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Abstract

This paper deals with the use of analysis-suitable T-splines of arbitrary degree in com-
bination with isogeometric collocation methods for the solution of second- and fourth-order
boundary-value problems. In fact, analysis-suitable T-splines appear to be a particularly
efficient locally refinable basis for isogeometric collocation, able to conserve the cost of only
one point evaluation per degree of freedom typical of standard NURBS-based isogeomet-
ric collocation. Furthermore, T-splines allow to easily create highly non-uniform meshes
without introducing elements with high aspect ratios; this makes it possible to avoid the
numerical instabilities that may arise in the case of problems characterized by reduced reg-
ularity when Neumann boundary conditions are imposed in strong form and elements with
high aspect ratio are used. The local refinement properties of T-splines can be also suc-
cessfully exploited to approximate problems where point loads are applied. Finally, several
numerical tests are herein presented in order to confirm all the above-mentioned features,
as well as the good overall convergence properties of the combination of isogeometric col-
location and analysis-suitable T-splines.
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1. Introduction

Isogeometric analysis (IGA) was first introduced ten years ago by [1] with the main aim
of bridging Computer Aided Design (CAD) and Finite Element Analysis (FEA). The basic
IGA concept, based on the isoparametric paradigm, consisted of adopting the same basis
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functions used for geometry representations in CAD systems — such as, e.g., Non-Uniform
Rational B-Splines (NURBS) — for the approximation of field variables. The original goal
was a cost-saving simplification of the typically expensive mesh generation and refinement
processes required by standard FEA. In addition, thanks to the high-regularity properties
of its basis functions, IGA showed a better accuracy per-degree-of-freedom and an enhanced
robustness with respect to standard FEA [2]. Such a superior behavior was exploited in a
number of applications ranging from solids and structures (see, e.g., [3,4, 5,6, 7, 8,9, 10, 11]
to fluids (see, e.g., [12, 13, 14, 15, 16] and fluid-structure interaction (see, e.g., [17, 18, 19,
20, 21, 22, 23, 24, 25]). Moreover, the newly available higher regularity opened also the
door to geometrically flexible discretizations of higher-order partial differential equations
in primal form such as, e.g., phase-field models [26, 27, 28, 29, 30, 31|, Kirchhoff-Love shells
(32, 33, 34], among others.

A well-known important issue of IGA is related to the development of efficient inte-
gration rules able to reduce the high array formation costs induced by standard Gaussian
quadrature, in particular when higher-order approximations are employed. Ad-hoc quadra-
ture rules were proposed by several authors (cf., among others, [35] and references therein),
but the development of a general and effective solution for Galerkin-based IGA methods
is still an open problem. In an attempt to address this issue taking full advantage of the
special possibilities offered by IGA and in particular by the available higher regularity,
isogeometric collocation (IGA-C) schemes were proposed in [36, 37]. The main idea con-
sisted of the discretization of the governing partial differential equations in strong form,
within the isoparametric paradigm, reducing the number of evaluations needed for array
formation to only one per degree of freedom. The aim was to optimize the computational
cost still relying on IGA geometrical flexibility and accuracy'. Detailed comparisons with
both IGA and FEA Galerkin-based approaches were carried out in [38], showing IGA-C
advantages in terms of accuracy versus computational cost, in particular for higher-order
approximation degrees. Since its introduction, many promising significant works on IGA-
C were published in different fields, including phase-field modeling [39], contact [40, 41],
nonlinear elasticity [41], as well as several interesting studies in the context of structural el-
ements [42, 43, 44, 45, 46]. A version of IGA-C based on generalized B-splines was recently
proposed in [47].

It is important to remark that a fundamental ingredient towards the full success of any
computational method is represented by its capabilities in terms of local refinement, and,
clearly, IGA-C cannot be an exception. Accordingly, a locally refinable version of IGA-C,
based on hierarchical splines, was introduced in [38]. The results proposed in that work are
surely promising and convincing, but it has also to be noted that, to avoid linear dependence
or instability problems, the concept of “weighted IGA-C” needed to be introduced, leading
to a higher number of evaluations per degree of freedom in the transition regions between
refinement levels.

'In general, IGA collocation features look particularly attractive when evaluation and formation costs
are dominant, as in the case, e.g., of explicit structural dynamics [37].



The main goal of the present work is to introduce a new locally refinable version of
IGA-C based on analysis-suitable T-splines (ASTS). In fact, ASTS-based IGA probably
represents so far the most promising and studied locally refinable version of isogeometric
analysis? and, as a consequence, exploring the potential guaranteed by the combination of
IGA-C and T-splines looks like a natural way to go. In addition, the use of ASTS within
IGA-C avoids the need of resorting to the above-mentioned weighted collocation concept
needed in the case of hierarchical splines, thus conserving the cost of only one evaluation
per degree of freedom typical of NURBS-based IGA-C.

We also highlight that one of the drawbacks of NURBS-based IGA-C, recently observed
in [40], is the fact that spurious oscillations in the numerical solution may arise in the case
of problems characterized by reduced regularity, when Neumann boundary conditions are
imposed in strong form and elements with high aspect ratio are used. The adoption of
T-splines may be of help also in these situations, allowing to easily create highly non-
uniform meshes without introducing elements with high aspect ratios, and thus avoiding
the appearance of spurious instabilities.

Finally, another problem that, to our knowledge, has still to be tackled in the context
of IGA-C is the application of point loads, which have to be modeled as approximate Dirac
deltas. To be properly solved, such a problem clearly requires a strong local refinement
around the load point of application, and this could be easily guaranteed by the use of
ASTS.

For all the above reasons, the adoption of analysis-suitable T-splines of arbitrary degree
within isogeometric collocation methods looks particularly attractive, and this work aims
at revealing its potential for the solution of second-order and fourth-order boundary-value
problems.

The paper is organized as follows. In the second section, a detailed overview on T-
splines and their analysis suitable version is given, while the third section is devoted to the
description of isogeometric collocation methods for second-order and fourth-order problems.
In the fourth section several numerical tests are presented to show the performance of
the proposed combination of isogeometric collocation and analysis-suitable T-splines; these
include four second-order problems characterized by different geometries and solutions that
can be regular, singular, or presenting sharp layers or spikes, as well as a fourth-order
problem consisting of a simply supported circular Kirchhoff plate loaded by a point force.
Finally, in the last section, conclusions are drawn.

