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Abstract

We explore the use of NURBS-based immersed fluid-structure interaction algorithms
to model the dynamics and rheology of red blood cells (RBCs) and nucleated cells. Prime
examples of cells with nucleus that are relevant to this study are white blood cells (WBCs)
and circulating tumor cells (CTCs). In this work, RBCs are modeled as thin solid mem-
branes called capsules. To model cells with nucleus we introduce the concept of compound
capsule which explicitly takes into account the nucleus as a bulky deformable solid. Our
results indicate that to reproduce the behavior of RBCs in shear and parabolic flows, it is
crucial to accurately solve the mass conservation equation near the fluid-solid interface. We
show results of hyperelastic capsules and compound capsules in two- and three-dimensional
settings. Finally, taking advantage of the geometric flexibility of our method, we simulate
how a CTC passes through a narrowing. This is a feature of CTCs that has recently
triggered excitement in the experimental community.

Keywords:
Isogeometric analysis, Immersed fluid-structure interaction, Hyperelastic compound
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1. Introduction

Blood is a complex fluid that is primarily made of blood plasma and red blood cells
(RBCs). The concentration of RBCs (hematocrit) in a healthy human body is in average
45% of the blood volume. The remaining formed elements of blood such as, e.g., white
blood cells (WBCs) and platelets, add up to less than 1% of the total blood volume. The
mechanical behavior of blood depends strongly on the scale of study. In large vessels with
a diameter greater than 500µm, considering blood as a Newtonian fluid with a constant
viscosity is sufficiently accurate for most applications. However, in vessels with smaller di-
ameters, blood behaves as a non-Newtonian fluid. In fact, to be able to match experimental
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results of blood flow in cylindrical tubes with Poiseuille’s law, it is necessary to define an
apparent viscosity that depends at least on the tube’s diameter and the hematocrit. This
phenomenon is known as the F̊ahræus-Lindqvist effect [1].

In most cases, RBCs are the blood constituent principally responsible for the dynam-
ics and rheology of blood, which is related with the fact that RBCs are more numerous
and more deformable than the remaining formed elements of blood. One way to study
microscale blood flow is to explicitly model RBCs. This is the approach chosen in the
present work and it leads to a fluid-structure interaction (FSI) problem that we solve using
an immersed approach. A RBC is composed by a lipid bilayer membrane with an attached
spectrin network called cytoskeleton which encapsulates a concentrated hemoglobin solu-
tion that behaves as a Newtonian incompressible fluid. Under physiological conditions,
both the RBC volume and external area are nearly constant. In a quiescent fluid, healthy
RBCs have a biconcave shape. Nevertheless, under nonequilibrium conditions such us,
e.g., pure shear flow and parabolic flow, RBCs exhibit a variety of interesting shapes and
motions [2, 3]. In the last decades, the reproduction of experimental shapes and motions
has been the most widespread benchmark test used in order to evaluate the accuracy and
efficiency of different RBC models in blood flow∗. The two most common continuum-based
approaches for modeling RBCs are the so-called vesicles [5, 6, 7] and capsules [8]. Vesicles
consider the bending resistance of the lipid bilayer membrane which can be directly con-
trolled through a parameter called bending rigidity, but they neglect the shear resistance of
the cytoskeleton. Capsules consider both bending and shear resistances, but both types of
resistances are usually controlled through the same parameter, namely, the shear modulus.
In this work, we use capsules as our model for RBCs.

Blood plasma behaves as a Newtonian incompressible fluid whose average density and
dynamic viscosity are 1.025 g/cm3 and 1.2 mPa s, respectively [9]. Due to the low values of
the Reynolds number usually encountered in microcirculation problems, it is quite common
to assume Stokes flow to model blood plasma at small scales. However, recent findings show
that inertial effects do play an important role in microcirculation, especially when the flow
domain is curved [10, 11]. These observations are giving rise to an entirely new field call
inertial microfluidics and are expected to have practical applications in the next few years.
Motivated by this experimental evidence, we do not assume Stokes flow, but solve the
Navier-Stokes equations using the variational multiscale (VMS) technique [12, 13, 14].

In the last few years, the continuum-based modeling of WBCs has received increasing
attention. The goal is to elucidate a plethora of open questions about flows that involve
both RBCs and WBCs. Besides of a membrane, a WBC contains a nucleus, organelles, and
fibers, which are suspended in a viscous cytosol [15]. Therefore, modeling WBCs either
as bulky bodies or using the same models used for RBCs (e.g., vesicles or capsules) is
not accurate in a number of situations. In [16], a model for WBCs is proposed under the
assumption that the behavior of a WBC is dominated by its nucleus, its viscous cytosol,

∗For a thorough discussion of the different types of models used for RBCs, the interested reader is
remitted to [4].
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and its membrane, that is, the organelles and other internal constituents are neglected.
Ref. [16] introduces the concept of compound vesicles in which the membrane is modeled
as a vesicle (i.e., they only consider bending resistance) and the nucleus is modeled as a
rigid body (i.e., they neglect its strains). The modeling of other types of nucleated cells,
e.g., circulating tumor cells (CTCs) is also an appealing subject. CTCs are cancerous
cells that escape from the tumor, enter the circulatory system through a process called
intravasation and acquire the ability to survive in this new environment. Eventually, some
of these cells may extravasate, that is, leave the circulatory system, settle in a new organ
and possibly create a secondary tumor. This process is part of the so-called metastatic
cascade. We believe that understanding the behavior of CTCs in microcirculation would
lead to a deeper understanding of the metastatic cascade which could help to develop
therapies to stop cancer spreading [17]. It may also permit to design devices that allow to
isolate CTCs from a blood sample with diagnostic purposes.

In this work, we use a NURBS-based immersed FSI approach to study the behavior of
capsules in shear and parabolic flows. Our numerical results are compared with experimen-
tal results for RBCs. Good agreement is found as long as the incompressibility constraint
is adequately satisfied near the fluid-solid interface. Ensuring that the incompressibility
constraint is satisfied is quite challenging due to the assumption of continuous pressure
across the fluid-solid interface which is done in all immersed methods that we are aware
of. Moreover, handling the large strains undergone by the numerical proxies of RBCs is
one of the main bottlenecks of mesh-based immersed FSI approaches. In [18, 19], the au-
thors claim that piecewise linear Lagrange polynomials cannot deal with the large strains
found in their simulations and they propose to use the meshfree reproducing kernel particle
method for representing the capsules instead [20, 21]. In our case, the higher inter-element
continuity of NURBS gives us sufficient robustness [22] to handle the large strains under-
gone by the capsules in all of our simulations. In this paper, we introduce the concept of
compound capsules to model nucleated cells. A compound capsule is formed by a capsule,
an incompressible Newtonian fluid enclosed by the capsule, and a bulky deformable solid
suspended in the fluid, which represent the membrane, the cytosol, and the nucleus of the
cell, respectively. The dynamics of compound capsules in shear flow are analyzed in two-
and three-dimensional settings. Our results are in agreement with those of compound vesi-
cles. Additionally, the geometric flexibility of our immersed approach enables us to solve
problems on non-trivial geometries.

