Mechanistic modelling of PSA dynamics shows potential for personalised
prediction of radiation therapy outcome
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Abstract

External beam radiation therapy is a widespread treatment for prostate cancer. The ensuing patient follow-up is based on the
evolution of the Prostate Specific Antigen (PSA). Serum levels of PSA decay due to the radiation-induced death of tumour
cells and cancer recurrence usually manifests as a rising PSA. The current definition of biochemical relapse requires that PSA
reaches nadir and starts increasing, what delays the use of further treatments. Also, these methods do not account for the
post-radiation tumour dynamics that may contain early information on cancer recurrence. Here, we develop three mechanistic
models of post-radiation PSA evolution. Our models render superior fits of PSA data in a patient cohort and provide a biological
justification for the most common empirical formulation of PSA dynamics. We also found three model-based prognostic variables:
the proliferation rate of the survival fraction, the ratio of radiation-induced cell death rate to the survival proliferation rate,
and the time to PSA nadir since treatment termination. We argue that these markers may enable the early identification of
biochemical relapse, which would permit physicians to subsequently adapt patient monitoring to optimise the detection and
treatment of cancer recurrence.

Subject areas: Biomathematics.
Keywords: prostate cancer, prostate specific antigen (PSA) dynamics, external beam radiation therapy, mathematical oncology.

1 Introduction

Prostate cancer (PCa) is a major health burden among ageing
men worldwide [1]. External beam radiation therapy (EBRT)
is a feasible treatment for patients of all ages and PCa risk
groups [2—4]. In EBRT, radiation is delivered from an out-
side beam aiming at disrupting the DNA in the tumour cells’
nuclei, which forces them to undergo programmed-cell death
due to excessive DNA damage accumulated from both radi-
ation and the previous genetic alterations that generate and
support PCa [5]. EBRT requires a precise planning of the
radiation dose quantity, distribution over the prostate organ,
and temporal delivery [2, 3]. Classical EBRT plans deliver a
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total dose of 74 to 80 Gy in 2 Gy fractions. Moderately hy-
pofractionated plans (60 to 66 Gy delivered in 3 Gy fractions)
are also used after recent clinical trials that have shown that
they are non-inferior to conventional EBRT [3, 6]. Neoadju-
vant and adjuvant androgen deprivation therapy (ADT) may
improve EBRT performance, but can also provoke bother-
some side effects (e.g., low libido, impotence, anemia, osteo-
porosis, depression). Hence, combination of EBRT with ADT
is only recommended for intermediate-risk PCa (4 to 6 mo)
and mandatory for high-risk tumours (2 to 3 yr) [3]. Local
recurrence after EBRT can be managed with radical prosta-
tectomy, cryoablation, brachytherapy, and high-intensity fo-
cused ultrasound, while patients with advanced PCa are usu-
ally prescribed ADT, chemotherapy, or a combination of both
2, 3].



Patient monitoring after conclusion of EBRT largely relies
on Prostate Specific Antigen (PSA) levels [2, 3], which is a
common biomarker whose levels in blood tend to rise during
PCa [2, 3]. Radiation-induced tumour cell death causes PSA
to decrease after EBRT, so a continued rise in PSA may be
indicative of PCa recurrence due to thriving cancerous cells
surviving radiation therapy. However, PSA may also be af-
fected by natural background fluctuations (e.g., diet, lifestyle),
a continuous smooth increase due to prostate enlargement
caused by benign prostatic hyperplasia (BPH), and sudden
rises due to ceasing ADT or to the so-called PSA bounce (a
transient rise of at least 0.1 to 0.5 ng/mL usually within 24
mo after EBRT [7, 8]). Therefore, physicians require robust
criteria to identify when a rise in PSA corresponds to a PCa
recurrence. Initially, biochemical relapse after EBRT was de-
fined as three consecutive rises of PSA after the minimum
post-EBRT PSA value registered for a given patient (PSA
nadir) [9]. Currently, a superior criterion defines biochemical
relapse as an increase larger than 2 ng/mL over PSA nadir
[10], which correlates better with clinical recurrence and pa-
tient survival. The former three-point rule is still used as a
warning sign in patient monitoring.

However, these criteria of biochemical relapse detection re-
quire PSA to reach a minima and start increasing, which may
result in delays in the application of further treatments. Also
this relapse measure does not inform about the expected PCa
prognosis. The definition of early markers of PCa recurrence
and malignancy would enable physicians to successfully con-
trol the disease with an appropriate salvage treatment. This
is the purpose of multiple studies aimed at analysing PSA
dynamics after EBRT. A high value of PSA nadir, a short
time to reach PSA nadir after EBRT termination, and short
PSA doubling time (or high PSA velocity) during biochemi-
cal relapse have been correlated with metastatic disease and
reduced patient survival [8, 11-14]. While these studies fo-
cus on long-term PSA dynamics, only a few investigations
have focused on analysing the PSA evolution shortly after
EBRT conclusion. A rising PSA trend, high PSA levels, or a
rapid PSA decline shortly after EBRT have been linked with
poorer prognosis and patient survival [15-17]. To gain further
insight, post-EBRT PSA dynamics has also been quantita-
tively described by fitting mathematical formulas to PSA
longitudinal data in different patient cohorts [18-23]. PSA
decline after EBRT in cured patients is usually described
with an exponential decay (possibly added to a constant or a
slowly increasing linear term accounting for benign growth),
while a biexponential formula best represents the PSA de-
crease and posterior rise in biochemically-relapsing patients
[18—21]. This biexponential formula has also been leveraged
in all cases, such that parameterisation using PSA data for
cured patients will cause the rising branch to vanish [22, 23].
Still, the choice of the mathematical formula in the vast ma-
jority of quantitative studies on PSA dynamics only relies
on the empirical observation of PSA temporal trends follow-
ing EBRT and does not account for the underlying tumour
dynamics, which is ultimately regulating the PCa recurrence.

