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Abstract

The paper focuses on numerical simulation of the phase-field (PF) equations for modeling
martensitic transformations in shape memory alloys (SMAs), their complex microstructures
and thermo-mechanical behavior. The PF model is based on the Landau-Ginzburg potential
for the 3D cubic-to-tetragonal phase transformations in SMAs. The treatment of domain
walls as diffuse interfaces, leads to a fourth-order differential equation in a strain-based or-
der parameter PF model. The fourth-order equations introduce a number of unexplored
numerical challenges because traditional numerical schemes have been primarily applied to
second-order problems. We propose isogeometric analysis (IGA) as a numerical formulation
for a straightforward solution to the fourth-order differential PF equations using contin-
uously differentiable non-uniform rational B-splines (NURBS). We present microstructure
evolution in different geometries of SMA nanostructures under temperature-induced phase
transformations to illustrate the geometrical flexibility, accuracy and robustness of our ap-
proach. The simulations successfully capture the dynamic thermo-mechanical behavior of
SMAs observed experimentally.

Keywords: Isogeometric analysis, phase-field model, Ginzburg-Landau theory, nonlinear
thermo-elasticity

1. Introduction

As a result of their interesting solid-to-solid phase transformations and coupled-physics
(thermo-mechanical, magnetostrictive) properties, shape memory alloys (SMAs) have been
used as micro- and nano- actuators and sensors for a broad spectrum of applications. Re-
cently, there has been a major research focus on using SMA nanostructures [1, 2, 3, 4, 5,
6, 7] for nanoelectromechanical (NEMS) and microelectromechanical systems (MEMS) and
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biomedical applications. These applications involve designing different geometries and using
domain patterns for controlling distortions [2]. All of these motivate the need for under-
standing domain patterns and their thermo-mechanical properties in realistic and complex
geometries for better application development.

Several modeling approaches have been used to study the SMA behaviors [8, 9, 10, 11,
12, 13]. In particular, phase-field (PF) models have been widely used to study the phase
transformations in SMA meso- and nano- structures [14, 15, 16, 17]. Broadly, PF models
for SMAs can be divided into two approaches: the kinetic model using independent order
parameter(s) (OPs) (see, for example, [18, 19]) and the strain-based OP PF models (e.g., [14,
20]). The first approach often leads to a second-order differential equation for microstructure
evolution, while the second approach typically leads to a fourth-order differential equation
in space.

Here, we focus on the second approach and use the PF methodology. Several 3D PF
models for SMAs have been proposed in the literature. The majority of these models do
not account for the dynamics of SMAs, but only relax the quasi-static microstructures using
a dissipation potential or directly assume a quasi-static response. Moreover, most models
assume isothermal conditions, which neglects the thermo-mechanical coupling of SMAs, a
significant modeling limitation. The nucleation and growth of martensitic transformations
have been widely studied by using the kinetic time-dependent Ginzburg-Landau models
[18, 19, 21, 22, 23, 24, 16, 25, 26]. Using the strain-based OP PF models, the temperature-
and stress- induced phase transformations have been studied for SMAs [27, 14]. The full
3D dynamic model in its generality was first formulated by Melnik et al. [28] and the first
model-based explanation of thermally-induced hysteresis was discussed in [29, 30]. From a
computational perspective, most of the above studies used traditional numerical methods,
such as spectral collocation or the finite difference method. These algorithms typically lack
geometrical flexibility, as the majority of the above studies were performed on a cubic domain
with periodic boundary conditions. However, complex geometries exist in real life, and there
is a need for more flexible methods which can allow to model geometrically complex and
large domains with different boundary conditions. When geometrical flexibility is needed,
the finite element method is the natural choice. However, if we do not want to include
additional variables, solving fourth-order equations with the finite element method requires
globally smooth basis functions, and this has proved very difficult to achieve with traditional
finite elements. Due to its geometrical flexibility and the possibility of generating globally
smooth basis functions, we propose isogeometric analysis (IGA) as an effective numerical
method to solve the fourth-order PF model on non-trivial geometries.