The paper is organized as follows: Section 2 describes our FSI modeling framework
and emphasizes the main challenges faced when an immersed approach is used. Section
3 studies the dynamics of capsules and compound capsules in shear flows. In Section 4,
we focus on the behavior of RBCs and CTCs in parabolic flows. Section 5 presents our
conclusions and future directions of work.

2. FSI simulation using an immersed approach

Our FSI formulation at the continuous and discrete levels was thoroughly derived in our
two earlier works [23, 24]. In this Section, we summarize our hybrid variational-collocation
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immersed method for FSI and focus on a number of important subjects, namely, how to
improve local mass conservation close to the fluid-solid interface, how to alleviate the issue
of suboptimal quadrature rules that arises in immersed FSI through higher inter-element
continuity, the coupling strategy, and the nonlinear and linear solvers used for the final
system of algebraic equations.

2.1. Governing equations

Let d = {2, 3} be the number of spatial dimensions. Let Ω1
t ⊂ Rd and Ω2

t ⊂ Rd be two
open sets that represent the time-dependent domains occupied by a viscous incompressible
fluid and a hyperelastic incompressible solid, respectively. Γ1

t and Γ2
t are their corresponding

boundaries. These two regions meet at the fluid-solid interface ΓI
t = Ω1

t ∩ Ω2
t . Let Ω ⊂ Rd

be an open set that represents the domain occupied by both the fluid and the solid, that
is, Ω = Ω1

t ∪ Ω2
t . In all the simulations presented in this paper, Ω is time independent.

Therefore, we will assume that Ω is fixed in time to simplify the description of our algorithm.
The boundary of Ω is denoted by Γ. Let v : Ω × (0, T ) 7→ Rd, p : Ω × (0, T ) 7→ R,
and u2 : Ω2

0 × (0, T ) 7→ Rd denote the Eulerian velocity, the Eulerian pressure, and the
Lagrangian displacement, respectively, where (0, T ) is the time interval of interest and Ω2

0

is a reference configuration of Ω2
t . Let X ∈ Ω2

0, x ∈ Ω, and ϕ : Ω2
0 × (0, T ) 7→ Ω2

t be a
material point, a spatial point, and the deformation mapping ϕ(X, t) = X + u2(X, t),
respectively.

The three equations that define our problem are the linear momentum balance equation,
the mass conservation equation, and the kinematic relation between the Eulerian velocity
and the Lagrangian displacement, i.e.,

ρ1

(
∂v

∂t
+ v · ∇xv

)
= ∇x · σ1 + ρ1g + F in Ω× (0, T ) , (1)

∇x · v = 0 in Ω× (0, T ) , (2)

∂u2

∂t
= v in Ω2

t × (0, T ) , (3)

with

F =

0, x ∈ Ω1
t

(ρ1 − ρ2)

(
∂v

∂t
+ v · ∇xv − g

)
+∇x · (σ2 − σ1) , x ∈ Ω2

t

, (4)

and constitutive laws
σ1 = −pI + 2µ∇sym

x v , (5)

σ2 = −pI + FSF T/J . (6)

Here, ρ1 and ρ2 are the fluid and solid densities, respectively, σ1 and σ2 are the fluid and
solid Cauchy stress tensors, respectively, g is an external body force acting on the system,
I denotes the identity tensor in Rd×d, µ is the dynamic viscosity of the fluid, ∇sym

x (·) is the
symmetric gradient operator given by ∇sym

x v = (∇xv +∇xv
T )/2, F : Ω2

0 × (0, T ) 7→ Rd×d

is the deformation gradient given by F = ∇Xϕ = I + ∇Xu2, S denotes the second
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Piola-Kirchhoff stress tensor of the considered hyperelastic incompressible solid, and J =
det(F ) is the Jacobian determinant. At the continuous level, J = 1 because the solid is
incompressible.

In order to achieve a well-posed FSI problem, we need to impose suitable initial and
boundary conditions. Regarding initial conditions, the Eulerian velocity and Lagrangian
displacement need to be given at the initial time. To simplify the definition of boundary
conditions, we consider that the solid is fully immersed in the fluid, which is the case of
interest for RBCs and CTCs. In this scenario, the boundary of the solid coincides with
the fluid-solid interface (Γ2

t = ΓI
t ) and we impose two boundary conditions at the interface,

namely, the no-slip boundary condition and the stress compatibility between the fluid and
solid Cauchy stress tensors. The no-slip boundary condition is imposed through Eq. (3)
and the stress compatibility condition will be naturally enforced by the variational form
of (1). On the boundary of the fluid Γ1

t = Γ, we assume the standard split in Dirichlet
boundary conditions on ΓD and Neumann boundary conditions on ΓN . The sets ΓD and
ΓN satisfy the relations Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.

Eq. (3) will be discretized in space using isogeometric collocation [25, 26, 27, 28],
therefore, it is not necessary to recast it in weak form. However, Eqs. (1) and (2) will
be discretized in space using a weighted residual formulation, viz., the VMS approach
proposed in [14]. The basic idea behind the VMS technique is to split the velocity and
the pressure into two components, namely, v = ṽ + v′ and p = p̃ + p′. Here, ṽ and
p̃ are finite-dimensional coarse-scale components while v′ and p′ are infinite-dimensional
fine-scale components. Then, we multiply Eqs. (1) and (2) by weight functions w̃ and q̃,
respectively, integrate over Ω, and perform various mathematical operations described in
detail in [14]. Following the aforementioned steps, we derive the following weak formulation
of Eqs. (1) and (2):

BED ({w̃, q̃}, {ṽ + v′, p̃+ p′})− LED (w̃) +BLD (w̃, ṽ;u2) = 0 . (7)

with

BED ({w̃, q̃}, {ṽ + v′, p̃+ p′}) =

(
w̃,

∂ṽ

∂t
+ ṽ · ∇xṽ

)
Ω

− (∇x · w̃, p̃)Ω + (∇sym
x w̃, 2ν∇sym

x ṽ)Ω

+ (q̃,∇x · ṽ)Ω + (w̃,v′ · ∇ṽ)Ω

− (∇xw̃, (ṽ + v′)⊗ v′)Ω − (∇x · w̃, p′)Ω

− (∇xq̃,v
′)Ω , (8)

LED (w̃) = (w̃, g)Ω + (w̃,h/ρ1)ΓN
, (9)
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BLD (w̃, ṽ;u2) =−
(
w̃,

(
1− ρ2

ρ1

)
∂ṽ

∂t

)
Ω2

0

−
(
w̃,

(
1− ρ2

ρ1

)
ṽ · ∇xṽ

)
Ω2

0

− (∇sym
x w̃, 2ν∇sym

x ṽ)Ω2
0

+

(
∇sym

x w̃,
1

ρ1

FSF T

)
Ω2

0

+

(
w̃,

(
1− ρ2

ρ1

)
g

)
Ω2

0

. (10)

Note that p̃ and p′ have been redefined by dividing through the fluid density ρ1 as in [14],
ν = µ/ρ1 is the kinematic viscosity of the fluid, and h is the prescribed traction vector.