2. T-spline overview

In this Section, we present a short overview of the T-spline technology. T-splines were
originated in the design field [48, 49, 50] as a generalization of NURBS in order to cir-
cumvent some of the existent limitations of NURBS surfaces, namely, the lack of local
refinement and the difficulty to create watertight surfaces in general cases. The amount of

2See the following Sect. 2 for an overview on T-splines, including the basic references on the topic.



degrees of freedom needed in order to perform finite element analysis in an accurate way
is typically much higher than the number of degrees of freedom that we need to represent
exactly a certain geometric design. As a consequence, the geometrical model coming from
a CAD program is generally refined previously to be used in isogeometric analysis, which
makes even more important the ability to perform local refinement. Pursuing this aim,
T-splines were recently brought to analysis [51]. Relevant advances have been carried out
since then: mathematical background of T-splines has been studied [52, 53, 54, 55], several
procedures to create volumetric T-splines have been designed [56, 57, 58, 59, 60|, the con-
version of a trimmed NURBS surface to an untrimmed T-spline surface was tackled in [61],
the conversion of an unstructured quadrilateral mesh to a standard T-spline surface was
explained in [62], and ASTS-based isogeometric analysis was applied to several problems
in computational mechanics [3, 63, 64, 65, 66, 67, 68, 69, 70]. In the design realm, cubic T-
splines are prominent, but arbitrary-degree T-splines have recently received attention [71].
Naturally, the need for flexibility in the order of the approximation becomes more pressing
when design is to be integrated with analysis. Here, we describe analysis-suitable T-splines
of arbitrary degree in two dimensions (relying on their existing mathematical background
[53, 54]) and apply them to isogeometric collocation. The main difficulty stems from the
fact that T-splines of even and odd degree are generated in a slightly different way. In our
presentation, we assume that the reader is familiarized with NURBS-based isogeometric
analysis [2] and the concept of Bézier extraction [72, 73]. Under that assumption, this
Section is practically self-contained. For simplicity, we use the same degree in both direc-
tions, but our algorithms can be easily extended to the general situation following the ideas
presented in [53]. Throughout the paper, the degree of the functions will be denoted by p.

2.1. T-mesh in index space and knot interval configuration

The most fundamental object of the T-spline technology is the so-called T-mesh in index
space. Although there are slightly different definitions of the T-mesh in index space in the
literature, here we follow that given in [51]. When no confusion arises, we will simply use
the term T-mesh in lieu of T-mesh in index space. Essentially, the T-mesh in index space
is a polygonal tiling of a two-dimensional region, which encodes the topological information
necessary to generate T-splines. Fig. 1(a) shows a sample T-mesh in index space. The
polygons of the T-mesh are typically referred to as faces®. The corners of the faces are
called nodes or vertices, and a line joining (exactly) two vertices is an edge. An essential
difference of the T-mesh in index space with respect to its NURBS analogue is the presence
of T-junctions, which are similar to hanging nodes in finite element analysis [see the blue
squares in Fig. 1(a)]. Note that we exclude ab initio the presence of extraordinary nodes
(74, 64, 75] in the T-mesh. To our knowledge, defining splines with C! or higher continuity

in the propinquity of an extraordinary node is still an open problem, which constitutes a

3Qccasionally, the word element is used in the literature as a synonym of face, but we will reserve it for
something else.
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Figure 1: (Color online) (a) T-mesh in index space with twelve T-junctions marked with blue squares. (b)
Valid knot interval configuration for the T-mesh represented in Fig. 1(a). The pentagons, squares and
triangles correspond to knot intervals of 1, 1/2, and 0, respectively. This knot interval configuration is
valid for p = 2 and p = 3, which are the cases used in this Section to present the T-spline technology.

significant obstacle for the application of our collocation methods?.

Once the concept of T-mesh has been introduced, our goal is to define spline functions
over the T-mesh. These functions are called T-spline blending functions, and will be even-
tually used for analysis. To construct T-spline blending functions, we need to define a
valid knot interval configuration. A knot interval configuration is defined by assigning a
non-negative real number to each T-mesh edge. These non-negative real numbers are called
knot intervals and may be interpreted as the difference of two adjacent knots [49]. We may
also think of knot intervals as the length of the edges in a parametric space. We employ
knot interval configurations which satisfy two conditions: (1) the knot intervals assigned
to opposite sides of a given T-mesh face must sum to the same value; (2) the T-mesh has
int(p/2) outer rings of zero-length knot intervals, where int(-) represents the integer part
of a real number. Fig. 1(b) shows a valid knot configuration of the T-mesh depicted in
Fig. 1(a). Condition (1) is illustrated by the red face in Fig. 1(b). In particular, in the
horizontal edges, we have one knot interval of value 1 in the bottom side and two knot
intervals of value 1/2 in the top side. The fulfillment of this condition guarantees that
if the T-mesh is refined removing all T-junctions, there will be an underlying parametric
space which is well defined. Condition (2) is convenient because it permits to infer easily
the number of T-spline blending functions associated to a T-mesh. In particular, given

4In [64], we consider a hybrid variational-collocation method for fluid-structure interaction which may
be used on T-meshes with extraordinary nodes. The reason for this is that the algorithm is designed in a
way that no derivatives need to be computed at the extraordinary nodes.
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Figure 2: (Color online) Extended T-meshes associated to the T-mesh represented in Fig. 1(a) for p = 2
and p = 3. Face extensions are represented by black dashed lines and edge extensions are marked with
solid red lines. Note that the red arrows hide the T-mesh edges located underneath them in the plot.

a T-mesh, the global number of blending functions associated to it equals the number of
vertices for odd-degree splines and the number of faces for even-degree functions.

Remark:

We would like to mention that some authors define the T-mesh in index space and
the knot interval configuration by setting p zero-length outer rings [53]. Although
this definition has certainly some advantages, here we use the definition given in [51]
to maintain the correspondence between the number of functions and the number of
vertices (odd degree) or faces (even degree).

