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Abstract

We present the first numerical results on three dimensional structures predicted
by the modified phase field crystal equation. The computations are performed
using parallel algorithms based on isogeometric analysis, a generalization of
the finite element method. The evolution of crystal structures to their steady
equilibrium state is predicted for the various atomic density and temperatures.
These steady structures are consistent with the structure diagram predicted
earlier using one-mode approximation of analytical solutions of the phase-field-
type equations.

Keywords: Phase field, crystal, isogeometric analysis, computer simulation

The phase field crystal (PFC) model has been proposed to incorporate the
physics naturally embedded on atomic length scales (elasticity, dislocation, etc.)
and on diffusive time scales [1, 2]. The PFC model describes a field that is related
to the local atomic number density, such that it is spatially periodic in the solid
and constant in the liquid.

Originally formulated in a parabolic form for description of pure dissipa-
tive dynamics, the PFC model has also been extended to include faster de-
grees of freedom consistent with inertia due to propagative regimes of phase
transformation. In particular, a hyperbolic or modified PFC model was intro-
duced which includes an inertial term, and thus allows for the description of
both fast and slow processes in phase transformations [3, 4, 5, 6, 7, 8, 9]. Al-
though essential progress has been made in modeling of parabolic PFC-equation
[10, 11, 12] interpretation of results obtained in modeling of the modified (hy-
perbolic) PFC-equation required special efforts due to higher time order of the
equation [7, 8, 9]. Moreover, physically reasonable and practically important
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results of this equation are currently absent for the case of three spatial di-
mensions. To the author’s knowledge, only mathematical analysis on stability
and existing of attractors in solutions of the three dimensional modified PFC-
equation were made [13, 14, 15]. In the numerical modeling, a transition from
two dimensional to three dimensional crystal lattice leads to higher variety of
patterns. For these reasons, prime goals of the present article are (i) to analyze
first results of the numerical solution and (ii) to predict the structures modeled
by the three dimensional modified PFC-equation. To reach these goals an effi-
cient, parallel numerical algorithm is formulated and the numerical scheme for
modeling of patters is developed.

The modified phase field crystal equation describes a continuous atomic den-
sity field φ(x, t) and it is expressed by the following sixth order in space and
second order in time equation:
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Here t is the time, Ω is the computational domain, τ is the relaxation time of
the atomic flux to its stationary state, ε = (Tc − T )/Tc is the undercooling,
T and Tc are the temperature and critical temperature of transition, α is a
coefficient which is a measure of metastability. Equation (1) modifies the tradi-
tional parabolic phase field crystal (PFC) equation by including an inertial term
τ∂2φ/∂t2 that plays principal role in description of fast phase transitions [5].

In the numerical formulation of the modified PFC equation (1) we use isoge-
ometric analysis (IGA) [16, 17] for the spatial discretization, which allows us to
generate the C2-continuous functions needed for the discretization of the sixth-
order spatial derivatives in primal form. We use a weak form of the problem
which assumes periodic boundary conditions in all directions. Then, we define
a trial solution functional space X = X (Ω), and a weighting function space
Y = Y(Ω) which are supposed to be identical. The variational formulation can
be stated as follows: Find φ ∈ X such that ∀w ∈ Y,

B(w, φ) = 0, (5)
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where
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Using the Non-Uniform Rational Bezier Spline-based (NURBS-based) isoge-
ometric analysis, the spatial discretization of the coupled problem is made
by finite-dimensional approximations of the functional and weighting spaces.
Namely, we define Xh and Yh such that Xh ⊂ X and Yh ⊂ Y. In such case,
(5) can be approximated by the following variational problem over the finite
element spaces: find φh ∈ Xh such that ∀wh ∈ Yh,

B(wh, φh) = 0, (7)

where
φh(x, t) =

∑
A∈I

φA(t)NA(x), wh(x) =
∑
A∈I

wANA(x). (8)

In Eqs. (8), the NA’s are a set of basis functions defined on Ω and I is their
global-index set.

