth kinetics for homogeneous and heterogeneous tumors. For the
heterogeneous tumors, we present 10 simulations that correspond to 10 different sets of gi’s, all
of them satisfying the constraint (3.1); B. Influence on overall tumor growth of the heterogeneity
in motility properties and the initial distribution of subpopulations.

we tookNc realizations of it, obtaining the values ri for i= 1, . . . , Nc. The proliferation rates were
defined as

gi = gNc
ri∑Nc
j=1 rj

(3.1)

The proliferation rates obtained using Eq. (3.1) satisfy the constraint 1
Nc

∑Nc
i=1 gi = g as desired.

To study the influence of heterogeneous growth rates on the overall growth of the tumor, we
solved the model problem (2.5)–(2.7) for Nc = 20 subpopulations. We performed 11 simulations
of the model problem. In 10 simulations, we determined the (heterogeneous) growth rates using
Eq. (3.1), while in the remaining one, we simply took gi = g= 4.82 y−1 for all clones, which
represents a tumor with homogeneous growth rate. As shown before, the latter simulation will
produce exactly the same overall tumor growth dynamics as a single-clone simulation given by
Eq. (2.2) with g= 4.82 y−1. Although we are primarily interested in heterogeneous proliferation
rates in this section, we also introduce heterogeneity in the initial distribution of cells (kfi and pi)
to represent a more realistic scenario. The parameters kfi and pi were different for each clone,
but their specific values (which do not affect the conclusions of this section) were kept constant
throughout the 11 simulations.

Fig. 2A shows the time evolution of the total number of tumor cells
(∫
Ω ρdx

)
for 10 simulations

of heterogeneous tumors (solid blue lines) and the simulation of homogeneous tumor growth
(dashed black line). In all cases, the heterogeneous tumor grows significantly faster than the
homogeneous one. At t= 1.5 y, the total number of cells is between two- and five-fold larger
for the heterogeneous tumor. The results show that heterogeneous tumors are more effective
competing for space than homogeneous tumors and suggest a potential explanation of how
heterogeneity drives growth and results in poorer prognosis.

(c) Heterogeneity in motility and initial distribution of subpopulations has
a mild influence on the overall tumor growth

We can have a more detailed understanding of the role of intra-tumor heterogeneity on the
overall tumor growth by varying the parameters gi, pi, k

f
i and Di simultaneously. The motility

heterogeneity was defined using the expression

Di =D0 +DmD
f
i where Dfi =

zi∑Nc
j=1 zj

(3.2)
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Table 1: Deterministic parameters for the model problem

Parameter Value
Dm 1000 mm2 y−1

D0 1 mm2 y−1

g 4.82 y−1

The zi’s in Eq. (3.2) are realizations of a random variable with uniform distribution in [0, 1].
The maximum cell density heterogeneity was modeled taking kfi as realizations of a uniform
distribution in the interval [0, Nc/20]. The heterogeneity in the location of the clones was modeled
taking pi = {(1/2 + ui)L, (1/2 + vi)L}T , where ui and vi are realizations of a random variable
with uniform distribution in [−0.2,+0.2]. The deterministic parameters of the model are given in
Table 1. These parameters will be kept fixed for the rest of the paper.

Fig. 2B shows the results of 16 simulations, providing the total number of tumor cells at
time 1.5 y for all combinations of homogeneous/heterogeneous properties. The heterogeneous
parameters gi, Di, k

f
i and pi were randomly generated as described before; see Eqns. (3.1)–(3.2)

and the text that follows. The random parameters were generated only once, and re-used for all
the simulations. The reference values for homogeneous properties were taken from Table 1. We
also took Dfi = 1.84× 10−3, ui = vi = 0 for all i= 1, . . . , Nc for the simulations of homogeneous
tumors. The labels in Fig. 2B indicate which properties are heterogeneous in the simulations.
Consistently with Fig. 2A, we observe that heterogeneity of the growth rates among different
subpopulations makes a dramatic difference in the total number of cells. We observe that when
the pi’s are heterogeneous, the tumor always grows faster, but the increase in global growth is
approximately twofold higher when the gi’s are also heterogeneous. Heterogeneity in the kfi ’s
seems to have a negative influence in global growth, which is almost negligible for tumors
with homogeneous growth rates and more significant when the growth rates are heterogeneous.
Finally, heterogeneity in motility properties has a positive effect on the overall tumor growth, but
in contrast with what happens with the pi’s, the effect is approximately twofold stronger when
the growth rates are homogeneous.