2.2. Extended T-mesh and elemental T-mesh

To define the extended T-mesh and the elemental T-mesh, we need to introduce first the
concept of T-junction extension. A T-junction extension is composed of a face extension
and an edge extension. A face extension is a directed line segment obtained as follows: we
start at the T-junction and move in the direction of the missing edge until int((p + 1)/2)
orthogonal edges are encountered. Face extensions are marked with black dashed arrows
in Fig. 2 for p = 2 [panel (a)] and p = 3 [panel (b)]. We define an edge extension as a
directed line segment obtained by moving in the opposite direction of the face extension
until int(p/2) orthogonal edges are encountered. Edge extensions are highlighted with red
solid arrows in Fig. 2. When the T-junction extensions are plotted on top of the T-mesh,
we get the extended T-mesh. The extended T-meshes for p = 2 and p = 3 corresponding
to the T-mesh of Fig. 1(a) are shown in Fig. 2.
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Figure 3: (Color online) Elemental T-meshes associated to the T-mesh represented in Fig. 1(a) for p = 2
and p = 3. The rectangles which are not shaded are not part of the elemental T-mesh. By comparing
these plots with the extended T-meshes, it may be observed how faces of the T-mesh in index space have
been split by face extensions giving rise to two elements in the elemental T-mesh.

The elemental T-mesh is a new polygonal tiling that may be obtained from the extended
T-mesh and the knot interval configuration. The polygons that form the elemental T-mesh
will be called elements. T-mesh faces of zero area (i.e., zero measure) do not contribute
elements to the elemental T-mesh and all T-mesh faces of non-zero area give rise to at
least one element in the elemental T-mesh. Those which are not crossed by a T-junction
extension give rise to exactly one element, and those crossed by T-junction extensions may
give rise to more than one. Fig. 3 shows as shaded areas delimited by black lines the
polygons that compose the elemental T-mesh. Note, in particular, how some T-mesh faces
have been split into two elements in the elemental T-mesh. Notice also how the zero-surface
faces do not form elements (see the outer ring). The elements of the elemental T-mesh are
important objects for analysis because they delimit areas in which all T-spline blending
functions are C*°. The elements of the elemental T-mesh will be pushed forward to physical
space using the isoparametric concept. Each element of the elemental T-mesh gives rise to
a so-called Bézier element [73]. Bézier elements are suitable regions to perform numerical
integration in an isogeometric analysis code based on variational forms.

2.3. Anchors, local knot interval vectors and local blending function coordinates

An anchor is simply a point of the index space to which we associate a T-spline blending
function. The anchor associated to the A-th T-spline blending function will be denoted by
s4. Note that here, and in what follows, indices denoted by capital letters take values of
the global function numeration. Given a T-mesh in index space, the anchors are located
at the vertices if p is odd and at the centers of the faces if p is even. Using the T-mesh
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in Fig. 1(a) as our starting point, Fig. 4 shows the anchors associated to three particular
blending functions with global indices A, B, and C, for even- (left) and odd-degree (right)
splines. The location of the anchors is marked with a star, a square and a pentagon in
the plot. Once we know the location of the anchor for a given function, we need to define
a local knot interval vector in each direction of the index space. Let us denote by AgZE"
the local knot interval vector of the @-th function (or anchor) in the direction i, where

= 1 represents the horizontal direction and i = 2 the vertical one. The vector Ain
has length p+ 1 for all @ and for all 4, and may be written in component notation as
NSl = {AQfl, Asz, . AQng} A given component of the vector AgZE! corresponds to
the knot interval associated to a particular edge of the T-mesh that follows the direction <.
Let us now explain how to compute the local knot interval vectors of a given anchor from the
knot interval configuration. Put simply, the problem boils down to selecting a set of edges
associated to the anchor and fill Ag=" with their knot intervals. To identify those edges,
we proceed as follows: Let us illustrate the process for ¢ = 1, that is, let us define the vector
AgE', which is associated to the horizontal direction. The procedure is identical for the
vertical direction. The first step of the process is to place a horizontal segment centered in
the anchor with sufficient length to cross exactly p+2 orthogonal edges. Note that “centered
in the anchor” means that the segment crosses the same number of orthogonal edges on
the left- and right-hand sides of the anchor. This horizontal segment is represented in Fig.
4 by a thick, semi-transparent red line (for the time being, let us restrict our attention to
the anchors s4 and sg). The fact that the segment crosses p + 2 orthogonal edges implies
that it spans the length of a particular set of p + 1 edges. The knot intervals associated
to those edges taken from left to right are the components of Ag='. Note that condition
(1) imposed to the knot interval configuration in Sect. 2.1 makes the choice of edges well
defined. When an anchor is sufficiently close to the boundary to prevent us from defining
a large enough segment so as to cross p+ 2 orthogonal edges, we will add zero-length edges
accordingly (see the anchors s¢ in Fig. 4, which include thick black lines indicating the
number of extra zero-length edges that need to be added). When we repeat this process in
the vertical direction we obtain a cross centered in the anchor (defined by the horizontal
and vertical red segments), which defines the support of the function in the obvious way.
The supports are marked in Fig. 4 as rectangular colored areas. Using the bottom-left
corner of each of these colored areas as origin, we can define the so-called local blending
function coordinates. Note that there is one of these systems associated to each of the
anchors and that they have been marked in Fig. 4 with arrows. Using as reference system
the local blending function coordinates associated to a generic anchor sg, the support of

the @-th function, denoted EIQ, is given by Cg = [0, ZPH AQ§ | x [0, ZPH AQ{fZ]

2.4. T-spline blending functions, Bézier extraction, and geometrical mapping

We proceed now to define the T-spline blending function associated to a generic anchor
A. This function will be denoted by R4. With the information given in Sect. 2.3, it
is possible to anticipate which basis functions will have support on a given element e.
To simplify notation, we introduce a local numbering for the blending functions as it is
typically done in the finite element method. Here, we follow [76], and use the array IEN

8
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Figure 4: (Color online) Anchors, local knot interval vectors, and local blending function coordinates
for p = 2 (left) and p = 3 (right). The local knot interval vectors associated with the A-th, B-th, and
C-th global blending functions for p = 2 are A 2! = {0,1,1}, A, 52 = {1,1,1}, ApE! = {1,1,1},
ApE? = {1,1,1/2}, AC§1 ={0,0,1}, AcE? = {1,1,0}. The local knot interval vectors associated with
the A-th, B-th, and C-th global blending functions for p = 3 are A4E! = {0,1,1,1}, ALE2 = {1,1,1,1},
ApE' ={1/2,1/2,1/2,1}, ApE2 = {1,1,1/2,1/2}, AcE! = {0,0,0,1}, AcE2 = {1,1,1,0}.

to establish a correspondence between local and global numbering. In particular, we use
the formula A = IEN(q,e), where A is a global blending function index, a is a local-to-
element blending function counter, and e denotes the element number. Let us define the
vector N = {N¢}"_, where the functions N¢ are progenitors of the blending functions
with support on the element e. Note that, as emphasized with the superscript e in n®, the
length of the vector IN® changes from one element to another. This is a peculiar feature
of T-splines which does not hold true for NURBS-based analysis. The concept of Bézier
extraction permits computing IN° as a linear combination of the canonical tensor product
Bernstein polynomials defined on a fixed parent element, namely, [ = [—1, +1]2. This can

be expressed mathematically as
N°(§)=C"B(§) &<, (1)

where B = {BY }E’:{l) " is a vector containing the two-dimensional Bernstein polynomials of
degree p in the domain O (see [74] for a precise description). The linear operator C¢ can be
represented by a rectangular matrix and it is called (element) Bézier extraction operator.
Although we will not go into the details of the computation of C°, which may be found in
(73], we point out that the Bézier extraction operator is computed from the knot interval
configuration of the T-mesh using knot insertion.