2.2. Semi-discrete formulation

In order to perform space discretization, let us start considering a set of NURBS basis
functions {NED

A (x)}nED
A=1 defined over the physical domain Ω. Thanks to the stabilized VMS

technique, the same scalar discrete space spanned by the above-mentioned basis functions
can be used to represent the weight and trial functions for p̃ and each Cartesian component
of ṽ without the need to use a stable pressure-velocity combination in the sense of Babǔska
and Brezzi [29, 30]. Therefore, we define

vh(x, t) =

nED∑
A=1

vA(t)NED
A (x); ph(x, t) =

nED∑
A=1

pA(t)NED
A (x); (11)

wh(x) =

nED∑
A=1

wAN
ED
A (x); qh(x) =

nED∑
A=1

qAN
ED
A (x) . (12)

Analogously, let us consider a set of NURBS basis functions {NLD
B (X)}nLD

B=1 defined over
the reference domain Ω2

0. The scalar discrete space spanned by these basis functions will
be used to represent the trial functions for each Cartesian component of the displacement

uh
2(X, t) =

nLD∑
B=1

uB(t)NLD
B (X) . (13)

Eq. (3) will also be discretized using the space spanned by {NLD
B (X)}nLD

B=1. Since we
discretize this equation using collocation, we just need to define a set of collocation points.
We will follow the standard practice in IGA and use Greville points (denoted by {τ i}nLD

i=1 )
as our collocation sites. We note, however, that a new set of points referred to as Cauchy-
Galerkin points has been recently proposed [31]. Cauchy-Galerkin points have the potential
to render the Galerkin solution exactly with a computational cost of one evaluation of the
basis functions per degree of freedom.
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We will use the isoparametric concept in order to build computational meshes in Ω
and Ω2

0. These meshes will be called Eulerian mesh and Lagrangian mesh, respectively.
The Lagrangian mesh can be pushed forward to physical space using the discrete mapping
ϕh(X, t). This mesh moves on top of the Eulerian mesh in a nonconforming fashion.

To finish the spatial discretization, we express the fine-scale velocity and fine-scale
pressure in terms of their coarse-scale counterparts as

v′ =− τM
(
∂vh

∂t
+ vh · ∇xv

h +∇xp
h − ν∆xv

h − g
)

, (14)

p′ =− τC∇x · vh , (15)

where τM and τC are the stabilization parameters defined as in [32], viz.,

τM =

(
sh(x, t)

(
4

∆t2
+ vh ·Gvh + CIν

2G : G

))− 1
2

, (16)

τC = (τMtrG)−1 . (17)

Here, tr(·) is the trace operator,G= [Gij] =
∑3

k=1

∂ξk
∂xi

∂ξk
∂xj

, x(ξ) is the geometrical mapping

of the Eulerian mesh, and CI is a positive constant. Following [33], we take CI = 36 in our
simulations.

The scalar function sh(x, t) that appears in Eq. (16) is a dimensionless scaling factor
introduced in the context of immersed FSI methods in [32]. To the best of our knowledge, all
available immersed FSI methods assume the pressure field to be continuous across the fluid-
solid interface. However, the exact solution to the problem may have discontinuous pressure
at the interface. Therefore, the discrete pressure spaces of immersed FSI methods have poor
approximation properties at the interface leading to lack of local mass conservation in this
region for practical levels of refinement. This issue is particularly notorious for thin solids
where solutions with large pressure jumps at the interface are common. As in [32, 34, 35],
the above-mentioned scaling factor is introduced to locally weaken the influence of the
poorly approximated pressure gradient in Eq. (14) and locally enhance the penalization of
volume change due to the inverse relation between τM and τC . The function sh(x, t) belongs
to the discrete space spanned by {NED

A (x)}nED
A=1, i.e., sh(x, t) =

∑nED

A=1 sA(t)NED
A (x). We

set the control variables associated with basis functions that intersect the interface to the
same value sI >> 1 and the remaining control variables are set to 1.

Finally, the semi-discrete formulation of our immersed method can be stated as: Find
vh, ph, and uh

2 such that, for all wh and qh defined as in Eq. (12) and all {τ i}nLD
i=1 ,

BED
(
{wh, qh}, {vh + v′, ph + p′}

)
− LED

(
wh
)

+BLD
(
wh,vh;uh

2

)
= 0 , (18)

∂uh
2

∂t
(τ i, t) = vh(ϕh(τ i, t), t) . (19)

Remark 1:
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The integrals of Eq. (10) demand special attention. Gaussian quadrature rules de-
fined on the elements of the Lagrangian mesh are used to compute those integrals.
However, there are functions in the integrands, namely, the weighting functions wh,
the coarse-scale velocity vh, and their first derivatives, which are defined on the Eule-
rian mesh instead of the Lagrangian mesh. Therefore, for a certain Gauss point with
parametric coordinates ξLDG in the Lagrangian mesh, we first need to compute its
physical location xG using the geometrical mapping of the Lagrangian mesh, i.e, ϕh.
Then, we have to invert the geometrical mapping of the Eulerian mesh in order to
obtain the parametric coordinates ξED

G associated with the physical point xG in the
Eulerian mesh. Once we know ξED

G , we can evaluate functions that are defined on the
Eulerian mesh using standard procedures of finite elements. Note that an analogous
situation occurs when we try to evaluate Eq. (19) at a certain collocation point.

Remark 2:

The above-explained integration process used for BLD is suboptimal because the
functions that are defined on the Eulerian mesh may have lines of reduced continuity
in the interior of the integration regions which are the elements of the Lagrangian
mesh. However, the higher inter-element continuity of spline functions is used in
order to alleviate this issue.

Remark 3:

As reported in the literature [36, 37], when piecewise linear Lagrange polynomials
are used in immersed FSI, the element size of the Lagrangian mesh is required to be
at least twice as small as the element size of the Eulerian mesh in order to achieve
stable solutions. Our numerical findings reveal that the use of higher order splines
permits to obtain stable solutions utilizing the same element size in both meshes.

2.3. Time discretization and FSI solution strategy

We discretize the first order time derivatives that appear in our immersed FSI for-
mulation using the Generalized-α technique [38], which is an implicit and second-order
accurate method with control over the dissipation of high-frequency modes. Once the time
discretization has been sorted, we are left with a system of nonlinear algebraic equations
that relates the unknown control variables of the Eulerian velocity, Eulerian pressure, and
Lagrangian displacement at time tn+1 to the known control variables at time tn. In order
to compute the unknown control variables at time tn+1, we derive two separate tangent
matrices. One tangent matrix for the linear momentum and mass conservation residuals
(RMC) where the Lagrangian control variables (ULD) are considered to be constant and
another tangent matrix for the kinematic equation residual (RK) where the Eulerian con-
trol variables (UED) are considered to be constant. The tangent matrix associated toRK is
computed by linearizing the residual with respect to the physical values of the Lagrangian
displacements at collocation points. The reason is that this tangent matrix is much sparser
than that obtained by linearizing with respect to the control variables. Actually, by using
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the advocated tangent matrix we only need to solve an independent d×d linear system for
each collocation point. Furthermore, we apply the so-called block-iterative approach for
solving these two subproblems [39, 40]. This fully-implicit approach boils down to finding
a root of the residuals RMC and RK given initial guesses for UED and ULD following the
next steps:

1. Compute the residual RK by evaluating Eq. (19) at each collocation point and the
corresponding tangent matrix by linearizing with respect to the physical values of the
displacements at collocation points.

2. Solve a d × d linear system for each collocation point where the unknowns are the
physical values of the displacement at the collocation point.