(d) Dynamics of individual clonal subpopulations
The previous results clearly show that growth rate heterogeneity plays the most significant role
in the overall tumor growth. Here, we analyze in more detail how different clones compete with
each other for space. We performed two simulations with Nc = 20 clonal subpopulations. The
cells motility properties and initial distribution of subpopulations (kfi and pi) were assumed
to be heterogeneous. In the first simulation (shown in Fig. 3) we took gi = g= 4.82 y−1 for
all i= 1, . . . , Nc, while in the second one (Fig. 4) we used Eq. (3.1) to define a tumor with
heterogeneous growth rate. Figs. 3 and 4 are arranged identically. Panels A, B and C show
snapshots of ρ=

∑Nc
i=1 ρi at times t= 54.75 d, t= 182.5 d and t= 365 d, while panel D shows

the time evolution of the total number of tumor cells. Panels E, F and G show the time evolution
of the different subpopulations. The semitransparent colored regions represent the areas in which
a particular subpopulation has a cell density larger than k/10. The time evolution of the number
of cells for each subpopulation is represented in panels H, utilizing the same colors used in E-
G. The comparison reinforces the idea that heterogeneous proliferation rates lead to significantly
larger overall tumor growth. This is apparent by comparing panels C and D in Figs. 3 and 4. A
comparison of panels E-H suggests that heterogeneous tumors grow through a winner-takes-all
process in which the subpopulation with the highest proliferation rate would take up most of
the space at long time scales. Fig. 4H shows that the subpopulation represented by i= 2, which
happens to be the one with the largest proliferation rate, is the dominant one at the end of the
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Figure 3: Growth of a tumor with Nc = 20 clonal subpopulations. The motility properties and
initial distribution of cells are heterogeneous across different subpopulations, but the growth rates
are homogeneous; A-D. Growth dynamics of the overall tumor; E-H. Dynamics of the individual
subpopulations.

simulation, even though its initial cellular density was smaller than those of other subpopulations;
see inset.

The situation is more complex for the homogeneous tumor; see Fig. 3H. The proliferation rates are
all identical in this case, and the initial cellular density does not seem to play a critical role, either.
For example, the initial cellular density of subpopulation i= 5 and i= 20 are indistinguishable
(see inset), but i= 20 grows faster. Also, the initial cellular density of i= 18 is slightly lower
than that of i= 5, but at the end of the simulation i= 18 is the dominant subpopulation. In
the homogeneous tumor, the dominant subpopulation seems to be established in a complex
manner that involves heterogeneity in the parameters kfi ,Di and pi simultaneously. In particular,
heterogeneity in the parameter pi may create local differences in the available space for growth,
defined mathematically as 1− ρ/k, which we believe produces similar results to the spatial
dependence of the carrying capacity k studied in [20].

4. Discussion
Although most tumors are heterogeneous, the origin and consequences of heterogeneity remain
poorly understood. This paper studies the role of heterogeneity on tumors that grow competing
for space in the host tissue. Our model predicts that a tumor composed by multiple clonal
subpopulations with heterogeneous growth rates will grow much faster than a homogeneous
tumor. The model also indicates that an aggressive subpopulation may become even more
aggressive when it grows with a non-aggressive one. Also, a non-aggressive subpopulation
becomes even less aggressive when it grows with a more aggressive cell type.

We believe our model can be particularly useful to study the effect of therapy on tumor
growth [31]. One of the usual limitations of cytotoxic chemotherapies when they are used to treat
heterogeneous tumors is that they are effective only on some subpopulations of the tumor. Our
model indicates that if we apply a therapy to a heterogeneous tumor and the drug is effective only
on the less aggressive cell types, the overall effect may be detrimental for the patient in the long
term because the space freed up by the killed non-aggressive cells will be eventually repopulated
by more aggressive cells that grow faster.

Data Accessibility. The article has no additional data.
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Figure 4: Growth of a tumor with Nc = 20 clonal subpopulations. The motility properties,
proliferation rates and initial distribution of cells are heterogeneous across different
subpopulations; A-D. Growth dynamics of the overall tumor; E-H. Dynamics of the individual
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