In practical cases, it may be useful to utilize rational functions, typically to reproduce
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exactly a particular geometry. Given a set of global weights {wa}%_, and their local
counterparts for element e, namely, {w¢}, we can rationalize the functions in N¢ as

e e
R () = e l8)
> 1 Wi Vg (€)
where R¢ is the a-th rational T-spline blending function over the element e. This finalizes
the process of constructing the blending functions in parameter space.

Finally, to perform computations on non-trivial geometries, we need to map the parent
element to physical space using a geometrical mapping x¢ : [J — ¢ which goes from
the parent element to the Bézier element €2°. The basic information needed to produce
this mapping is a set of geometry control points {Pp}%_; and the set of weights we just
introduced, namely, {wp}}_,. A given geometry control point P4 will have local indices
associated, such that P4, = P;,. The same argument applies to weights. Thus, the geo-
metrical mapping local to element e can be defined as

(2)

z¢(§) =) PiR;(£) £eD. (3)

Using the T-spline geometrical mapping given by Eq. (3), we can get the blending functions
in physical space. In particular, the restriction of R4 to the element e is just the push
forward of RS. Eq. (3) will also be used to map the mesh to physical space. In summary,
as shown by Eqgs. (1)—(3), the use of Bézier extraction allows to use T-splines in a finite
element code modifying just the shape function subroutine.

Remark:

Fig. 5 shows the Bézier mesh and the control mesh associated to the T-mesh in
Fig. 1(a) for a particular affine mapping with p = 3. The Bézier mesh could also
be defined easily for p = 2 (or any other degree), but we do not report it here for
conciseness. However, for p = 2 (even degree, in general) we do not generate the
control meshes. For even-degree T-splines, due to the presence of T-junctions, there
may be triangles or hexagons in the control mesh. The connectivity of the control
points may be obtained from the dual T-mesh. A particular way to represent the
control mesh of even degree T-splines is given in [71].

2.5. Analysis-suitable T-splines

If no topological constraints are imposed to the T-mesh, the resulting T-spline blending
functions may not satisfy some relevant properties, such as, for example, linear indepen-
dence or polynomial partition of unity. Analysis-suitable T-splines are a subset of T-splines
which emanate from T-meshes satisfying a simple topological restriction, namely, no hori-
zontal T-junction extension intersects a vertical T-junction extension [55, 53]. ASTS retain
the local refinement capabilities of T-splines, while satisfying all the important mathemat-
ical properties of NURBS. In particular, the blending functions associated to ASTS satisfy
a priori the following properties:

10



(a) Bézier mesh, p =3 (b) Control mesh, p =3

Figure 5: (Color online) Bézier mesh and control mesh associated to the T-mesh represented in Fig. 1(a)
for a particular affine mapping with p = 3.

(1) Partition of unity
(2) Pointwise non-negativity
(3) Linear independence

Property (1) implies that affine transformations of a T-spline object in physical space may
be produced by simply applying the transformation to the control points. Properties (1)
and (2) guarantee that T-spline objects satisfy the convex-hull property. In [53, 54|, the
authors also prove that ASTS are dual compatible, which implies optimal approximation
properties.

3. Collocation algorithms for second- and fourth-order problems

In this section, we describe our algorithm for isogeometric collocation using ASTS.
We focus on boundary-value problems, which involve second- and fourth-order partial-
differential operators on mapped geometries. Collocation methods require the evaluation
of the strong form of the equation at the so-called collocation points. Therefore, we need
to compute the derivatives of the shape functions in physical space up to the maximum
order attained in the PDE. Although straightforward, these computations are not standard
in computational mechanics, so we include them here for completeness.

3.1. High-order spatial derivatives of rational T-spline blending functions

Our starting point is the elemental geometric mapping introduced in Eq. (3). Assuming
this mapping is invertible, we define its inverse function £° : Q¢ — O such that °(£°(x)) =

11



x for all € Q°. Taking the derivative of this expression, we obtain the relation
(repeated indices sum) 7, & ; = dij, (4)

where ¢ and & are, respectively, the i-th component of ¢ and the a-th component of
£°. Latin and Greek indices denote spatial and parametric coordinates, respectively. An
index after a comma denotes partial differentiation, for example, zf, = 07 /0. Finally,
d;; is the Kronecker’s delta. To obtain the derivatives of the T-spline blending functions in
physical space, we start with the following identity

Ra(z () = R, (&) €€l (5)

Eq. (5) simply expresses the correspondence between basis functions in physical and para-
metric space. If we compute the derivative of Eq. (5), it follows that

(repeated indices sum) R, 2}, = R, (6)

i,

Multiplying this equation with & ; and using Eq. (4), we can easily obtain R, as

(repeated indices sum) Rya,; = R, & (7)

a,o Sa,tt

The higher-order spatial derivatives are obtained analogously, that is, deriving Eq. (5)
several times by way of the chain rule, and solving for the spatial derivatives using Eq. (4).
Proceeding this way, we obtain the second-, the third-, and the fourth-order derivatives,
which take on the expressions

(repeated indices sum)  Rai; = [Rg 5 — Ram T sl §5.50 (8)

(repeated indices sum)  Raijn = [Rg 05, — Bamn (5 50 oo + Trary Tng + Trap Tos)
= Ram % ap0) €0 €55 &5 (9)