Here, we present a patient-specific mathematical formula-
tion of PSA dynamics based on biological mechanisms de-
scribing tumour response to radiation. Mechanistic mathe-
matical modelling of cancer and response to treatments have
improved the understanding of tumour growth and can as-
sist physicians in clinical decision-making on a personalised
basis [24-29]. Some mechanistic modelling studies have ex-
plored the connection between tumour and PSA dynamics in
untreated PCa growth [30-33], under hormonal therapy [34—
38], and after radical prostatectomy [39, 40]. Radiation effects
is a rich topic in the literature of computational modelling
of cancer [25—28, 41-45]. Several mathematical models have
been proposed to describe the cytotoxic effect of radiation

on tumour cells, but the linear-quadratic model is arguably
the most used formulation [25-27, 41-43, 46, 47]. However,
the linear-quadratic model inherently assumes a relatively
fast response to radiotherapy and hence this paradigm works
better in rapidly growing tumours (e.g.: glioblastoma multi-
forme). For slowly growing tumours, such as low-grade glioma
or PCa, the late response to radiation requires to account for
repopulation of tumour cells, i.e., the underlying tumour dy-
namics [28, 48, 49]. Although previous modelling efforts have
explored alternative formulations of radiation effects on PCa
[48-51], mechanistic mathematical descriptions of the com-
plete evolution of prostatic tumour growth and PSA after the
delivery of radiotherapy are lacking. Our mathematical for-
mulation addresses this challenge with minimal assumptions
on radiation effects. By coupling serum PSA to the evolution
of irreversibly damaged tumour cells due to radiation and
the survival fraction, we analytically derive explicit formulas
for PSA dynamics featuring different hypotheses on the ra-
diotherapy plan. We show that these models provide superior
fits of PSA data in a patient cohort and we identify poten-
tial model-based markers of biochemical relapse. Finally, we
discuss our models and results in light of previous studies in
the literature.

2 Methods

2.1 Patients

Anonymised patient data were obtained from Centro On-
colégico de Galicia (COG, A Coruia, Spain). Ethical ap-
proval was obtained from Comité Autonémico de Etica da
Investigacién de Galicia (Santiago de Compostela, Spain).
Informed consent was not required for the patient data used
in this study.

A total of 1588 men diagnosed with localised PCa con-
firmed at COG (stage T1 to T2, Gleason score < 8) and
treated with EBRT in this institution between 2009 and
2015 were considered for inclusion in the study. Inclusion
criteria were: first-line treatment of EBRT delivered only at
COG and more than 2 years of PSA monitoring with at least
5 PSA values after conclusion of EBRT. Exclusion criteria
were: a previous neoplasic disease prior to PCa, any other
treatment for PCa (e.g., ADT, radical prostatectomy, radio-
therapy, chemotherapy), and EBRT without radical intent.

A total of 71 patients satisfied the inclusion criteria and
did not qualify for any of the exclusion criteria. The following
information was then collected for each patient: age at EBRT,
summary of relevant clinical history, digital rectal examina-
tion reports, PSA at diagnosis (P;), biopsy reports, Gleason
score, imaging reports, TNM stage, the original EBRT plan,
dates of EBRT initiation and ending, and history of PSA
data.

EBRT was either conventional (64 patients, 2 Gy/dose)
or hypofractionated (7 patients, 3 Gy/dose). In both cases,
the original EBRT plan consisted of series of five daily doses
delivered on weekdays followed by two days of rest during the
weekend. For simplicity, in this preliminary study we pooled
all patients together without differentiating radiation plans.
Seven patients experienced biochemical relapse (either three
consecutive increasing values of PSA or an increase of more
than 2 ng/mL over PSA nadir), of which four had reported
evidence of PCa recurrence. We will refer as cured patients to
those patients who did not show biochemical recurrence after
EBRT. Table 1 summarises the characteristics of the patient
cohort. Additionally, 43 cured patients and 3 biochemically-
relapsing patients had T1 cancer, whereas 21 cured patients
and 4 biochemically-relapsing patients had T2 cancer.



Table 1. Characteristics of the patient cohort. IQR: interquartile range.

All patients (n=71)

Cured patients (n=64)

Relapsing patients (n=7)

Characteristic
Median IQR Range Median IQR Range Median IQR Range
Clinical
Py (ng/mL) 6.8 (4.9, 9.1) (0.6, 25.4) 6.6 (4.9, 8.9) (0.6, 18.9) 10.1 (5.6,14.7) (3.8,25.4)
Gleason score 6 (6, 7) 4, 7) 6 (6, 7) 4,7) 6 6, 7) 6, 7)
Age at EBRT (yr) 76 (73, 78) (63, 82) 76 (73, 78) (63, 82) 74 (71, 78) (68, 80)
Radiation
Total dose (Gy) 76 (74, 76) (60, 78) 76 (74, 76) (60, 78) 76 (76, 76) (76, 78)
Doses 38 (37, 38) (20, 39) 38 (37, 38) (20, 39) 38 (38, 38) (38, 39)
EBRT duration (mo) 1.9 (1.8,2.1) (0.9, 3.9) 1.9 (1.8,2.1) (0.9, 3.9) 2.0 (2.0,35) (1.9, 3.7)
PSA history
Number of PSA values
Total (7, 10) (6, 15) 9 (8, 10) (6, 15) 8 (7,9) (6, 10)
Pre-EBRT 1 (1, 2) (1, 7) 1 (1, 2) (1, 7) 1 (1,2) (1,2)
Post-EBRT (6, 8) (5, 12) 7 (6, 8) (5, 12) 6 (5, 8) (5,9)
Follow-up time (mo)
Total 56.8 (51.7,59.4) (38.3, 69.5) 56.7 (51.4, 59.3)  (40.8, 69.5) 58.2 (54.3, 61.1)  (38.3,66.4)
Pre-EBRT 8.9 (6.3, 13.6) (2.2, 27.8) 9.0 (6.3, 13.6) (2.2, 27.8) 8.9 (7.4, 15.2) (5.3, 20.8)
Post-EBRT 43.4 (36.9, 47.8) (27.9, 59.7) 42.7 (37.0, 48.5) (27.9, 59.7) 43.5 (37.6, 46.7)  (29.2, 53.6)

2.2 Mathematical models
2.2.1 General formulation

Serum PSA P(t) is generally assumed to be proportional to
the prostatic tumor mass and it is known to approximately
follow an exponential trend in time [2, 3, 30-32]. Hence, if
we denote the number of tumour cells by N(t), then

t t
P(t) = pN(t) = pNoe™ = Pye™n , (1)

where p is a proportionality constant, 7,, is the characteristic
time of net proliferation, and No = N(to) and Py = P(to)
are the population of tumour cells and serum PSA at a time
to, respectively.

EBRT for PCa consists of ng radiation doses delivered at
times {ti},_; , . We will assume that all doses are equal,
which applies to our patient cohort. After the delivery of the
k-th radiation dose at time ¢, we assume that a fraction of
tumour cells Dy(t) is irreversibly damaged and undergoes
cell death after a characteristic time 74, while the remainder
fraction of tumour cells S (¢) survives and continues to grow
with a characteristic time of net proliferation 7.