3. Compute the Lagrangian control variables from the displacement physical values
at the collocation points. This is done collocating Eq. (13) and solving a linear
system. Note that the matrix of this linear system depends only on the parametric
configuration of the Lagrangian mesh. Therefore, we just need to compute the matrix
once, store it, and use it in each Newton-Raphson iteration of each time step. This
finalizes the update of the Lagrangian control variables ULD.

4. Assemble the residual RMC . We recall that the assembly of RMC is not standard
since it requires to go from the parametric coordinates of a quadrature point in
the Lagrangian mesh to its associated parametric point in the Eulerian mesh at the
proper time level. This process was explained in detail in [24] and avoids errors
associated with either interpolating or projecting functions from the Eulerian mesh
to the Lagrangian mesh.

5. Assemble an approximate tangent matrix KMC '
∂RMC

∂UED

. We are using the approx-

imation to the tangent matrix given in [14].

6. Solve the linear system KMC∆UED = −RMC .

7. Update the Eulerian control variables UED ← UED + ∆UED.

This process is repeated until each component ofRMC andRK is sufficiently converged.
In particular, in all the simulations performed in this paper, we stop the iterative process
when the L2-norm of each residual component has decreased more than four orders of
magnitude. To linearize the residual RMC , we use a Newton-Raphson algorithm with line
search [41]. Regarding the linear solver for Step 6, we use the generalized minimum residual
method (GMRES) [42, 43] with relative tolerance set to 10−5. The use of the function sh

in Eq. (16) increases the condition number of KMC for large values of the parameter sI .
This makes it quite challenging to find a suitable preconditioner. Our implementation is
built on top of PetIGA [44, 45, 46], which gives us direct access to the preconditioners
of the scientific librery PETSc [47, 48]. For parallel MPI simulations with a relatively
low number of processors (up to 32 or 64 cores depending on the size of the problem),
the best performance is given by the restricted additive Schwarz preconditioner with the
following options: LU decomposition as subdomain solver, one subdomain per processor,
and nested dissection as matrix reordering technique so as to reduce the ratio of fill-ins
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and enhance the stability of the LU decomposition. However, for parallel MPI simulations
with a larger number of processors (we have tried up to 256 cores), the best performance
is given by the block Jacobi preconditioner with the following options: LU decomposition
as subdomain solver, two subdomains per processor so as to enhance the communication
between subdomains [49], and nested dissection as matrix reordering method.

Remark 4:

In various of the simulations presented in the following Sections, we will have several
solids embedded in the domain Ω. The aforementioned block-iterative technique is
highly efficient since we just have to repeat Steps 1, 2, and 3 for each solid and
assemble its contribution to RMC in Step 4.

3. Numerical simulations of capsules and compound capsules in shear flow

The velocity field of a linear shear flow in the x direction has the form vshear = (γ̇z, 0, 0)
where γ̇ is the constant shear rate that characterizes the flow’s strength. For low Reynolds
numbers, shear flows can be produced in rectangular and parallelogram geometries by
setting velocity boundary conditions compatible with vshear and letting the Navier-Stokes
equations evolve in time. In this Section, we follow a similar approach, but we embed
capsules and compound capsules in the flow. The goal is to study their motions and how
they modify the velocity field.

3.1. Qualitative description of the motion of a capsule

A capsule, which is used as our RBC mimic, is composed by a very thin membrane
with a fluid inside. From theoretical and experimental developments, it is known that
the following dimensionless numbers control the dynamics of an individual capsule to a
significant extent:

• The swelling degree of the membrane (∆m). In a three-dimensional setting, the
swelling degree is defined as the ratio of the volume enclosed by the membrane (Ve)
to the volume of a sphere with the membrane external area (Ac), that is, ∆m =
6
√
πVe/

√
A3

c . Its two-dimensional counterpart is defined as the ratio of the area
enclosed by the membrane (Ae) to the area of a circle with the membrane perimeter
(Pc), that is, ∆m = 4πAe/P

2
c .

• The confinement degree (χ). This quantity is the ratio of the effective membrane
radius (R0) to the channel half-width. In a three-dimensional setting, R0 is defined
as the radius of a sphere with the membrane external area, i.e., R0 =

√
Ac/4π. Anal-

ogously, in a two-dimensional setting, R0 is the radius of a circle with the membrane
perimeter, i.e., R0 = Pc/2π

†.

†Some authors define an effective radius over the volume/area enclosed by the membrane in a three-
/two-dimensional setting, respectively.

10



• The viscosity contrast (Λ). The membrane encloses an internal fluid of viscosity
µi and it is suspended in an outer fluid of viscosity µo, thus defining the viscosity
contrast as Λ = µi/µo. In this paper, we consider internal and outer fluids with the
same viscosity µ, therefore, Λ = 1.

• The surface capillary number of the membrane (Cm
a ). The parameter Cm

a quantifies
the relative strength of the viscous forces exerted by the external fluid to the elastic
forces exerted by the membrane. Its precise form is given by Cm

a = µoγ̇R0/hGm,
where γ̇ is the average shear rate, h is the membrane thickness, and Gm is the
membrane shear modulus.

• The Reynolds number (Re). The parameter Re quantifies the relative strength of
the inertial forces to the viscous forces exerted by the external fluid. The relevant
Reynolds number for this problem is Re = ρ1γ̇R

2
0/µo.

A single capsule in shear flow exhibits two main types of motion, viz., tank-treading
and tumbling. These two motions were first observed in experiments with RBCs in shear
flow in [50, 51, 52]. In the tank-treading (TT) motion, the RBC membrane adopts a nearly
constant orientation with the flow direction and rotates around the hemoglobin like the
tread of a tank. The two main physical quantities that characterize a TT motion are the
inclination angle of the membrane with the flow direction (θ) and the frequency of the
TT motion (ωTT ). In the tumbling (TU) motion, the RBC rotates as a whole around
its center of gravity. The main physical quantity that characterizes a TU motion is its
frequency (ωTU). For capsules, the transition from TT to TU is mainly determined by the
viscosity contrast. For Λ = 1, TT motion is expected. In this paper, we will represent
capsules using solid-shell NURBS elements, although the use of fully nonlinear Kirchhoff-
Love shells [53, 54] may be a good alternative taking into account the small thickness of
capsules.

3.2. Qualitative description of the motion of a compound capsule

A compound capsule, which is proposed here as a CTC mimic, is composed by a very
thin membrane, an inclusion (i.e., a bulky solid) and a fluid between the membrane and the
inclusion. The dynamics of a compound capsule are controlled by the quantities described
in Section 3.1. and the following dimensionless numbers:

• The filling fraction (φ). In a three-dimensional setting, φ is the ratio of the inclusion
volume to the volume enclosed by the membrane. Its two-dimensional counterpart is
defined as the ratio of the inclusion area to the area enclosed by the membrane.

• The swelling degree of the inclusion (∆i). The definition of ∆i is analogous to that
of ∆m.

• The bulk capillary number of the inclusion (Ci
a). The quantity Ci

a measures the
relative strength of the viscous forces exerted by the internal fluid to the elastic forces
exerted by the inclusion. It is defined as Ci

a = µiγ̇/Gi, where Gi is the inclusion shear
modulus.
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Figure 1: Parameter sweep of sI to asses mass conservation errors near the fluid-solid interface. a)
Geometrical description of the considered problem together with the boundary conditions applied. b)
Relative area change of an elliptic capsule in shear flow at t = 1.0 s with ∆t = 0.0005 s.