IGA is a new computational method originally developed to avoid mesh generation bot-
tlenecks during engineering analysis [31, 32]. It was originally developed using non-uniform
rational B-splines (NURBS), a backbone of CAD and animation technology, as basis func-
tions, but it was later extended to accommodate other widely-used functions in the CAD
community, such as, for example, T-Splines [33, 34, 35, 36]. IGA has been successfully applied
to problems of fluid mechanics [37, 38, 39, 40], solid mechanics [41, 42, 43, 44, 45, 46], fluid-
structure interaction [47, 48], and condensed-matter physics [49, 50, 51, 52]. The use of rich

2



basis functions provides IGA with a unique capability to model geometry exactly, in many in-
stances, while field variables can be approximated with enhanced accuracy [53, 54]. IGA pro-
vides unique attributes of higher-order accuracy and robustness with the C 1- or higher-order
continuity necessary for solving higher-order differential equations in a variational formula-
tion. IGA has been successfully used to solve the PF theories and higher-order differential
equations using Galerkin variational formulations [55, 56, 57, 58, 59, 44, 60, 61, 62]. Addi-
tionally, it has been recently shown by Gomez et al. [63] that the possibility of generating
highly-smooth basis functions also permits deriving collocation methods that approximate
directly the strong form of the equations, an approach that is not pursued in this work.

We recently illustrated the flexibility of the IGA approach by applying it to a 2D PF
model for SMAs [64, 65]. Here, we solve a three-dimensional theory for cubic-to-tetragonal
phase transformations in nanostructured SMAs using IGA. The coupled equations of non-
linear thermoelasticity are developed using the PF model and the Ginzburg-Landau theory.
The governing laws are introduced in the IGA framework using a variational formulation.
Several numerical studies have been performed to illustrate the flexibility, accuracy and
stability of the approach. Based on the above tasks, the paper is organized as follows. In
Section 2, the governing coupled equations of nonlinear thermoelasticity and solid-solid phase
transformations are presented. The details of the numerical implementation of the SMA gov-
erning equations in the IGA framework are given in Section 3. The developed methodology
is exemplified with 3D numerical simulations on nanostructured SMA domains subjected to
thermally-induced phase transformations in Section 4. Finally, the conclusions are given in
Section 5.

2. Mathematical Model of SMA Dynamics

The cubic-to-tetragonal phase transformations occur in SMA alloys like NiAl, FePd or
InTl. The cubic austenite phase is converted into tetragonal martensitic variants upon
mechanical or thermal loadings as schematically shown in Fig. 1(a).
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Figure 1: Cubic-to-tetragonal phase transformations (a) schematic of microstructures: austenite (A), and
martensite variants (M1, M2, M3) (b) free energy function plot at τ = −1.2 (see Eq. (4)).
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We have recently put forward a mathematical model for the 3D coupled thermo-mechanics
of SMAs [66]. Our model can be derived from a free-energy functional using Hamiltonian
mechanics. The unknowns are the displacement field uuu = {u1, u2, u3}T and the temperature
θ. We assume that the problem takes place on the physical domain Ω ⊂ R3, which is an
open set parameterized by Cartesian coordinates xxx = {x1, x2, x3}T . We will make use of
the Cauchy-Lagrange infinitesimal strain tensor εεε = {εij}, whose components are defined as
εij = (ui,j + uj,i) /2, i, j ∈ {1, 2, 3}, where an inferior comma denotes partial differentiation
(e.g., ui,j = ∂ui/∂xj). Using the strain tensor, we define the strain measures ei, for i =
1, . . . , 6 as follows: 

e1

e2

e3

e4

e5

e6


=

[
D3 O3

O3 I3

]