The dynamics of Dy (t) and Sk (t) are given by the following
set of ordinary differential equations,

Sk _ Sk _

T Sk(tk) = RaSk—1(tx), (2a)

dD D -

Tk =—=%, Diltr) = (1= Ra)Sk—1(ts), (2b)
t Td

for each interval ¢, <t < tx+1 and where So(t1) = N(t1) =
Noetl/T", Do (t1) =0, and R4 is the dose-dependent fraction
of surviving cells after the delivery of the k-th radiation. We
do not assume any specific formulation for R4, such as in most
literature of computational modeling of radiation effects [25-
27, 41-43, 46, 47]. Instead, we directly compute R4 from
PSA data, making the model more flexible and easier to
parametrise. As each patient always receives the same dose
per session, it suffices to compute one value of R4 per patient.
The solutions to Egs. (2) are

Sk(t) = Rdsk—l(tk)e%7 (3a)
Di(t) = (1— Rd)skfl(tk)e‘t:? ; (3b)

for tx <t <tps1.

Let Dy(t) be the accumulated population of irreversibly
damaged tumour cells due to the radiation doses already de-
livered for tx <t < tg41. Its dynamics satisfies the equation

Dy (t) =

Dy—1(t) + Di(t), (4)

where Dg(t) = 0. Then, the population of total cancerous
cells after the k-th radiation dose N (t) and the correspond-
ing serum PSA concentration Py (¢) can be computed as

Ni(t) = Sk(t) + Di(t), (5a)
Py(t) = pNk(t) = p (Sk(t) + Di(t)) (5b)

where
Sk(t) = RdSk,l(tk)e%7 (63)
Di(t) = Dp_1(t) + (1 — Rd)Sk—l(tk)ei%7 (6b)

for tp <t < tg41.

Using Egs. (6) recursively stepwise from the first radia-
tion dose, we obtain the following explicit formulas for the
population of proliferative and damaged tumour cells

Sk(t) = RENobye7s (7a)
Di(t) = (1 — Ry) ZRZ 1t (F472) ) Nygyone 7,
(7b)
11
for tp, < t < tg+1 and where 61 = etl(Tﬂ TS) and 0> =
1 1
e (?+7) Hence,
kLt
Pk(t) = Pyb1 | Rge™s +
k 1 1 t
(1 - Raq) ZRQ*%“*“WH*?) fae 7 |, (8)
i=1

for t, <t < tr+1 and where we have used that Py = pNo.



2.2.2 Periodic dose model

In the particular case in which the radiation doses are equis-
paced in time, ty = t1 + (k — 1)7.. Then, Eq. (7b) simplifies
to

|- gh(F4)

1— Ry ()

Dr(t) = (1 — Rg) Nob102e 7a,  (9)

and hence we may rewrite Eq. (8) as
et
Pk(t) = Py6, Rge™s +

— Rke wre(E+35)

1— Ry ()

(1— Ra)> Bre"7a |, (10)

for ti, <t < try1 (see details in Annex S2).

2.2.3 Single dose model

Alternatively, we may assume that the whole radiation treat-
ment is delivered at a certain time tp. Then, S(¢) and D(t)
are given by

S(t) = RDN091€i7 (11a)
D(t)=(1- RD)N0919267%, (11b)

where Rp is the fraction of surviving cells after the total
1

11 E
treatment dose, 6; = etD(T" TS) and 07 = etD(TS +7d). By
using Egs. (5) we get

P(t) = Py0, |:FiD€é —+ (1 — RD)@QE_%} . (12)

2.2.4 Non-dimensional parameters and prediction
of PSA nadir

After the completion of radiotherapy, i.e., for ¢ > t,,, the
evolution of PSA will be given by Eq. (8), which for simplicity
we will denote by P(t):

P(t) = Py6, RZdE%—‘r

(1—Ry) <ZRZ 1 it (L )) QQe—TZ]. (13)

Let us define the non-dimensional counterparts of P and time
t respectively as P = P/(PyR};*61) and £ = t/74. Then, we
may rewrite Eq. (13) in non-dimensional form as

y ma; (1—Ra) (= i1 (F—t) (= +2) —f
P(t) =e7s +R7;‘d ZRd e s 7’ | Oze

=1

=ty aﬁgeﬂg, (14)

where we have introduced two non-dimensional parameters

ng
o (1Zgn§d) (Z i1+ Td)) . (15a)
d

i=1
Td
= —. 15b

p== (15b)
While a may represent the efficacy of the radiation plan,
[ controls the dynamics of the tumour cell populations and
PSA after radiation (see Section 4.1). Thus, these parameters
may hold predictive value, which will assess in this work.

Following a similar procedure we may also obtain the ex-
pressions of « and 8 for both the periodic dose model

1 1
e (5+3)

1—R4)1-— T,
_ — a) ., B= ?d’ (16)
d 1— Rdeﬂ«(;-‘-a) s
and the single dose model:
(1-Rp) Td
= = —. 17
2 = (7)

Additionally, the derivative of Eq. (14) with respect to £
provides the non-dimensional PSA velocity:

— .~ dP(D)

orlt) ==
According to their definition «, 02, and 3, are positive quan-
tities. When a2/ > 1, then P decreases for at least some
time after radiotherapy. Then, we can compute the time to
PSA nadir, t,, by solving @(fn) =0 for ¢, and substituting
the definition of 62 (see Section 2.2.1), yielding

In (a/B)
RENE 1

Hence, the time to PSA nadir P, since the completion of
EBRT at time t,, is given by At, =t, — ¢

= ,Beﬁi — afze . (18)

tn =1t1 + Ta

ng-

2.2.5 Model selection for analysis and further as-
sumptions

Radiation plans may experience delays due to treatment side-
effects, holidays, machine routine maintenance, or machine
failures. The reported values of EBRT duration in Table 1
suggest that these interruptions were common in our patient
cohort. In addition, the information about EBRT in our pa-
tient dataset consists of the dates of treatment initiation and
termination, the radiation dose, and the number of doses.
This input information is not compatible with an accurate
use of our general model (Section 2.2.1), which would require
the exact dates of EBRT sessions. Thus, in this work we will
focus our analysis on the periodic dose model (Section 2.2.2)
and the single dose model (Section 2.2.3). The possible differ-
ence in results between both models, if any, would be related
to treatment duration effects. Annex S1, Table S2, and Fig.
S1 show that the periodic dose model is virtually equivalent
to the general formulation, and we will analyse the single
dose model as a feasible simplification of both the general
and periodic dose models.

We will further assume that EBRT does not change the
proliferation rate of surviving cells, so that 7, = 75 and
61 = 1. This assumption is common in the literature [26-28],
contributes to the simplicity of our models, and facilitates
parameterisation, especially in those patients with a limited
number of PSA values before EBRT. Additionally, we choose

= 0 and we will assume that ¢tp is the date of EBRT
initiation in the single dose model.