The numerical simulations that follow are aimed at gaining a deeper understanding of
the dynamics of a compound capsule in shear flow.

3.3. Adjusting sI so as to enforce the incompressibility constraint at the interface

As explained in Section 2.2 and following [32], we modify the VMS stabilization close to
the fluid-solid interface introducing the dimensionless parameter sI in order to compensate
the poor approximation properties of the pressure field in that region. In order to decide a
suitable value for sI , we measure the area change of a two-dimensional capsule for different
values of sI .

The domain Ω is a rectangle of 0.0024× 0.0012 cm2. Periodic boundary conditions are
applied in the horizontal direction. We use Dirichlet boundary conditions in the top and
bottom walls as indicated in Fig. 1 a). The described boundary conditions lead to a shear
rate γ̇ = 70 s−1, which is within the range found in microcirculation [55]. An elliptic capsule
is initially placed at the center of the domain with its longer axis perpendicular to the flow
direction [see Fig. 1 a)]. The semiaxes of the ellipse are a = 0.0002 cm and b = 0.0001 cm,
which lead to R0 = 0.0001542 cm. The thickness of the membrane is h = 5 · 10−7 cm. The
remaining physical parameters are taken as follows: µ = 0.012 g/(cm s), ρ1 = 1.025 g/cm3,
ρ2 = 1.1 g/cm3, Gm = 7500 dyn/cm2, and g = (0, 0). With these parameters, the above-
mentioned dimensionless numbers are: ∆m = 0.841, χ = 0.257, Λ = 1, Cm

a = 0.0345, and
Re = 0.000142.

Here and in the remaining simulations of this paper, our solid material model is given
by the second Piola-Kirchhoff stress tensor

S = GJ−2/d

(
I − 1

d
tr(C)C−1

)
, (20)

where G is the shear modulus and C = FF T is the Cauchy-Green deformation tensor.
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An Eulerian mesh with 256 × 128 cubic NURBS elements is used to represent the
rectangular domain Ω. To represent the capsule we use NURBS basis functions of second
order or higher, which, unlike Lagrange polynomials, can represent a hollow ellipse exactly.
In this simulation, we use a Lagrangian mesh with 1 × 208 quadratic NURBS elements.
The time step is ∆t = 0.0005 s.

We define the relative area change of the capsule at time t as

rA(t) =

∫
Ω2

t

dΩ2
t −

∫
Ω2

0

dΩ2
0∫

Ω2
0

dΩ2
0

. (21)

In this simulation, the capsule acquires a nearly constant inclination angle at time
t = 0.15 s. At time t = 1 s, the membrane particles have already completed more than
three turns in their TT motion. Fig. 1 b) shows the value of rA for different values of sI at
time t = 1 s. As expected, the spurious area change decreases as we rise the dimensionless
parameter sI . As we increase the value of sI , the number of linear iterations needed per
nonlinear iteration increases because the condition number of the tangent matrix becomes
greater. However, the number of nonlinear iterations per time step decreases because
larger values of sI render a less stiff residual of the mass conservation equation, which is
usually the bottleneck for nonlinear convergence. In particular, for this case, which is solved
using the restricted additive Schwarz preconditioner, the computational time was lowest
for sI = 1010. Based on Fig. 1 b), we believe that sI = 1010 produces mass conservation
errors which are sufficiently small for our target applications. Therefore, we will use this
value of sI in all the simulations of shear flow unless otherwise specified. Consistently
with [32], we find that large errors in the incompressibility constraint may even alter the
qualitative character of the numerical solutions. For example, for sI ≤ 105, the capsule no
longer undergoes a classical TT motion. To test and validate an immersed FSI algorithm,
we recommend to check the errors incurred in the incompressibility constraint near the
fluid-solid interface.

Under physiological conditions, both the RBC volume and external area are known to
remain nearly constant. We are not enforcing the capsule external area to be constant in
our formulation. However, we will measure its time evolution in our simulations. In order
to do so, we define the relative perimeter change of the capsule in our two-dimensional
setting as

rP (t) =

∫
Γ2
t

dΓ2
t −

∫
Γ2
0

dΓ2
0∫

Γ2
0

dΓ2
0

. (22)

In the simulations shown in Section 3, the relative perimeter change is always lower
than 0.04. We believe that this value is acceptable for the purposes of this paper. There
are capsule formulations based on shells that impose the constraint of external area in
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Figure 2: Time evolution of the inclination angle. In this case, there is an oscillation with an amplitude
smaller than 1◦ around the value 26.06◦

their formulations [56, 57]. However, as pointed out in [58], when these models are used
in immersed FSI, this constraint is usually loosened in order to achieve convergence of the
FSI scheme.

3.4. Spatial and temporal resolution study

In this Section, we perform a mesh independence study for the problem stated in Section
3.3. The quantities of interest will be the inclination angle and the TT frequency for
different meshes and time steps. In our simulations, the inclination angle is computed as
the angle between the minor principal axis of inertia of the capsule and the flow direction.
The TT frequency is computed as the average frequency with which the particles of the
membrane move.

When the inclination angle of a RBC is experimentally measured, it oscillates between
0.1◦ and 2◦ around a certain average value. This oscillation was initially attributed to
thermal fluctuations [5]. However, this oscillation was also found in numerical simulations
with capsules that do not take into account thermal fluctuations [59, 58, 60] and it is also
present in the TT motions shown in this Section; see Fig. 2. To compute the inclination
angle, we monitor its time evolution and when it enters an oscillatory regime, we take the
mean value.

We consider quadratic and cubic Eulerian meshes and perform h-refinement. In all
cases, we define a quadratic Lagrangian mesh with slightly smaller element size than that
of the Eulerian mesh under consideration‡. The results are shown in Table 1. First of all,
the data shows that, for the time steps used, the time integration is not compromising the

‡We have also tried cubic Lagrangian meshes, Lagrangian meshes with more than one element in the
through-thickness direction, and Lagrangian meshes with element size twice as small as that of the Eulerian
mesh (data not shown). Neither θ nor ωTT changed with respect to the results shown in Table 1.
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# elements (Eulerian mesh) Degree (Eulerian mesh) ∆t (s) θ (◦) ωTT (s−1)
96×48 2 0.001 17.81 3.20
96×48 3 0.001 23.95 3.54
128×64 2 0.001 22.14 3.46
128×64 2 0.0005 22.24 3.45
128×64 3 0.001 25.22 3.58
128×64 3 0.0005 25.22 3.58
192×96 2 0.0005 24.45 3.59
192×96 3 0.0005 25.77 3.78
256×128 2 0.0005 25.24 3.72
256×128 2 0.00025 25.24 3.72
256×128 3 0.0005 25.99 3.84
256×128 3 0.00025 25.99 3.84
384×192 2 0.0005 25.80 3.84
384×192 2 0.0001 25.80 3.84
384×192 3 0.0005 26.06 3.88
384×192 3 0.0001 26.06 3.88
512×256 2 0.00025 25.87 3.87
512×256 3 0.00025 26.09 3.90

Table 1: Spatial and temporal resolution study. We analyze the influence of the discretization on the
inclination angle and TT frequency.

accuracy of the solution. Second of all, for a given number of elements, cubics are more
accurate than quadratics. This was expected due to their higher power of approximation
[61, 33]. However, the significant differences observed in the data may be also attributed to
the suboptimal integration issue mentioned in Section 2.2, which is alleviated using cubics.
Finally, the small differences in θ and ωTT for finer levels of refinement suggest that a
converged result has been obtained.