ε11

ε22

ε33

ε23

ε13

ε12


, (1)

where D3, O3, I3 are 3× 3 constant matrices. In particular,

D3 =

1/
√

3 1/
√

3 1/
√

3

1/
√

2 −1/
√

2 0

1/
√

6 −1/
√

6 −2/
√

6

 , (2)

while I3, and O3 are, respectively, the 3×3 identity and zeros matrices. For future reference,
we call e1 hydrostatic strain, e2 and e3 deviatoric strains, and e4, e5, e6 shear strains. The
deviatoric strains are selected as the OPs to describe different phases in the domain. The free-
energy functional F for the cubic-to-tetragonal phase transformation is selected as [20, 14]:

F [uuu] =

∫
Ω

[
F0(e1, . . . , e6, θ) +

kg
2

(
|∇e2|2 + |∇e3|2

)]
dΩ, (3)

where F0 is defined as,

F0(e1, . . . , e6, θ) =
a1

2
e2

1+
a2

2

(
e2

4 + e2
5 + e2

6

)
+a3τ

(
e2

2 + e2
3

)
+a4e3

(
e2

3 − 3e2
2

)
+a5(e2

2+e2
3)2. (4)

Here ai, i ∈ {1, . . . , 5} are constants that define the mechanical properties of the mate-
rial, kg is the gradient energy coefficient, τ is the dimensionless temperature defined as
τ = (θ − θm)/(θ0 − θm), where θ0 and θm are the material properties specifying the trans-
formation start temperature and the temperature at which austenite becomes unstable, and
| · | denotes the Euclidean norm of a vector. Using this notation, and the repeated-indices
summation convention, our model can be written as

ρüi = σij,j + ησ′ij,j + µij,kkj + fi, (5)

Cvθ̇ = κθ,ii + Ξθ (ui,iu̇j,j − 3ui,iu̇i,i) + g. (6)

where a dot over a function denotes partial differentiation with respect to time, and ρ, η, Cv,
κ, and Ξ are positive constants that represent, respectively, the density, viscous dissipation,
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specific heat, thermal conductance coefficient, and strength of the thermo-mechanical cou-
pling. The symmetric stress tensor σσσ = {σij} is a nonlinear function of the strain measures
ei, and the temperature. In particular,

σ11 =
a1e1√

3
+

e2√
2

[
2τa3 − 6a4e3 + 4a5(e2

2 + e2
3)
]

+
1√
6

[
e3(2τa3 + 4a5(e2

2 + e2
3)) + 3a4(e2

3 − e2
2)
]
,

(7.1)

σ12 = σ21 =
1

2
a2e6, (7.2)

σ13 = σ31 =
1

2
a2e5, (7.3)

σ22 =
a1e1√

3
− e2√

2

[
2τa3 − 6a4e3 + 4a5(e2

2 + e2
3)
]

+
1√
6

[
e3(2τa3 + 4a5(e2

2 + e2
3)) + 3a4(e2

3 − e2
2)
]
,

(7.4)

σ23 = σ32 =
1

2
a2e4, (7.5)

σ33 =
1√
3
a1e1 −

2√
6

[
2τa3e3 + 3a4(e2

3 − e2
2) + 4a5e3(e2

2 + e2
3)
]
. (7.6)

We incorporate the Raleigh dissipation to dampen the motion of domain wall during the
phase transformation [67, 14]. The dissipation functional R is selected as

R =

∫
Ω

η

2
|ėee|2 dΩ, (8)

where ėee = {ėi}i=1,...,6 is the time derivative of strain. The dissipational stress tensor σσσ′ =
{σ′ij} is a linear function of the strain rates ėi. Since σσσ′ is a second-rank symmetric tensor,
it may be defined by giving only six of its entries. Thus, we define

σ′11

σ′22

σ′33

σ′23

σ′13

σ′12


=

[
DT

3 O3

O3
1
2
I3

]


ė1

ė2

ė3

ė4

ė5

ė6


. (9)

The second-rank tensor µµµ = {µij}, which we will call microstress tensor, is a non-symmetric

tensor defined as µµµ = kg
3

(
∇Tuuu− 3∇duuu

)
, where ∇Tuuu denotes the transpose of the displace-

ment gradient (i.e., ∇Tuuu = {uj,i}), and ∇duuu = diag(u1,1, u2,2, u3,3) where diag(a, b, c) is a
3 × 3 diagonal matrix whose diagonal entries starting in the upper left corner are a, b, c.
Finally, fff = {f1, f2, f3}T and g represent, respectively, mechanical and thermal loads.