2.3 Statistical methods

We leveraged nonlinear least squares using the trust-region
method to estimate the parameters of our models in a patient-
specific manner. Table 2 shows the initial values for the al-
gorithm, the lower bounds, and the upper bounds used to fit
the single and the periodic dose models for each patient. We
assessed the goodness of fit with the sum of squared errors
(SSE), the R?, the adjusted R? with respect to the degrees-
of-freedom in error (1’?2)7 and the root mean squared error
(RMSE).

We used the Wilcoxon rank-sum test (WRST) to iden-
tify potential markers of biochemical relapse by analysing



Table 2. Initial values and bounds for models’ parameters. P(1) is
the first PSA value available for each patient.

Parameter Initial value Lower bound Upper bound
Py (ng/mL) P(1) 0 50
Ry 0.9 0 1
Rp 0.9™d 0 1
Ts (mo) 50 0.5 500
T4 (mo) 2 0.5 500

whether model parameters, non-dimensional parameters, PSA
nadir, and time to PSA nadir since EBRT completion dif-
fered between cured and biochemically-relapsing patients. We
also tested the goodness-of-fit statistics to analyse whether
the estimation of PSA dynamics was more accurate in ei-
ther patient subgroup. Additionally, we compared the values
of model parameters and model-derived quantities obtained
with each PSA dynamics formulation. We defined R = R}}?
in the periodic dose model and R = Rp in the single dose
model to compare the values of R4 and Rp respectively. This
study was performed both globally by using the Wilcoxon
rank-sum test and patient-wise by using the Wilcoxon signed-
rank test. We used the same tests to compare the goodness-
of-fit statistics produced by each mathematical model, and
hence to determine whether one of them provided a superior
fit. The level of significance was set at 5% for all statistical
tests. Table S1 summarises all the quantities of interest for
statistical analysis.

We constructed the receiver operating characteristic (ROC)
curves of the quantities that changed significantly between
cured and biochemically-relapsing patients to assess their
ability to classify patients in either group. We iteratively
varied a threshold for each of these quantities independently
across the whole range of values provided by each model.
Threshold stepping was determined as the difference between
the maximum and the minimum value divided by 1000. For
each threshold, we computed sensitivity, specificity and accu-
racy. We also computed the area under the ROC curve (AUC)
by using the trapezoidal rule and the optimal performance
point by using Youden’s index.

Calculations were performed in MATLAB (Release
R2017b, The Mathworks, Inc., Natick, Massachusetts, US).
Parameter estimation was performed with the Curve Fitting
Toolbox. Statistical tests were run with the Statistics and
Machine Learning Toolbox. We also computed the 95% con-
fidence bounds for each model fit with the Curve Fitting
Toolbox.

3 Results

3.1 Model fitting

The periodic dose model and the single dose model succeeded
in fitting individual patient PSA data. Fig. 1 portrays the
results for both models corresponding to two cured patients
and two patients with biochemical relapse. Table 3 shows
that model fitting was extraordinarily precise with both PSA
dynamics models for the vast majority of patients. We ob-
served that superior fitting results were obtained when several
PSA data were distributed in an approximately even manner
right before and after EBRT (see Fig. S2). Conversely, few
pre-EBRT PSA values or few post-EBRT PSA measurements
close to treatment termination could hinder the accurate re-
production of PSA dynamics (see Fig. S3). High fluctuations
in PSA data always worsened the goodness of fit (see Fig.
S4).

We did not identify any significant difference between
the goodness-of-fit statistics for cured and biochemically-

relapsing patients with any of the two PSA dynamics models
in two-sided Wilcoxon rank-sum tests (see Table 3). Neverthe-
less, we observed that our models tended to reproduce PSA
dynamics with slightly superior accuracy for the cured pa-
tients of this cohort (see Table 3). The goodness-of-fit statis-
tics of each model did not globally differ neither in the whole
cohort nor in any patient subgroup according to two-sided
Wilcoxon rank-sum tests (see Table 4). However, two-sided
Wilcoxon signed-rank tests identified significant differences in
the accuracy of the fit obtained with each model for each pa-
tient (see Table 4). Corresponding one-sided Wilcoxon signed
rank tests showed that the single dose model produced lower
SSE (p = 1.62-107*) and RMSE (p = 2.20-10™%), as well as
higher R? (p = 1.08-107%) and R? (p = 1.19-107*). We ob-
served the same results for the subgroup of cured patients (see
Table 4), where one-sided tests also demonstrated that the
single dose model rendered lower SSE (p = 3.62 - 10™*) and
RMSE (p = 4.72-107%) as well as higher R? (p = 2.32-107%)
and R? (p = 2.38-107*). No model was found to provide a sig-
nificantly superior accuracy in the subgroup of biochemically-
relapsing patients (see Table 4).

3.2 Model-based predictors of biochemical re-
lapse

The values of the parameters Py, Rq or Rp, 7s, and 74 ob-
tained with the periodic dose model and the single dose model
are summarized in Table 5. We also used them to compute
each model’s non-dimensional parameters («, 3), PSA nadir
(Pp), and time to PSA nadir since EBRT termination (At,)
for each patient, also reported in Table 5. Py was typically
close to the first PSA value available for each patient, but it
was not necessarily coincident (see Fig. 1). The estimation of
R4, Rp, and 74 provided values inside the parametric domain
defined in Table 2 for the vast majority of patients. However,
we obtained 75 ~ 500 (upper bound) for many patients, es-
pecially with the periodic dose model. This situation only
occurred for cured patients, for whom larger values of 75 are
expected. Indeed, both large 75 and very small remnant pro-
liferative tumour cell populations after EBRT lead to similar
results, i.e., no tumour regrowth for the time scales studied
leads to some uncertainty in the parameter values. However,
this fact did not compromise the accuracy of the model fitting
to the data (see Table 3 and Fig. S5).

For the periodic dose model, two-sided Wilcoxon rank-
sum tests identified 75, 8, and At, to be significantly dif-
ferent between cured and biochemically-relapsing patients
(see Table 5). The matching one-sided tests revealed that
biochemically-relapsing patients had smaller 75 (p = 4.39 -
107), larger 8 (p = 6.17 - 107*), and shorter At, (p =
0.0123). For the single-dose model, we also found 75, 3, and
At,, to significantly differ between cured and biochemically-
relapsing patients in two-sided Wilcoxon rank-sum tests (see
Table 5). Again, the corresponding one-sided tests showed
that biochemically-relapsing patients exhibited shorter 75
(p = 4.70 - 10™%), higher 8 (p = 8.61 - 10™*), and smaller
Aty (p =0.0111). Fig. 2 depicts the boxplots corresponding
to the values of 75, 3, and At, obtained with the periodic
dose model and the single dose model for the whole cohort,
cured patients, and biochemically-relapsing patients. These
boxplots show how 75, 8, and At,, cluster around different
values in cured and biochemically-relapsing patients. Among
the other quantities of interest, the non-dimensional parame-
ter a was close to the significance threshold for both models,
as well as Rp and P, in the single dose model.