Based on this mesh independence study, we will use an Eulerian mesh with 384 × 192
cubic elements, a quadratic Lagrangian mesh with a slightly smaller element size than that
of the Eulerian mesh, and ∆t = 0.0005 s in all the two-dimensional simulations of Section
3.5 and Section 3.6.

3.5. Dynamics of a capsule

We consider capsules with different geometries and embed them in the shear flow defined
in Section 3.3. We start working with six elliptic capsules with different swelling degrees.
In order to create these capsules, we vary the longer semiaxis of the capsule defined in
Section 3.3 and keep unchanged all the other geometrical and mechanical parameters of
the capsule. We consider the following values for a: 0.0001 cm, 0.0002 cm, 0.0003 cm,
0.0004 cm, 0.0005 cm, and 0.00055 cm. The computed inclination angle and TT frequency
for each capsule are plotted in Fig. 3 a) and b), respectively. Consistently with the results
reported in [62], both θ and ωTT increase with the value of the swelling degree.
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Figure 3: Capsules with different shapes under shear flow. (a) Inclination angle of a capsule as a function
of the swelling degree. (b) Tank-treading frequency of a capsule as a function of the swelling degree. (c)
Velocity magnitude along with the flow streamlines at time t = 0.5 s for the capsule with initial biconcave
shape. The black lines represent the streamlines and the white line denotes the capsule. There is a
vortex whose center is located at the center of gravity of the capsule. (d) Perturbations introduced by the
biconcave capsule with respect to the shear component at time t = 0.5 s.

Now, we repeat the analysis considering a capsule with the biconcave shape that RBCs
have in a quiescent fluid, which is defined in [57]. The computed θ and ωTT for this new
initial shape are plotted in Figs. 3 a) and b) with a red star. The results suggest that
the swelling degree characterizes quite accurately the behavior of capsules in the nonlinear
regime independently of their initial shape.

Fig. 3 c) displays a contour plot of the velocity magnitude (|vh|) with flow streamlines
for the biconcave shape at time t = 0.5 s. The streamlines close to the capsule are parallel
to the membrane which is a consequence of its tank-treading motion. Fig. 3 d) plots the
velocity field resulting from our FSI simulation minus the shear component (|vh − vshear|)
in order to show how the presence of the capsule modifies the flow conditions.
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Figure 4: Bulky solids and compound capsules under shear flow. (a) Tumbling frequency of a bulky solid
under shear flow as a function of the swelling degree. (b) Inclination angle of the membrane of a compound
capsule as a function of the filling fraction. (c) Tank-treading frequency of a compound capsule membrane
as a function of the filling fraction. (d) Tumbling frequency of an inclusion under pure shear flow as a
function of the filling fraction. (e) Velocity magnitude along with the flow streamlines at time t = 0.5 s for
the compound capsule with φ = 0.180. The streamlines near the boundary of the compound capsule are
parallel to the membrane due to its tank-treading motion. (f) Perturbations introduced by the compound
capsule with respect to the shear component at time t = 0.5 s for the compound capsule with φ = 0.180.

17



(a) Problem setup
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Figure 5: A compound capsule undergoing a TU motion in a three-dimensional setting. (a) Geometrical
description of the problem along with Dirichlet boundary conditions applied on the two shaded faces of the
cube. Periodic boundary conditions are applied in the other four faces. The shaded plane, i.e., the plane
y = 0 is used to plot the z component of the velocity in Fig. 5 d). (b) Time evolution of the inclination
angle. (c) Streamlines colored by the velocity magnitude at time t = 0.23 s. A transparent membrane is
plotted in order to see the streamlines and the inclusion inside of it. The boundary of Ω is represented by
black lines. (d) Velocity in z direction on the plane indicated in Fig. 5 a) at time t = 0.23 s along with
the streamlines.

3.6. Dynamics of a compound capsule

Cells with nucleus, e.g., WBCs, have been often modeled as bulky solids [63] or fluid-
filled membranes [64, 65]. However, these models fail to accurately reproduce the basic
dynamics of nucleated cells [66]. For example, we have embedded bulky ellipses with
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different swelling degrees in the shear flow defined in Section 3.3. As expected, they all
perform a TU motion whose frequency is plotted in Fig. 4 a). However, one may foresee
more complicated types of motion for a cell with nucleus. For this reason, alternative models
have recently been proposed such as bilamellar vesicles [67] and compound vesicles [16],
which aim at capturing the internal structure of these cells more accurately by mimicking
the effect of the nucleus. In this work, we present compound capsules as the capsule
counterpart of the model introduced in [16]§.

We start embedding compound capsules formed by circular inclusions (∆i = 1) of
different sizes. We consider the following values for the inclusion radius r: 0.00001 cm,
0.00002 cm, 0.00003 cm, 0.00004 cm, 0.00005 cm, 0.00006 cm, and 0.00007 cm. The
shear modulus of the inclusion is Gi = 40 dyn/cm2, hence Ci

a = 0.021. In all cases, we
consider the elliptic membrane defined in Section 3.3, which leads to compound capsules
with different filling fractions. In these simulations, the membrane undergoes a TT motion
while the inclusion performs a TU motion. The values of θ and ωTT for the membrane are
plotted for each compound capsule in Fig. 4 b) and c), respectively. Consistently with [16],
both the inclination angle and the TT frequency decrease with the filling fraction value.
Moreover, the inclination angle and TT frequency values tend to those of a capsule as the
inclusion becomes smaller, which can be seen comparing Fig. 4 with Fig. 3. The TU
frequency of the inclusion is plotted in Fig. 4 d). Fig. 4 e) displays a contour plot of the
velocity magnitude with the flow streamlines at time t = 0.5 s for the case φ = 0.180. Fig.
4 f) plots |vh − vshear| at time t = 0.5 s.