(repeated indices sum)  Rajm = [Ry 05,6 — Bamng(Tgq6 Thp Toa T T gs Ty T
+ 'Tzl,aé IZ,'}/ me,B + x;,z;(xz,ﬁfy x;,a + xfn,a'y fo,B + x?n,aﬁ xf@(y))
- RA,mn(‘xz,,B'yé xin,oa + xi,ﬁ'y mfn,aé + xfb,ﬁ& xin,ory + xiuory(s mfb,ﬁ
+ fo,ﬁ/é lfn,aﬁ + xfn,aﬁé fo,ﬁ/ + xfn,aﬁy Iz,é)
- RA,m zfn,a,@w&]g;,i fg,j 'ey,k: Sg,l' (1())

The above formulas give the spatial derivatives of R4 in terms of the parametric derivatives
of its local counterpart R;. However, the functions R{ are rational splines defined as

wg Ny (§)

RZ (5) = we(f)

., where we(ﬁ):ngNf(ﬁ) (11)
b=1
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The function N is the lowest-level function in an isogeometric code, so let us compute the
derivatives of R¢ in terms of those of N¢. Using basic manipulations, we obtain

€ € € [ €
we, Nma g NZw

R ., = = 12
a,q we (we)Q ( )
which may be rewritten as
ws Nz(zia - Rtez wea
Re ., = : =. (13)

we
Proceeding analogously, we obtain
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The above formulas completely describe the computations needed to obtain the derivatives
of the basis functions in physical space up to order four.

3.2. Collocation method for second-order problems

We illustrate our collocation method for second-order PDEs using a classical example,
namely, Poisson equation. Let us assume that €2 is an open set, representing the problem
domain. The boundary of € is denoted I'. We call n the unit outward normal to I". We
assume that I' admits the decomposition I' = I'p UT'y with I'p N I'y = 0, where () denotes
the empty set. To guarantee the well-posedness of the problem, we impose the constraint
I'p # (), while 'y is allowed to be the empty set. The problem can be formulated as: given
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Q=R ur:T'p—Rand hr : 'y — R, find u : Q — R such that,

Au=f in €, (17)
u = ur on I'p, (18)
Vu-n = hr on I'n. (19)

Eqns. (18) and (19) represent the Dirichlet and Neumann boundary conditions, respec-
tively. We assume that ) can be represented by a T-spline geometrical object, which is
mapped from a rectangular parameter space. To accommodate in our formulation typical
numerical benchmarks (e.g., solutions on squares) and to fix ideas, we assume that the
corners of the parameter space are mapped to points with discontinuous normal in physical
space. We also allow for the data on the boundary to be discontinuous across the corners.
Since the corner points will be collocation points for the boundary conditions in our algo-
rithm for second-order PDEs, we need a procedure to define the normal and the boundary
data at those points. Following the standard convention and the theory developed in [37],
at those points we just take the arithmetic average of the data computed from the two
intersecting boundary edges. In what follows, we will use the notation n* to refer to a
modified normal which takes the value n everywhere except at the corners, where it has
been redefined using the averaging procedure. Similarly, we use the notation u} and hf.

Using the same geometrical mapping that we utilized to construct €2, we can define a
functional space in physical coordinates to approximate the solution to our problem. Let us
call that space V" = span{R4}"i_,. The R4’s are guaranteed to be linearly independent due
to the use of ASTS, so dim(V") = n. Then, we can postulate the following approximation
to the solution

ul(x) = ZuARA(w), (20)

which reduces our problem to finding the value of the u4’s for A = 1,...,n. The strategy
to compute the u4’s boils down to imposing that u” satisfies the PDE or the boundary
conditions at a total of n collocation points in physical space, which gives rise to a square
system of equations. Note that we need u” to be at least C?-continuous in the neighborhood
of collocation points. The simplest way to satisfy this requirement is to take p > 2 in the
algorithm and define a knot interval configuration that produces functions of maximum
continuity. Let us call M" = {T3}%_, the set of collocation points in physical space.
Then, the problem can be stated as: find u"(x) = >_'\_, uaRa(x) such that

Au'(15) = f (TB) VTp € Q, (21)
W' (1) = ub (15) V15 € Tp, (22)
Vu" (1) - n* =k} (T5) Vrp €'y (23)

To complete the description of our algorithm we just need to define the location of the
collocation points, which controls the accuracy and stability of the method. In this article,
we use Greville points as our collocation sites. Each T-spline basis function has a Gre-
ville point associated that can be obtained from its local knot interval vector. To define
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the Greville point associated to the A-th function, we initially define the location of the
point using the local basis function coordinates defined in Sect. 2.3, and we use the usual
definition of Greville points, which for a spline of degree p is just the average of p knot
values (see [36]). Due to our choice to work with knot intervals, rather than knot values,
which is customary in the T-spline community, we report here the formula that expresses
the location of the Greville point in terms of the knot intervals, namely,

?Azli(pﬂ—k){AA&} (24)

P = Aagi

Once we know the location of the A-th Greville point in the local basis function domain,
we need to find its coordinates in the parent element. The latter will be denoted by T 4.
This is done in two steps using the classical affine mappings needed for Bézier extraction
which are explained in detail in [73]. First, we use the affine mapping that goes from
the local basis function coordinates to the domain of its corresponding Bézier element and
then we use the mapping that goes from the Bézier element to the parent element. The
Greville points in physical space are computed using the element geometrical mapping as
T4 = x°(T4). Fig. 6 shows the Greville points in physical space for the T-mesh shown
Fig. 1(a) using p = 2 and p = 3 for a particular geometrical mapping. Note that due
to our definition of the knot interval configuration and the local knot interval vectors, the
T-spline blending functions with support in the vicinity of the boundary behave similarly
to NURBS derived from open knot vectors. This naturally leads to some Greville points
falling on the boundary. These collocation points are used to impose boundary conditions.

Remark:

In isogeometric collocation methods, Neumann boundary conditions are usually col-
located as shown in Eq. (23). Dirichlet boundary conditions, however, are normally
built into the space strongly. Here, in order to simplify the algorithm, we decided
to collocate Dirichlet boundary conditions as shown in Eq. (22). Both approaches
are equivalent when we work with simple Dirichlet boundary conditions, such as for
example, constants.