Except for Py, the two-sided Wilcoxon signed-rank tests
showed that the values of the remainder parameters, the non-
dimensional parameters, the PSA nadir, and the time to PSA
nadir obtained with either PSA dynamics model for each
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Figure 1. Curve fitting results for two cured patients (a,b) and two patients with biochemical recurrence (c,d) using both the periodic dose model
(solid green line) and the single dose model (dashed blue line). For each patient, each row shows respectively the fit provided by the periodic dose
model, the fit obtained with the single dose model, and a comparison of the fits computed with either model. The shaded areas along the model fits
in the first two subfigures of each row depict the corresponding 95% confidence interval of the model fit. PSA values are depicted as red bullets and
the duration of EBRT is shaded in light gray.



Table 3. Goodness-of-fit statistics in the patient cohort. The last column provides the p-values of the two-sided Wilcoxon rank sum tests (WRST)
searching for significant differences in these statistics between the subgroups of cured and biochemically-relapsing patients. The level of significance

was set at p < 0.05. IQR: interquartile range.

Statistic All patients (n=71) Cured patients (n=64) Relapsing patients (n=7) WRST
Median IQR Range Median IQR Range Median IQR Range p
Periodic dose model
SSE (ng/mL)2 0.15 (0.06, 0.81) (0.00,68.23) 0.15 (0.05, 0.68) (0.00, 68.23) 1.27 (0.16, 1.69) (0.04, 6.79) 0.121
R2 1.00 (0.98,1.00) (0.69,1.00) 1.00 (0.98, 1.00) (0.69, 1.00) 0.99  (0.98, 1.00) (0.98, 1.00) 0.401
R2 0.99 (0.97,1.00) (0.51,1.00) 0.99 (0.98,1.00) (0.51,1.00) 0.98 (0.97, 0.99) (0.96, 1.00) 0.293
RMSE (ng/mL) 0.19 (0.12,0.42) (0.01,3.72) 0.18 (0.12,0.38) (0.01,3.72) 0.50 (0.21, 0.82) (0.14, 1.06) 0.063
Single dose model
SSE (ng/mL)? 0.15 (0.04,0.70) (0.00, 68.24) 0.14  (0.04, 0.57) (0.00, 68.24) 1.19  (0.16, 2.24) (0.04, 6.09) 0.112
R2 1.00  (0.99,1.00) (0.70,1.00) 1.00 (0.99, 1.00) (0.70, 1.00)  0.99  (0.99, 1.00) (0.97, 1.00) 0.284
R2 0.99 (0.98,1.00) (0.52,1.00) 0.99 (0.98,1.00) (0.52,1.00) 0.98 (0.97, 0.99) (0.95, 1.00) 0.228
RMSE (ng/mL) 0.19 (0.11,0.37) (0.01,3.72)  0.17 (0.09, 0.35) (0.01,3.72) 0.49 (0.21, 0.81) (0.14, 1.01) 0.063
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Figure 2. Boxplots of the potential patient classifiers identified in the statistical analysis: (a) the characteristic time of tumour cell proliferation 75,
(b) non-dimensional parameter 3 = 74/7s, and (c) the time to PSA nadir since EBRT termination At,. The first and the second row correspond to
the results obtained with the periodic dose model (green) and the single dose model (blue), respectively. Outliers are depicted as hollow gray circles.

patient were significantly different within the whole cohort
and the subgroup of cured patients (see Table 6). Corre-
sponding one-sided tests in the whole cohort revealed that
the single dose model provided smaller R (p < 1-1079),
Ts (p = 5.47-107°), a (p < 1-107%), and P, (p = 0.004)
as well as larger 74 (p < 1-107%), 8 (p < 1-107°), and
Aty (p < 1-107%). Within the subgroup of cured patients,
one-sided Wilcoxon signed-rank tests also revealed that the
single dose model produced lower values of R (p < 1-107°),
Ts (p=2.23-107%), o (p < 1-107%), and P, (p = 1.58-107%)
as well as larger values of 74 (p < 1-107%), 3 (p < 1-1079),
and At,, (p < 1-107°%). Within the subgroup of biochemically-
relapsing patients, only R, 74, 8, and a were found to signif-
icantly vary with either model for each patient in two-sided
Wilcoxon signed-rank tests (see Table 6). Corresponding one-
sided tests showed that the single dose model produced lower
values of R (p = 0.023) and « (p = 0.008) as well as larger val-
ues of 74 (p = 0.016) and S (p = 0.016). However, the global
comparison of the values provided by either model using two-
sided Wilcoxon rank-sum tests did not find any significant
difference neither within the whole cohort nor within any of

the patient subgroups (see Table 6).

3.3 ROC curves

Fig. 3 shows the ROC curves for the three quantities that
were significantly different between the groups of cured and
biochemically-relapsing patients: 75, 8, and At,. The AUC
and optimal performance point obtained for each quantity
and model are shown in Table 7. The two ROC curves for
each classifier were very similar and provided comparable
AUC values and optimal points of performance, especially
for 75. This suggests the insensitivity in the accuracy of these
classifiers with respect to the choice of mathematical model
to fit PSA data.

The shape of the ROC curves, the AUC, and the balance
between optimal sensitivity and specificity showed that 7
and 8 rendered almost equally outstanding results and that
both performed better than At,,, which only showed a fairly
satisfactory behaviour. Parameter 75 provided the highest
AUC and optimal sensitivity. While 8 provided a slightly
lower AUC than 7, it also showed a better trade-off between



Table 4. p-values obtained for the two-sided statistical tests to search
for significant differences in goodness of fit between the periodic dose
and single dose models. Results are shown for the whole cohort and
for the subgroups of cured and biochemically-relapsing patients. The
significance level was set at p < 0.05. Significant p-values are bold-
faced.

Patients
Statistic All Cured Relapsing
(n=T1) (n=64) (n=7)

Wilcoxon signed-rank tests

SSE 3.20-10"4 7.15-10"4 0.297

R2 2.14-10"4 4.58-10~4 0.297

R? 2.35.10"4 4.70-10"4 0.297

RMSE 4.35-10~4 9.32.1074 0.297
Wilcoxon rank-sum tests

SSE 0.642 0.618 0.805

R2 0.689 0.715 0.620

R2? 0.680 0.673 0.710

RMSE 0.665 0.629 0.805

sensitivity and specificity at optimal performance point. At,,
was found to provide the highest optimal specificity, but the
corresponding optimal sensitivity and AUC were remarkably
lower with respect to those of 75 and 3. All potential classi-
fiers showed similar accuracy at optimal performance point.
However, as the prevalence of biochemical relapse was low in
our cohort (7 out of 71 cases), the accuracy of classifiers was
largely driven by the specificity, almost regardless of sensi-
tivity (see Table 7). Hence, At, was also found to provide a
slightly higher accuracy at optimal performance point.