Finally, we consider a compound capsule in a three-dimensional setting; see 5 a). The
domain Ω is a cube of side 0.0012cm. Periodic boundary conditions are applied in the two
horizontal directions and Dirichlet boundary conditions are applied in the top and bottom
walls so as to impose a pure shear flow with shear rate γ̇ = 70 s−1. We embedded a
compound capsule at the center of the cube. The membrane is an ellipsoid with semiaxes
a = 0.0003 cm, b = 0.0002 cm, and c = 0.0002 cm which is initially oriented as in
Fig. 5 a). The thickness of the membrane is h = 5 · 10−7 cm and its effective radius
is R0 = 0.000232 cm. The inclusion is a sphere with a radius r = 0.0001 cm. The
remaining physical parameters are taken as follows: µ = 0.012 g/(cms), ρ1 = 1.025 g/cm3,
ρ2 = 1.1 g/cm3, Gm = 7500 dyn/cm2, Gi = 40 dyn/cm2. With these parameters, the
dimensionless numbers are: ∆m = 0.960, ∆i = 1.0, χ = 0.387, Λ = 1, Cm

a = 0.0520,
Re = 0.000322, Ci

a = 0.021, and φ = 0.083.
An Eulerian mesh with 262144 quadratic NURBS elements is used to represent the

cube. To represent the solid, we use NURBS functions of second order, which are able to
represent exactly both a hollow ellipsoid and a bulky sphere. We use meshes with 3072
(ellipsoid) and 7168 (sphere) quadratic NURBS elements. This problem is solved using the
block Jacobi preconditioner and sI was set to 109. In this computation, both the membrane
and the inclusion perform a TU motion, i.e., the two of them rotate as a whole around

§The term compound capsule was recently used in [68]. However, following the terminology of [16, 67],
the authors do not use compound capsules, but bilamellar capsules, i.e., a capsule inside another capsule.
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Figure 6: Parameter sweep of sI . This study verifies that the mass conservation equation is adequately
enforced near the fluid-solid interface. a) Geometrical description of the considered problem together with
the boundary conditions imposed. b) Relative area change of RBCs in parabolic flow at t = 1.1 s with
∆t = 0.00025 s.

their center of gravity. A TU motion is characterized by its average frequency which in
this case is 4.68 s−1 for both the inclusion and the membrane. In Fig. 5 b), we show
how the inclination angle varies in time. Fig. 5 c) displays the streamlines colored by the
velocity magnitude in a diagonal plane of the cube and close to the compound capsule at
time t = 0.23 s. Fig. 5 d) displays the z component of the velocity on the plane indicated
in Fig. 5 a). This component is responsible for the TU motion of the membrane.

4. Numerical simulations of capsules and compound capsules in parabolic flow

In this Section, we study the behavior of our cell mimics in flows driven by a pressure
gradient. For low Reynolds numbers and in the absence of solids this produces parabolic
flows. We study how the flow is modified by capsules and compound capsules and the
motions undergone by our cell mimics.

4.1. Adjusting sI so as to enforce the incompressibility constraint at the interface

We start deciding a suitable value of sI . Finding an adequate value of sI is, in principle,
a problem-dependent task and it should be done for each type of problem.

The domain Ω is the rectangle of 0.003 × 0.001 cm2 shown in Fig. 6 a). Periodic
boundary conditions are applied in the horizontal direction and no-slip boundary conditions
are applied in the top and bottom walls. The pressure gradient is applied as a body force
defined by g = (1666.66 dyn/cm3, 0 dyn/cm3). This leads to velocities that are within
the range found in microcirculation [55]. Six capsules with the RBC shape defined in [57]
are evenly distributed in the horizontal direction with its long side perpendicular to the
flow direction as shown in Fig. 6 a). The thickness of the RBC is h = 5 · 10−7 cm. The
remaining physical parameters are taken as follows: µ = 0.012 g/(cms), ρ1 = 1.025 g/cm3,
ρ2 = 1.1 g/cm3, and Gm = 7500 dyn/cm2.
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(a) Problem setup (b) t = 0.025 s

(c) t = 0.125 s (d) t = 0.35 s

(e) t = 0.625 s (f) t = 1.5 s

Figure 7: Capsule in parabolic flow. a) Geometrical description of the problem together with the boundary
conditions applied. b)-f) Snapshots describing the lateral migration of the capsule induced by the variation
in the shear rate. The capsule undergoes a transitory tank-treading motion until it gets its final parachute-
like symmetric shape shown in f). A small portion of the membrane is colored in black so that the TT
motion can be observed.
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An Eulerian mesh with 384 × 128 cubic NURBS elements is used to represent the
rectangle. A Lagrangian mesh with 1×328 quadratic NURBS elements is used to represent
each RBC. The time step used in the computation is ∆t = 0.00025 s.

In this simulation, RBCs acquire a nearly constant shape at time t = 0.45 s. By time
t = 1.1 s, the cells have already looped twice the periodic domain. Fig. 6 b) plots the value
of rA for different values of sI at time t = 1.1 s. As in Section 3.3, the spurious area change
decreases as we rise the dimensionless parameter sI . Again, the number of linear iterations
per nonlinear step increases with the value of sI , but the number of nonlinear iterations per
time step decreases with the value of sI . In this case, the computational time was lowest
for sI = 108. However, we will use the value sI = 109 in the remaining simulations of this
Section to have a more accurate result.

In the simulations shown in Section 4, the relative perimeter change was always lower
than 0.03. This implies that in this aspect, the results are even better than in the previous
Section.

4.2. Dynamics of a capsule

In this Section, we consider an off-center capsule and study its motion and shape evo-
lution. The domain is the rectangle of 0.002 × 0.001 cm2 drawn in Fig. 7 a), which is
discretized using an Eulerian mesh with 256× 128 cubic NURBS elements. The geometry
of the capsule is a hollow ellipse with thickness h = 5 ·10−7 cm and semiaxes a = 0.0002 cm
and b = 0.0001 cm. The initial position of the capsule is indicated in Fig. 7 a). The
capsule is discretized using a Lagrangian mesh with 1 × 360 quadratic elements. The re-
maining physical parameters are the following: µ = 0.012 g/(cm s), ρ1 = 1.025 g/cm3,
g = (1666.66 dyn/cm3, 0 dyn/cm3), ρ2 = 1.1 g/cm3, and Gm = 7500 dyn/cm2. The time
step is ∆t = 0.00025 s.

In a flow driven by a pressure gradient, vesicles and RBCs undergo a lateral migration
towards the central region of the tube where the shear rate is minimal [69, 70, 71]. Figs.
7 b) to 7 f) describe this migration process for the considered capsule. During the lateral
migration, the capsule varies its shape from a hollow ellipse to a parachute-like shape,
which is often acquired by RBCs in small tubes [71]. Finally, we would like to mention
that the membrane undergoes a tank-treading motion while the solution to the problem
is non-symmetric. A small piece of the membrane is colored in black in order to show
this motion in Figs. 7 b)-7 f). Once the capsule acquires a symmetric geometry, i.e., the
parachute-like shape, the tank-treading motion stops.

4.3. Rheology of RBCs

In large arteries and veins, the concentration of RBCs acquires a nearly constant value
with average 45%. However, in microcirculation, the concentration of RBCs varies strongly
between different vessels due to the so-called plasma skimming effect [72]. In this Section,
we consider different numbers of RBCs which are, in all cases, evenly distributed in the
parabolic flow defined in Section 4.1. Our aim is to analyze important hemorheological
properties such as, e.g., the F̊ahræus and the F̊ahræus-Lindqvist effects.
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Figure 8: In silico evaluation of hemorheological properties of blood. (a) F̊ahræus effect. As the con-
centration of RBCs increases, the difference between the mean velocity of RBCs and the mean velocity
of blood plasma diminishes. (b) Thickness of the cell-free layer with respect to the tube hematocrit. (c)
F̊ahræus-Lindqvist effect. The presence of RBCs increases the apparent viscosity of blood. (d) Blunt
velocity profiles for different concentrations of RBCs. (e) Velocity magnitude and deformed RBC shapes
for Ht = 0.2573. (f) Velocity magnitude and deformed RBC shapes for Ht = 0.4290.
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There are two different ways to measure the concentration of RBCs which are the tube
hematocrit (Ht) and the discharge hematocrit (Hd). In a two-dimensional setting, Ht is the
ratio of the area enclosed by the RBCs to the blood area and Hd is the ratio of the RBCs
flow to the blood flow. In this Section we consider five cases: four RBCs (Ht = 0.1716),
six RBCs (Ht = 0.2573), eight RBCs (Ht = 0.3431), ten RBCs (Ht = 0.4290), and twelve
RBCs (Ht = 0.5147). In microcirculation, (Ht) and (Hd) are significantly different and this
phenomenon is known as F̊ahræus effect. Thus, we define ζ as