3.3. Collocation method for fourth-order problems

We illustrate our collocation method for fourth-order PDEs using a classical example,
namely, the Kirchhoff plate model. As before, €2 and I" denote the problem domain and
boundary, respectively, and n the unit outward normal. We assume that the boundary
I' admits the decompositions I' = I, UT'g and I' = ', UT'y, with I';,yNTg = (0 and
I',NTy = 0. To ensure the well-posedness of the problem, we impose the constraint
Iy, # 0. We formulate the following boundary-value problem over the spatial domain € as
follows: given the functions g : Q@ — R, wp : I'y, = R, ¢opr : I'y, = R, Mp : I'yy — R, and
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(a) p=2 (b)p=3

Figure 6: (Color online) Bézier meshes associated to the T-mesh represented in Fig. 1(a) for a particular
affine mapping with p = 2 and p = 3. The green squares denote the locations of Greville points in physical
space.

Qr :T'g — R, find w: Q — R such that,

DA’w =g in € (25)
w = wr on Iy, (26)
—Vw-n=¢r on Iy, (27)
vDAw + (1 —v)Dn - (VVw)n = My on Iy, (28)
D(V(Aw)+ (1 —v)¥(w)) -n = Qr on T. (29)

Here, w is the deflection of the plate, D = Et3/(12(1 — v?)) is the bending stiffness of the
plate, v is the Poisson ratio, E is the Young modulus, t is the thickness of the plate, g is the
load per unit surface, wr is the prescribed deflection, ¢r is the prescribed rotation, My is
the prescribed bending moment, Qr is the prescribed effective shear which is a combination
of the shear forces and the twisting moments, and W(-) is the following third-order operator

Bw

T(w) = { gty } (30)

Oyd2x

As we did in Sect. 3.2, we use the Greville points as collocation points. Greville points in
physical space are computed exactly in the same way. The collocation algorithm, however, is
different. The difference stems from the fact that a well-posed fourth-order boundary value
problem requires two boundary conditions at each point of the boundary. Unfortunately,
if we imposed two boundary conditions at each Greville point that falls on the boundary
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and the PDE at all the interior Greville points, we would end up with more equations than
unknowns. To circumvent this problem, a new algorithm was proposed in [42] for NURBS-
based isogeometric collocation of Kirchhoff plates. Since such a recipe can be directly
applied also in the case of ASTS-based collocation, it is the solution adopted herein. In
the following we show the basic idea discussing a simple particular case; interested readers
are referred to [42] for further details.

Despite the adopted collocation strategy is sufficiently general to accommodate any
combination of boundary conditions represented by Eqgs. (26)—(29), we illustrate it focusing
on a simplified case where the same set of boundary conditions is applied on the entire
boundary. Accordingly, we consider a simply supported plate, that is, I, = I'y;y = T.
Displacement boundary conditions (w = 0) can be equivalently strongly enforced in the
space or collocated on all boundary collocation points. The problem is to properly collocate
the remaining equations, i.e., the bending moment boundary conditions (vDAw + (1 —
v)Dn - (VVw)n = 0) and the PDE (DA?w = g), guaranteeing to have a number of
equations equal to the number of unknowns. Our strategy is to collocate the PDE at all
Greville points skipping the two outermost layers, while the bending moment boundary
conditions are collocated only on boundary collocation points, following the additional
criteria that corner points are skipped and the equations corresponding to the two closest
points to a corner are averaged. In this way, the linear system of equations to be solved is
square and our algorithm is completely described. To give a visual example of which points
have to be used to collocate the PDE and the bending moment boundary conditions, we
report in Fig. 7 a T-mesh in parametric space along with its Greville points. The black
square Greville points are used to collocate the PDE, while the bending moment boundary
conditions are collocated either on blue star or green pentagon points; the equations relative
to green pentagon points adjacent to the same corner are then averaged. Note that red
circle Greville points are not used to collocate the PDE or the bending moment boundary
conditions.
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A T-mesh in parametric space with Greville points for p = 5
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Figure 7: (Color online) T-mesh in parametric space along with its Greville points. The black square
Greville points are used to collocate the PDE, while the bending moment boundary conditions are collocated
either on blue star or green pentagon points; the equations relative to green pentagon points adjacent to
the same corner are then averaged. Note that red circle Greville points are not used to collocate the PDE
or the bending moment boundary conditions.
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Figure 8: (Color online) Second-order problem with smooth solution. Numerical solution on three different
meshes using p = 4. The solutions are indistinguishable at the scale of the plot.

4. Numerical results

In this section, we present five numerical examples that illustrate the performance of
the proposed collocation methods based on analysis-suitable T-splines of arbitrary degree.
First, we consider second-order elliptic problems with smooth and rough solution fields. We
use these examples to investigate the numerical convergence rates of our algorithm. Then,
we solve a common benchmark problem for the advection-diffusion equation. The solution
exhibits boundary and internal layers where we use local refinement. We also consider a
reaction-diffusion problem which develops spikes in the solution to illustrate the advantages
of local refinement in this case. Finally, we apply our method to a Kirchhoff plate problem.
Here, we take advantage of local refinement in order to capture the deformations caused
by a point load in a mapped geometry. The code used to perform these simulations has
been developed on top of the scientific library PETSc [77, 78|.

4.1. Second-order problem with smooth solution
We focus on the reaction-diffusion boundary-value problem
—Autu=f in €, (31)
u=0 on I. (32)
The computational domain €2 is a quarter of an annulus situated in the positive quadrant of
the Cartesian coordinate system. The inner radius R; is equal to 1.0 and the outer radius

R, is equal to 4.0. We follow [38] and manufacture the source term f such that the exact
solution to the problem is

u(z,y) = 0(z,y)*[p(z,y)* — 1lp(z,y)* — 16]sin(z), (33)

where p(z,y) = /22 +y? and 0(x,y) = arctan(y/x) are the polar coordinates. Before
we proceed further, let us denote the L?*(2) norm of a function u by ||u||z: and its H!
seminorm by |u|g:. As usually, we take

1/2 1/2
|2 = (/ u2d§2> and [uly = (/ |Vu|2dQ) (34)
Q Q
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Figure 9: (Color online) Numerical convergence rates of rr2 and rg:. The data suggest that the algorithm
converges to the exact solution with rates O(p) and O(p — 1) for even and odd degrees respectively.

We define the error of the numerical solution as e" = u" —u. The L?*(2) norm and the

H'(Q) seminorm of the relative error are defined as
h h
I and 71 = ||€u‘|H: (35)
H

||6 12
[|ul| L2

T2 =

We solve this problem using quadratic, cubic, quartic, and quintic ASTS. We start consid-
ering a NURBS patch with 6 x 9 elements that represents the domain 2 exactly. Then,
we perform quad-tree refinement using three levels of refinement in each mesh as it is illus-
trated in Fig. 8. We choose this type of refinement to be able to compare with the data in
[38]. Fig. 8 also shows the numerical solutions for p = 4, which are indistinguishable at the
scale of the plot. In Fig. 9 we report the numerical convergence rates of rr2 and ry1. The
plots show the evolution of the errors with respect to N = y/n, which is the square root of
the total number of degrees of freedom. The data suggest that the rates of convergence are
of the type O(p) for even orders and O(p — 1) for odd degrees. These results are consistent
with those reported in [38].