4 Discussion

PSA dynamics is used routinely in patient follow-up after
EBRT. The time evolution of this biomarker reflects the un-
derlying tumour response to radiation, hence providing a
means to detect PCa recurrence. Previous research efforts
to quantitatively describe PSA dynamics found that a bi-
exponential function best fitted PSA data from both cured
and biochemically-relapsing patients [18-23]. In this work,
we present mathematical models describing the biological
mechanisms that justify the suitability of such formulation
to describe post-EBRT PSA dynamics. Our models always
lead to an explicit biexponential formula of PSA dynamics
relying on the coupled dynamics of the radiation-induced
irreversibly damaged tumour cell fraction and the surviving
tumour cell population. Consequently, we provided a biophys-
ical meaning for the parameters appearing in the empirical
biexponential formulations.

4.1 A robust formulation of PSA dynamics of-
fering new insights in radiation effects on
PCa

The two models studied here were based on the same bio-
logical assumptions with the only difference of the periodic
dose model accounting for the details of the treatment course
and the simpler single dose model based on the simplifying
assumption of all the fractions being given in a single equiva-
lent dose. Both models achieved a highly remarkable accuracy
in the fitting of patient’s PSA longitudinal data in our co-
hort (see Table 3). We observed that even a limited amount
of PSA data can provide an excellent fit with both models
as long as (1) sufficient PSA values are evenly distributed
closely around EBRT and (2) they do not exhibit large fluc-
tuations (see Figs. S2-S4). Despite its apparent simplicity,
our results show that the single-dose model suffices to accu-
rately describe PSA dynamics before and after EBRT, even

providing superior fittings than the more complex periodic
dose model (see tables 3 and 4). This also means that the
single dose model is an excellent surrogate for the general
model in Eq. (8), which is virtually equivalent to the periodic
dose model (see Fig. S1 and Table S2). This extraordinary
balance between simplicity and accuracy is an appealing fea-
ture that facilitates forthcoming research on PSA dynamics
and its actual clinical use.

By formally analysing our models, we found that the evo-
lution of PSA after EBRT is characterised by only two non-
dimensional parameters: « and  (see Section 2.2.4). The
non-dimensional parameter a controls the magnitude of PSA
decay due to EBRT, i.e., the amount of PSA eliminated due
to the death of tumour cells caused by radiation. Large val-
ues of « are related to low values of Ry (Egs. (15a) and (16))
or Rp (Eq. (17)) what means that radiation successfully
eliminates tumour cells. Thus, a accounts for the efficacy
of EBRT. The non-dimensional parameter 3 is the ratio of
the characteristic time of radiation-induced cell death to the
characteristic time of cell proliferation, i.e., 8 controls the
coupled dynamics of the irreversibly damaged and surviving
cell fractions that ultimately translates into the observable
temporal trends of PSA after EBRT. As 74 < 75 (see Table 5),
larger values of § indicate post-radiation tumour dynamics
to be mostly driven by proliferation of the surviving fraction,
while lower values of 8 point out towards a dominance of
radiation-induced tumour cell death.

Interestingly, the efficacy of EBRT was better in
biochemically-relapsing patients, who showed larger o and
lower surviving fractions (Rq or Rp) than cured patients,
even though these observations were statistically not signifi-
cant (see Table 5). A dramatic decay of PSA following EBRT
has also been linked to PCa recurrence in the literature [17].
We observed that biochemically-relapsing patients showed
smaller 75 (see table 5), i.e., tumours proliferated faster, which
may explain this counterintuitive phenomenon: programmed
cell death is triggered before cell division in case of major
genetic damage [5], so fast proliferation accelerates the elimi-
nation of tumour cells affected by radiation, which translates
in a dramatic decrease in total tumour cell number and thus
PSA . This mechanism has also been proposed to explain the
poorer prognosis of diffuse low-grade glioma patients who ex-
perience a rapid tumour volume decrease following radiother-
apy using both a clinical and mathematical approach [28, 52].
As o was not significantly different between biochemically-
relapsing and cured patients, the latter may also experience
a steep PSA decay after EBRT. Hence, we require a larger
cohort to validate this mechanism in PCa.

4.2 Potential patient classifiers based on tu-
mour dynamics and identified through PSA
dynamics

This study resulted in three classifiers that showed great
potential to identify biochemically-relapsing patients: a short
characteristic time of tumour cell proliferation 7, a large non-
dimensional parameter 3, and an early time to PSA nadir
since EBRT termination At, (see Tables 5 and 7). Indeed,
both 8 and At,, are inherently controlled by 7s. As 74 does
not vary much between cured and relapsing patients, large (3
values are also a consequence of a small 75 (see Section 4.1).
Then, large 8 promotes an early PSA nadir (see Eq. (19)),
which correlates with PCa recurrence and worse survival
rates [12, 13]. The additional dependence of At,, on «, which
does not significantly vary between cured and biochemically-
relapsing patients, might explain the comparatively worse
performance of At,, as a patient classifier in ROC analysis
with respect to 75 and f.

We believe that 75 holds a promising, robust prognostic



Table 5. Distribution of model parameters, non-dimensional parameters, PSA nadir, and time to PSA nadir since EBRT termination obtained
with the periodic dose and the single dose models. The last column provides the p-values of the two-sided Wilcoxon rank sum tests searching for
significant differences in these statistics between the subgroups of cured and biochemically-relapsing patients. The level of significance was set at
p < 0.05. Significant p-values were highlighted in bold font. IQR: interquartile range.