Integration in time of the modified PFC equation is made by the generalized
α-method proposed by Chung and Hulbert [18] for the equations of structural
dynamics. Let us denote Φ = {φA} the vector containing the global degrees
of freedom associated to φh. The first and second time derivatives of Φ are
denoted, respectively, by Φ̇ and Φ̈. We will also make use of the following
residual vector

R = {RA}, where RA = B(NA, φh). (9)

Then, the time stepping scheme can be defined by the discrete approximation
to the global vectors of control variables at time tn. Namely, defining Φn, Φ̇n,
Φ̈n and the current time step ∆t = tn+1 − tn one gets Φn+1, Φ̇n+1, Φ̈n+1 such
that

R(Φn+αf
, Φ̇n+αf

, Φ̈n+αm
) = 0, (10)

where

Φn+αf
= Φn + αf (Φn+1 −Φn) , (11a)

Φ̇n+αm
= Φ̇n + αm

(
Φ̇n+1 − Φ̇n

)
. (11b)

The solutions (10) are updated using the formulas

Φ̇n+1 = Φ̇n + ∆t((1− γ)Φ̈n + γΦ̈n+1), (12a)

Φn+1 = Φn + ∆tΦ̇n +
∆t2

2

(
(1− 2β)Φ̈n + 2βΦ̈n+1

)
, (12b)

Note that although Φn+1, Φ̇n+1, Φ̈n+1 are treated separately in the algorithm,
they are not independent because they have to satisfy to Eqs. (12). The above
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parameters αf , αm, γ and β are selected using accuracy and stability criteria.
Note that Eq. (10) constitutes a nonlinear system of algebraic equations at
each time step. We linearized this nonlinear system using Newton’s method,
and solved the resulting linear systems using preconditioned GMRES.

Figure 1: Computed structures in comparison with the regions of diagram of Jaatinen and Ala-
Nissila [19]. Regions of existing structures are: (1) Stripes; (2) Stripes and Rods; (3) Rods; (4)
mixed structures with the existence of pure body centered cubic (BCC), pure hexagonal close
packed (HCP), and pure face centered cubic (FCC) crystalline patterns; (5) homogeneous
phase (liquid).

The numerical simulations presented herein have been performed by a C-
language code based on a widely used library called PETIGA [20]. This software
implements a NURBS-based IGA [17] which can be understood as a NURBS-
based Galerkin finite element method (FEM). The computational domain of the
simulations was assumed to be the box Ω = [0, 50]3 and the spatial mesh was
composed of 643 C2-quadratic elements. For each crystal pattern modeled by
the parallel algorithm we employed 150 processors AMD Opteron (TM) 6212
with 2.6 GHz, which led to five-hour simulations on average. In all cases, the
value for parameters α and τ from Eqs. (1)-(4) was α = 0 and τ = 0.1. Initial
distribution with a small spatial gradient of the atomic density φ and periodic
boundary conditions have been chosen.

The initial state of the atomic density has been taken for the homogeneous
phase (liquid) with the given average value of φ quenched by the parameter
ε into the chosen region of structure diagram. The diagram was previously
calculated by Jaatinen and Ala-Nissila [19] for three dimensional structures
given by the PFC-equation in one-mode approximation that is shown as solid
lines in Fig. 1. As it can be seen in this figure, the present modeling gives
the following structures: (1) stripes, (2) mixture of stripes and rods, (3) rods,
(4) multiple patterns highly sensitive to values of ε and φ, (5) liquid. All of
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these structures are consistent with the regions of previously predicted structure
diagram [19]. This exhibits an efficiency of the presently developed algorithm for
the numerical solution of the modified three dimensional PFC-equation. Note
that, in our computations we have provided independence of results from the
computational grid. However, several important questions are still to be resolved
for the modeling of concrete crystal patterns. Among them: (i) influence of the
minimal size of computational domain on the type of crystal structure and (ii)
effect of order of approximation of the crystal lattice on the crystal symmetry
modeled in the complicated region 4 of Fig. 1. Resolving these questions will
allow us to carry out practically important numerical simulations.

As a final result, we have predicted the evolution of three dimensional crys-
tal structures to their steady equilibrium state for the various atomic density
and temperatures given by the modified PFC-equation. It is known that the
evolution given by the modified hyperbolic equation differs from that predicted
by the parabolic purely dissipative transition, especially, during the first stages
of transformation under consideration. In this case, patterns frozen during their
evolution to equilibrium state have a metastable nature [21]. In this work, have
clearly shown that the final steady structures given by the numeric solution of
the modified (hyperbolic) PFC-equation are consistent with the structure dia-
gram predicted earlier using one-mode approximation of analytical solutions of
the traditionally parabolic phase-field-type equations (see Fig. [19]).
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