Remarks:

1. One of the main advantages of NURBS-based isogeometric collocation is its effi-
ciency, due to the fact that only one point evaluation per degree of freedom is needed.
However, such an efficiency may be limited in many practical applications because
NURBS lack local refinement capabilities. As anticipated in the introduction, in
[38], isogeometric collocation was extended to hierarchical NURBS. This allowed lo-
cal refinement, but the one point evaluation per degree of freedom was lost in the
regions between levels of refinement due to the use of weighted collocation. The
generalization of isogeometric collocation to ASTS combines the advantages of the
two previous methodologies, allowing local refinement but still guaranteeing only one
point evaluation per degree of freedom.
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2. As highlighted earlier, IGA-C requires u” to be at least C?-continuous in the neigh-
borhood of collocation points, and the simplest way to satisfy this requirement is
to take p > 2 and define a knot interval configuration that produces functions of
maximum continuity. However, extensive numerical testing shows that also the C!
quadratic case appears to give good results in all situations®, which is a significant
practical result.

4.2. Second-order problem with rough solution

Here, we solve the Laplace equation on an L-shaped domain. More specifically, the
problem is solved on Q = [—1,1]?\ ([0, 1] x [—1,0]), as depicted in the left panel of Fig. 10.
The problem can be stated as

Au=0 in Q, (36)
u = ur on [I'p, (37)
Vu-n = hr on ['n. (38)

where I'p is composed by the re-entrant boundaries and I'y = I'\I'p (cf. the left panel of
Fig. 10). The functions ur and hr are defined in such a way that the exact solution is

utey) =l sin (2152 (39)

where p and 6 denote again the usual polar coordinates. It may be observed that the first
partial derivatives of u, which can be expressed as,

Ou _ 2sin(f/3) Ou _ 2cos(6/3)
or — 3¥p ' Oy  3Yp

tend to infinity as p tends to zero. Therefore, the exact solution of the problem is not
smooth and this is expected to create a barrier in the convergence rate if uniform refinement
is utilized. It is known, however, that local refinement can help alleviate this problem. The
goal of this example is to show how our algorithm performs in this situation. In our
computations, we take advantage of the existing symmetry in the problem and work with
half of the domain as indicated on the top of the middle panel of Fig. 10. Our initial mesh
is a NURBS patch with 10 x 10 elements which is plotted along with the corresponding
numerical solution in Fig. 10. Then, we subsequently add several levels of refinement in
order to have enhanced resolution close to the singularity as shown in the remaining panels
of Fig. 10. The solutions are indistinguishable at the scale of the plot, but the numerical
convergence rates shown in Fig. 11 are revealing. Here, we plot the evolution of 71 (see
Eq. (35)) as a function of N = /n for quadratic, cubic, quartic, and quintic ASTS. We
show data for uniformly (dashed lines) and locally (solid lines) refined meshes. For uniform

(40)

5Cleary, in correspondence of a collocation point of C'-regularity, a single value has to be assigned to
the discontinuous second derivative (e.g., the average of the different corresponding derivative values).
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Figure 10: (Color online) Problem domain and boundary decomposition showing the symmetry of the

problem (left). Making use of the symmetry, we compute the numerical solution on a uniform NURBS
mesh and several locally-refined T-spline grids using p = 2 (middle and right panels).
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Figure 11: (Color online) Numerical rates of convergence of ry2 and rg: using uniform (dashed lines) and
local refinement (solid lines). With uniform refinement the convergence rate stalls at approximately 0.6
for all p. Local refinement produces significantly higher apparent convergence rates.
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refinement the rate of convergence stalls at approximately O(0.6) irrespectively of p due
to the lack of smoothness of the solution. Local refinement allows to achieve an apparent
convergence rate which is significantly higher.

Remark:

In [40], it was reported the appearance of spurious oscillations in the numerical so-
lution if Neumann boundary conditions are collocated in the standard way when
the problem is characterized by a reduced regularity and elements have very high
aspect ratios. Two alternatives were proposed in [40] in order to fix this issue, the
so-called hybrid collocation and enhanced collocation methods. However, those tech-
niques introduce small drawbacks in the overall algorithm, namely, hybrid collocation
decreases the efficiency since the computation of boundary integrals is needed and
enhanced collocation requires to determine a user-defined constant. Within NURBS-
based IGA-C, the presence of elements with high aspect ratios is unavoidable in many
practical situations, since refinement is always global for a NURBS patch. Instead,
the local refinement properties of ASTS allow T-junctions making it possible to avoid
elements with high aspect ratios. For example, if the local refinement is done as in
Fig. 10, all elements have aspect ratio equal to one, except for a few elements with
aspect ratio equal to two due to T-junction extensions. Therefore, as the current
example clearly shows, the use of ASTS allows to collocate Neumann boundary con-
ditions in the standard way without giving rise to any spurious oscillation in the
numerical solution, also in the case of reduced regularity problems and highly locally
refined meshes.

4.8. Advection-diffusion with boundary and internal layers

This section analyzes a classical advection-diffusion example typically referred to as
advection skew to the mesh. The boundary-value problem can be written as

a-Vu—V-(kVu)=0 in (41)
u = ur on TI. (42)

where a denotes the (constant) velocity vector and « the diffusion coefficient. The velocity
field as well as the computational domain and ur are depicted in Fig. 12. The angle of the
velocity field is # = w/4. This is a classical benchmark in the literature of fluid mechanics
and stabilized methods [79, 80, 81]. However, we do not focus on stabilization here, but
on local refinement. The solution to the problem is controlled by a dimensionless quantity
called Péclet number, which is defined as

Pe = %, (43)

K

where L is a length scale of the problem. We take L = 1, which is the side length of
the problem domain. The Péclet number controls the relative strength of advection with
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Figure 12: (Color online) Problem description and boundary conditions for the advection-diffusion bench-
mark example.

respect to diffusion. It is known from theoretical developments that, for large Pe, the
diffusion operator is relevant only in thin layers characterized by the length scale ~ k/|al.
Therefore, for large Péclet number we expect sharp layers in the solution emanating from
the discontinuity points in the boundary data as depicted in Fig. 12. Unless such layers
are properly resolved by the mesh or a suitable stabilization is introduced, the numerical
solution is expected to present spurious oscillations.