Quantity All patients (n=71) Cured patients (n=64) Relapsing patients (n=7) WRST
Median IQR Range Median IQR Range Median IQR Range p
Periodic dose model
Py (ng/mL) 5.9 (4.7, 9.0) (0.5, 25.3) 5.9 (4.7, 8.7) (0.5, 24.6) 10.1 (4.9, 12.5) (3.3, 25.3) 0.213
Ry 0.92 (0.89, 0.93) (0.50, 0.96) 0.92 (0.89, 0.93) (0.50, 0.96) 0.90 (0.84, 0.92) (0.81, 0.94) 0.251
74 (mo) 2.9 (1.9, 3.9) (0.5, 13.7) 2.9 (1.9, 4.0) (0.5, 13.7) 2.4 (2.1, 3.1) (0.5, 9.2) 0.623
Ts (mo) 498.0 (37.4, 500) (5.0, 500) 500 (62.1, 500) (9.2, 500) 23.9 (11.5, 33.9) (5.0, 42.5) 8.77- 104
B (-10_2) 1.42 (0.60, 5.00) (0.14,91.38) 1.18 (0.57, 4.03) (0.14, 91.38) 8.58 (5.77, 44.20) (2.02, 51.65) 1.23- 10-3
a (~101) 2.78 (1.51,6.87) (0.55, 00) 2.67 (1.49, 6.50) (0.55, c0) 6.92 (2.63, 227.72) (1.50, 401.43) 0.099
P, (ng/mL) 0.4 (0.2, 0.6) (0.0, 2.7) 0.4 (0.2, 0.6) (0.0, 2.7) 0.4 (0.4, 0.8) (0.2, 2.2) 0.193
Aty (mo) 19.2 (13.0, 23.6) (2.7, 133.4) 19.7  (13.9.24.4) (3.2, 133.4) 11.1 (8.4, 18.1) (2.7, 23.1) 0.025
Single dose model
Py (ng/mL) 5.9 (4.7, 9.0) (0.5, 25.4) 5.9 (4.7, 8.7) (0.5, 24.6) 10.1 (4.9, 12.5) (3.3, 25.4) 0.213
Rp (-10_2) 4.5 (1.6, 7.0) (0.0, 18.9) 4.5 (1.7, 7.0) (0.0, 18.9) 1.6 (0.3, 4.9) (0.0, 8.6) 0.130
74 (mo) 3.2 (2.1, 4.5) (0.5, 13.7) 3.3 (2.1, 4.7) (0.5, 13.7) 2.7 (2.4, 3.4) (0.5, 10.5) 0.569
Ts (mo) 152.6  (34.3, 500) (5.0, 500) 499.0 (56.7, 500) (9.2, 500) 23.8 (11.4, 32.9) (5.0,41.3) 9.40- 104
B (~10*2) 1.96 (0.74, 6.18) (0.14, 93.25) 1.50 (0.68, 5.05) (0.14, 93.25) 9.85 (6.65, 49.96) (2.02, 60.50) 1.72- 108
« (~101) 2.13  (1.34,6.19) (0.43, o0) 2.12  (1.32,5.79) (0.43, 00) 5.97 (2.24, 158.15) (1.06, 351.03) 0.130
P, (ng/mL) 0.4 (0.2, 0.6) (0.0, 2.6) 0.3 (0.2, 0.6) (0.0, 2.6) 0.4 (0.4, 0.8) (0.2, 2.3) 0.135
Aty (mo) 20.9 (13.8,25.9) (2.0,170.0) 21.7  (14.9, 26.2) (2.8, 170.0) 11.6 (8.7, 18.9) (2.0, 23.8) 0.022
Periodic dose model: ROC curve Optimal point
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Figure 3. ROC curves for the different patient classifiers identified in the statistical analysis: (a) the characteristic time of tumour cell proliferation
Ts, (b) the non-dimensional parameter 3 = 74/7s, and (c) the time to PSA nadir since EBRT termination At,,.

value for PCa both before and after EBRT. An elevated
tumour cell proliferation rate (i.e., short 75) has been cor-
related with increased aggressiveness of PCa in terms of a
high Gleason Score [53], which is a crucial clinical variable in
clinical management of PCa that has been linked to a higher
probability of PCa local recurrence and distant metastases
[2, 11, 12]. While Gleason Score is normally determined from
histopathological assessment of biopsy samples, 75 would en-
able to noninvasively monitor Gleason Score and to justify
further biopsies when model estimations suggest a more ag-
gressive cancer than the baseline, diagnostic biopsy. Moreover,
the PSA doubling times and velocity on the rising branch
in biochemically-relapsing patients can be approximated as
DT =~ 7,1n2 and vp ; for all models in Section 2.2.
Hence, small values of 7 would render short doubling times
and high velocities of PSA increase, which have been associ-
ated to poor prognosis in PCa recurrence [8, 11, 12, 14]. Our
estimation of 75 in biochemically-relapsing patients (see ta-
ble 5) agrees with previously reported tumour doubling times
[64], PSA relapsing doubling times [11, 14], and time to PSA
nadir since EBRT termination [13]. Parameter 7, also enables
to estimate pretreatment PSA doubling times and velocity,

~
~

whose prognostic value is controversial [55]. Our model pro-
vides a robust and systematic procedure to estimate these
dynamic variables, which may facilitate the assessment of
their role as PCa prognostic markers.

4.3 Limitations and future developments

Our study presents several limitations. The patient cohort
featured a limited number of patients experiencing biochem-
ical relapse, which makes it difficult to accurately identify
and assess patient classifiers. Our results need to be tested
in larger independent cohorts, in which we could also explore
the correlations between common PCa clinical characteris-
tics and model parameters, non-dimensional parameters, and
PSA nadir estimation. While our models were rather robust
against PSA fluctuations, a larger cohort would also con-
tribute to reduce their effect on statistical analysis. We could
further reduce the impact of these fluctuations by using ro-
bust nonlinear least-square methods, which associate a weight
to each PSA value that tends to zero as it deviates from the
average trend. Furthermore, we are using biochemical relapse
as a surrogate for PCa recurrence. Ideally, our PSA dynamics
models should be tested to identify clinically-confirmed PCa



Table 6. p-values obtained for the two-sided statistical tests to search
for significant differences in model parameters, non-dimensional pa-
rameters, PSA nadir, and time to PSA nadir since EBRT completion
between the periodic dose and single dose models. Results are shown
for the whole cohort and for the subgroups of cured and biochemically-
relapsing patients. The significance level was set at p < 0.05. Signifi-
cant p-values are boldfaced.

Patients

Quantity All Cured Relapsing

(n=T1) (n=64) (n=T)

Wilcoxon signed-rank tests
Py 0.563 0.288 0.297
R <1-10"6 <1-106 0.047
Tq <1-10°6 <1-10-¢ 0.031
Ts 1.08 1075 4.39.10°% 0.078
B <1-10°¢ <1-10°¢ 0.031
o <1-108 1.12-10°6 0.016
P, 8.12-1023 3.13-1074 0.078
Aty <1-106 <1-106 0.109
Wilcoxon rank-sum tests

Py 1.000 0.994 0.902
R 0.677 0.673 0.805
T4 0.170 0.180 0.456
Ts 0.633 0.585 0.902
Ié; 0.281 0.238 0.710
o 0.308 0.320 0.710
P, 0.941 0.918 0.805
Aty 0.372 0.359 0.805

recurrence after EBRT. We plan to specifically update our
cohort with patients for whom such evidence is available to
conduct further research with our PSA formulations. Hence,
we could also characterise local recurrence and distant metas-
tases using model-based markers.