ζ =
Ht

Hd

=
vRBCs

vm
, (23)

where vRBCs is the mean velocity of RBCs and vm is the mean velocity of blood. It is
known that ζ depends on the concentration of RBCs, the tube diameter (width in our two-
dimensional setting), and the strength of the flow. Fig. 8 a) plots the values of ζ for the
five different tube hematocrits considered. In accordance with the empirical laws obtained
from in vitro and in vivo experiments [73, 74, 75], ζ increases with the value of Ht. The
F̊ahræus effect is a consequence of the different mean velocities of RBCs and blood plasma.
These two velocities are significantly different in small tubes due to the fact that RBCs
tend to travel in the central region of the tube where the velocity is higher. Furthermore,
a cell-free layer is known to develop in the boundary of the tube [76]. The thickness of the
cell-free layer (hcf ) is plotted in Fig. 8 b) for the five different tube hematocrits considered.

In small tubes, the presence of RBCs affects the flow resistence for a certain pressure
gradient, i.e., blood behaves as a non-Newtonian fluid where the viscosity is no longer
constant. This phenomenon is known as F̊ahræus-Lindqvist effect. We define η as the
ratio of the blood plasma flow, i.e., the flow of a simulation where only blood plasma is
considered (QP ) to the blood flow, i.e., the flow considering both blood plasma and RBCs
(Q). Thus,

η =
QP

Q
=
vP
vm
, (24)

where vP is the mean velocity of the flow when only blood plasma is considered in the
simulation. The value of η depends on the concentration of RBCs, the tube diameter, and
the strength of the flow. The parameter η is often called relative apparent viscosity since
a Newtonian fluid with viscosity ηµ would have the same mean velocity than blood for the
particular pressure gradient and tube width considered. Fig. 8 c) plots the values of η
for the five tube hematocrits considered. Consistently with empirical laws obtained from
in vitro and in vivo experiments [73, 74, 75], η increases with the value of Ht. We have
also computed the velocity profiles once the RBCs have acquired a nearly constant shape.
The results for blood plasma and the considered tube hematocrits are plotted in Fig. 8 d).
As observed in [77], the velocity develops a blunt profile due to the presence of the RBCs.
Finally, Figs. 8 e) and f) show the deformed RBC shapes at time t = 1 s for Ht = 0.2573
and Ht = 0.4290, respectively.

24



Figure 9: Circulating tumor cell going through a tube narrowing. Problem description of our two-
dimensional setting.

4.4. CTC passing through a channel narrowing

In this Section, we consider a CTC going through a narrowing. The computational do-
main is depicted in Fig. 9. The flow is driven by the forcing g = (1666.66 dyn/cm3, 0 dyn/cm3).
No-slip boundary conditions are applied in the vertical direction and periodic boundary
conditions are applied in the horizontal direction. The CTC is modeled using a compound
capsule. The membrane is a hollow circle with radius rm = 0.0005 cm and thickness
h = 5 · 10−7 cm. The inclusion is a circle of radius ri = 0.0002 cm. The remain-
ing physical parameters are: µ = 0.012 g/(cm s), ρ1 = 1.025 g/cm3, ρ2 = 1.1 g/cm3,
Gm = 2500 dyn/cm2, Gi = 10 dyn/cm2.

An Eulerian mesh with 384 × 128 cubic NURBS elements is used to represent the
channel. Lagrangian meshes with 1 × 768 and 40 × 192 quadratic NURBS elements are
used to represent the membrane and the inclusion, respectively. The time step used in the
simulation is ∆t = 0.00025 s.

Fig. 10 plots the velocity magnitude along with the streamlines at different time steps.
These snapshots describe how the CTC deforms in order to pass through the tube narrow-
ing. The velocity of the flow decreases while the CTC is inside of the narrowing. Moreover,
The highest deformation of the nucleus takes place when the CTC is about to leave the
narrowing; see Fig. 10 e). The CTC creates two recirculation regions when it is entering
the narrowing as shown in Figs. 10 b) and c). Recirculation regions appear as well when
the CTC is leaving the narrowing; see Figs. 10 e) and f). Due to the symmetry of the
simulation, there is no TT motion of the membrane at any time.

5. Conclusions and future work

This paper shows that our NURBS-based immersed FSI method is able to capture
the behavior of capsules under different flow conditions as long as the incompressibility
constraint is adequately satisfied close to the fluid-solid interface. In order to do so, a
parameter sweep needs to be performed in advance so as to find a good balance between
constraint accuracy, convergence of the solution and computational efficiency. Our results,
which are in agreement with experimental and numerical works [16, 71, 74, 75, 76, 77],
show that capsules, modeled as solid-shell NURBS elements, are good numerical proxies
for red blood cells.
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(a) t = 0.075 s (b) t = 0.125 s

(c) t = 0.2 s (d) t = 0.3 s

(e) t = 0.426 s (f) t = 0.56 s

Figure 10: Snapshots of the velocity magnitude along with the streamlines for a CTC going through a
tube narrowing. Note the different scale for each time. The highest deformation of the nucleus appears
when the CTC is about to leave the narrowing. The velocity decreases while the CTC is passing through
the narrowing. Recirculation regions appear when the CTC is entering and leaving the narrowing.

Inspired by the compound vesicle model presented in [16], we propose hyperelastic
compound capsules as a numerical proxy for nucleated cells embedded in flow, such as,
e.g., WBCs and CTCs. Our results for the dependence of the inclination angle and tank-
treading frequency with the filling fraction are in agreement with results for compound
vesicles [16]. Additionally, our geometrically-flexible FSI approach enables us to consider
a channel narrowing and analyze how a CTC passes through it. A deeper understanding
of this process may provide ideas to improve existent techniques of CTC sorting [78].

Although we have focused on WBCs and CTCs, hyperelastic compound capsules can
also be of interest to predict the behavior of composite core-shell microparticles, which
can in turn help to understand the mechanical behavior of analagous biomaterials, such as
liposomes [79]. The fact that a compound capsule accounts for mechanical strains of the
shell and deformability of the nucleus is a first step to better characterize the mechanical
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behavior of cells. Recent developments in microfluidics have shown the importance of cell
deformability as a biomarker, allowing for metastatic cancer cells to be separated from
blood cells, benign cancer cells and normal tissue cells from the same origin by means of
inertial fluid effects [80]. In this regard, we believe that the combination of our immersed
FSI method, which does not neglect inertial effects, with compound capsules looks highly
promising to model these systems, even though more rigorous validation is required. Fur-
ther improvements of this work include extending the FSI model to be able to handle
different viscosities for the fluid inside and outside the membrane, comparing different ma-
terial models for the membrane, and studying the interaction between RBCs and CTCs in
microcirculation.
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