We solve this problem for Pe = 10% using cubic ASTS-based collocation, without in-
troducing any stabilization term. We locally refine the mesh close to the boundary and
internal layers, using five levels of refinement as shown on the left hand side of Fig. 13. The
total number of degrees of freedom in the space that emanates from the mesh in n = 5492.
The right hand side of Fig. 13 shows the numerical solution using our algorithm. The color
scale goes from the minimum to the maximum value of the numerical solution. It can be
observed that the usual undershoots and overshoots of the numerical solution are rather
small with our algorithm, which shows the effectiveness of the approach.

4.4. Reaction-diffusion with spikes
The boundary-value problem is defined by

cu—V - (kVu) =0 in (44)
u = ur on I. (45)

where the computational domain and ur are depicted in Fig. 14 (top left panel). The
problem parameters are the diffusion coefficient x and the reaction rate ¢, but dimensional
analysis can be used to show that the solution depends only on the Damkohler number

B cl?

Da = (46)

- .
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Figure 13: (Color online) Bézier mesh (left) and solution field (right) for the advection skew to the mesh
problem. The Bézier mesh has five levels of refinement and gives rise to a total number of degrees of
freedom n = 5492. The solution field is plotted with a color scale that ranges from the minimum to the
maximum of the numerical solution showing that the usual undershoots and overshoots encountered in this
problem are rather small.

Here, L = 1 is the side length of €2. For large values of Da the solution is expected to be
zero everywhere except close to the corners, where it progressively takes larger values until
it reaches one as prescribed by the boundary conditions. We take the value Da = 10? in
our simulations, following the studies on the same problem of [51]. We solve this problem
using a quadratic ASTS mesh with seven levels of refinement in order to accurately capture
the corner phenomena. The analysis results are plotted in the bottom panels of Fig. 14,
where we only show a small region of the domain delimited in the top right panel. It can
be seen that the solution appears to be stable even in the vicinity of very large gradients.

4.5. Circular Kirchhoff plate with a point load

Kirchhoff plates with distributed loads were solved using NURBS-based collocation
methods in [42]. Here, we solve Kirchhoff plates with point loads using the local refinement
capability of ASTS in order to refine close to the load®. A simply supported circular plate
with radius » = 1 is considered. We apply a point load P = 1 to the plate’s center. The
equations that govern this problem can be obtained from Eqs. (25)—(29) taking I', = T,

6We remark that, to our knowledge, this is the first time that isogeometric collocation is used to
approximate problems with point loads.

25



0.1 0.1

1.02 0.75 0.50 0.25 -0.02

Figure 14: (Color online) From left to right and top to bottom, we present a panel showing the problem
setup, the computational domain and the imposed boundary conditions. Then, we show the Bézier mesh
(n = 2563) where we have used seven levels of refinement. In the Bézier mesh we mark a small area with
a dashed magenta line. The bottom panels show this area zoomed in. On the left hand side, we plot the
solution using a color scale that goes from the minimum to the maximum of the numerical solution. The
solution looks stable even in the vicinity of very large gradients.
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I'yy =T, wr =0, and My = 0, yielding

DA*w =g in €, (47)
w=0 on T, (48)
vDAw+ (1 —v)Dn - (VVw)n =0 on I. (49)

The Poisson ratio is assumed to be v = 0.3 and the rest of the material properties are
selected such that D = 1. Finally, ¢ is a load per unit surface which approximates the
point load P. We model g as a function of the spline space called ¢". Let us assume for
the time being that our discretization produces a Greville point in the plate’s center, which
can be achieved, for example, using a judicious geometrical mapping. As a precursor to g",
let us define p" as a function living in the discrete space which takes the value one in the
Greville point that falls in the center of the plate and vanishes in the remaining Greville
points. Therefore, we take p" = "\, paR4 such that

(50)

b ~J 1 if 74 falls in the plate’s center,
p(Ta) = .
0 otherwise.

The function ¢” is simply defined as g" = Ap", where the constant \ is determined imposing
that ¢” is statically equivalent to P, that is

/pth =P (51)

This completely defines g".
For the considered example, it is known that the exact solution for the deflection at the

center of the plate is
Pr? [(34v
exr — . 52
Y = 96D (1—1—1/) (52)

We solve this problem using quintic ASTS. We start with a uniform NURBS mesh and end

up with five levels of refinement in order to have higher resolution close to the center of the
plate. Fig. 15 shows the coarsest and finest meshes along with the corresponding computed
deflection fields. In Fig. 16, we plot the convergence of the deflection of the plate’s center
normalized with respect to the exact solution. A good convergence behavior is observed,
and the relative error of the numerical solution with respect to the exact solution for the
mesh with five levels of refinement is 0.06%.

Remark:

We acknowledge that our simple strategy for imposing point loads requires to have a
Greville point where the load is applied. Although this can always be achieved with
a judicious mapping, in the future, we will investigate in more detail the possibility
of developing more general strategies to impose point loads within the isogeometric
collocation framework, taking also inspiration from works like [82].
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Figure 15: (Color online) Initial NURBS mesh (left) and final quintic ASTS mesh (right) along with the
corresponding computed deflection fields. The mesh on the right hand side has five levels of refinement.
We used p = 5 in both cases.
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Figure 16: (Color online) Convergence of the numerical deflection at the center of the plate using quintic
ASTS. We start with a uniform NURBS mesh and introduce a level of refinement in each new mesh. NV
denotes the square root of the total number of degrees of freedom.
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5. Conclusions

This paper presents novel locally refinable isogeometric collocation methods based on
analysis-suitable T-splines of arbitrary degree. The combination of isogeometric colloca-
tion and T-splines allows local refinement while keeping one point evaluation per degree of
freedom, has good approximation properties, and is geometrically flexible. Moreover, the
proposed methods are stable, accurate, and robust as shown by several significant numer-
ical examples, where both second- and fourth-order boundary-value problems have been
considered. We believe that the methodologies developed herein are highly suitable to
tackle in an efficient way a large variety of demanding problems for which local refinement
capabilities constitute a major advantage. Among others, these include shells and contact
problems, topics that we plan to study in the near future.
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