Despite our methods could only approximate 75 = 500 (up-
per bound) for some cured patients, we believe that this is
a minor limitation for four reasons: (1) large 75 is expected
in cured patients, so 7s = 500 mo might be an acceptable
approximation; (2) model fitting was not compromised (see
Fig. S5); (3) 75 plays a little role in post-EBRT dynamics
of cured patients; and (4) 7 = 500 produces small 8 and
large At,, contributing to classify the patient as cured. Mul-
tiple pre-EBRT PSA values, robust nonlinear least-squares
fitting, and problem non-dimensionalisation could facilitate
the accurate estimation of 75 with our models.

We assumed that the proliferation rate of tumour cells
did not vary after EBRT, i.e., 7, & 75. While this is a com-
mon assumption [26—28], recent studies suggest that radiation
may also affect tumour proliferation [27, 56]. To explore this
phenomenon in PCa patients undergoing EBRT, we would
need to estimate both 7, and 75, which requires multiple
PSA data both before and after EBRT. Additionally, our
models do not differentiate between the PSA produced by
PCa and BPH. We could add a term to Egs. (1) and (6b)
to include the BPH contribution Pppm(t) to the tumour-
generated PSA levels, ie., P(t) = pN(t) + Pppu(t) and
P(t) = p(S(t) + D(t)) + Pepu(t). For times ¢ < 10 years,
we may approximate Pgppg(t) with a linear term or another
exponential [32, 57]. This simple model update would enable
a more accurate determination of 75 and model fitting. We
also plan to explore alternative radiobiological definitions for
Rq and Rp to refine the modelling of radiation effects [25—
27, 41-43, 46-49]. By introducing an explicit dependence of
Rgs and Rp on the radiation dose one could pursue more
sophisticated optimal EBRT plans, e.g., with varying unitary
doses, as studied by other authors for low-grade gliomas [58].

PSA is currently the cornerstone of clinical decision-
making during follow-up after local radical radiotherapy for
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Table 7. Analysis of ROC curves.

Measure Classifier
Ts B Aty
Periodic dose model
AUC 0.887 0.875 0.759
Optimal point
Threshold 426 mo 5.15:1072  11.2 mo
Specificity 78.1% 82.8% 89.1%
Sensitivity 100% 85.7% 57.1%
Accuracy 80.3% 83.1% 85.9%
Single dose model
AUC 0.885 0.865 0.768
Optimal point
Threshold 41.6 mo 6.19:1072  11.8 mo
Specificity 78.1% 81.3% 85.9%
Sensitivity 100% 85.7% 57.1%
Accuracy 80.3% 81.7% 83.1%

PCa, so we focused our models on this biomarker. Emerg-
ing urine and blood tests are showing a promising perfor-
mance in PCa diagnosis (e.g.: PCA3, prostate health index,
four kallikrein panel) and they may complement or even sub-
stitute PSA in the future [3, 59]. However, these tests are
not recommended yet for routine screening due to the lim-
ited and sometimes inconsistent reported data. Once these
biomarkers become routine, our model could be coupled with
their dynamics to explore their joint performance to iden-
tify biochemically-relapsing patients. Circulating tumor cells
have also been shown to contribute to the diagnosis of ad-
vanced PCa, but these tumours would not be managed with
radical EBRT, the focus of our work.

Personalised volumetric data of prostate and tumour could
further refine the estimation of PSA production by both be-
nign and malignant tissue [30, 31]. Multiparametric magnetic
resonance is an emerging imaging technique that provides a
wealth of anatomic data and is increasingly used to diagnose
and monitor mild PCa during active surveillance protocols.
In this context, the underlying tumour dynamics model could
be refined, e.g., by using a phase-field or Fisher-Kolmogorov
model and linking the variable identifying tumour growth
with PSA production [27, 30]. Initial tumour geometry and
parameter selection can then be determined by combining
longitudinal PSA and imaging data [24-27, 30]. However,
tumour volume is not measured in routine monitoring of pa-
tients after radiotherapy and longitudinal imaging follow-up
for each patient would be required besides the standard PSA
data. Thus, extending our models to include volumetric data
will inevitably require a specific research monitoring protocol
featuring an adequate image acquisition plan.

4.4 Towards patient-specific PSA monitoring
plans and early detection of PCa recurrence

Our mathematical models can help in the early identification
of biochemically-relapsing patients. This requires a good pa-
rameter identification, for which we recommend to collect
at least 3 pre-EBRT PSA values and not less than 4 post-
EBRT PSA values. This would translate in measuring PSA
every 3-6 months before and after EBRT, which is compatible
with current clinical guidelines. This recommendation stems
from the results of this study, but we plan to determine the
minimal data that enables an optimal prediction of PSA dy-
namics with our models in forthcoming studies. Likewise, we
also plan to compare observed PSA data with simulated PSA
trends corresponding to alternative treatment plans, which
may help to determine the window of curability and best
timing for EBRT.



These initial PSA data would allow a first evaluation of
the patient’s risk of relapse. Later, as further PSA data are
gathered, the physician can update the prognostic variables
to provide more accurate patient-specific predictions. More-
over, the predicted PSA dynamics can suggest an adequate
frequency of new PSA tests to accurately parameterise our
models, for instance, with shorter time intervals to precisely
capture the decay following EBRT, confirm the date of nadir,
and characterise a potential rising branch in relapsing pa-
tients, or longer time intervals to confirm the plateau or be-
nign linear growth in cured patients. Hence, physicians could
design a personalised PSA monitoring plan adapted to the
unique PSA dynamics of each patient and informed by the un-
derlying tumour evolution, instead of the fixed conventional
recommendations currently provided by clinical guidelines.

5 Conclusions

We have developed a two-population dynamical mathemat-
ical model including the subpopulation of remnant prolifer-
ative cells after treatment plus those irreversibly damaged
by radiotherapy. The model provided a mechanistic expla-
nation for the bi-exponential behaviour observed previously
in PSA longitudinal data of PCa patients after EBRT. Sev-
eral versions of the model were found to describe correctly
the data, including those accounting for the time details of
the radiotherapy plan. However, the simplest model version
accounting for the treatment as a single effective dose could
describe the longitudinal PSA data accurately.

The model parameters were used to define several prog-
nostic biomarkers that were able to predict tumour relapse.
Although replication of this study in a larger independent
cohort is necessary, our results suggest that these simple quan-
tities accounting for the tumour dynamics could be used in
combination with other factors to identify higher-risk patients
and define personalised monitoring strategies.
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