2.1. Continuous Problem in Strong Form

Let us denote by Γ the boundary of Ω, and its outward normal by nnn. We will assume
that Γ is sufficiently smooth (e.g., Lipschitz). For the temperature field, we will consider

5



insulated boundary conditions on Γ, that is,

θ,ini = 0, on Γ× (0, T ), (10)

where (0, T ) is the time interval of interest. We note that for the displacement field we need
two boundary conditions at each point of the boundary, because this field is governed by a
fourth-order partial-differential equation. The first boundary condition, that we will impose
on the entire boundary, states that the normal component of the gradient of the microstress
tensor vanishes, that is,

µij,knk = 0, on Γ× (0, T ). (11)

For the remaining boundary condition we consider either imposed displacements or stress-
free conditions. Thus, we assume that Γ admits decompositions

Γ = ΓDi ∪ ΓSi
∅ = ΓDi ∩ ΓSi

}
; i = 1, 2, 3. (12)

Then, for each spatial direction i, the boundary condition takes on the form:(
σij + ησ′ij + ∆µij

)
nj = 0, on ΓSi × (0, T ), (13)

ui = uDi , on ΓDi × (0, T ), (14)

where the uDi ’s are known functions that prescribe the displacements on the boundary. At
this point, we are ready to state our problem in strong form as follows: Find the displacement
field uuu : Ω× (0, T ) 7→ R3, and temperature θ: Ω× (0, T ) 7→ R such that

ρüi = σij,j + ησ′ij,j + µij,kkj + fi, in Ω× (0, T ), (15.1)

Cvθ̇ = κθ,ii + Ξθ (ui,iu̇j,j − 3ui,iu̇i,i) + g, in Ω× (0, T ), (15.2)

µij,knk = 0, on Γ× (0, T ), (15.3)(
σij + ησ′ij + ∆µij

)
nj = 0, on ΓSi × (0, T ), (15.4)

ui = uDi , on ΓDi × (0, T ), (15.5)

θ,ini = 0, on Γ× (0, T ), (15.6)

ui(xxx, 0) = u0
i (xxx), in Ω, (15.7)

θ(xxx, 0) = θ0(xxx), in Ω, (15.8)

where u0
i : Ω 7→ R, θ0 : Ω 7→ R are given functions which represent the initial displacements,

and temperature in the closed domain Ω.

3. Numerical Formulation

To use IGA, we first derive a weak form of the governing equations. We discretize
the computational domain using C 1-continuous functions required for the discretization of
fourth-order PDEs in a primal form. We integrate in time using the generalized-α method,
which was originally developed for the structural dynamics equations [68], and subsequently
applied to fluid mechanics problems [69].
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3.1. Continuous Problem in the Weak Form

To perform the space discretization of the problem we begin by deriving a weak form of
Eqs. (15). Let us define the following trial solution spaces

Si =
{
ui ∈ H2 | ui = uDi on ΓDi

}
, i = 1, 2, 3, (16)

Sθ =
{
θ ∈ H1

}
, (17)

where Hk is the Sobolev space of square-integrable functions with square-integrable deriva-
tives up to order k. The variation spaces are defined as

Wi =
{
wi ∈ H2 | wi = 0 on ΓDi

}
, i = 1, 2, 3, (18)

Wq =
{
q ∈ H1

}
. (19)

The weak form of the structural equations is obtained by multiplying them with wi and
integrating by parts multiple times. The thermal equation is then multiplied with q and
integrated by parts once. Taking into account all of this, the variational form of the problem
can be stated as: Find SSS = {uuu, θ} ∈ S1 × S2 × S3 × Sθ such that B(SSS,WWW) = 0 for all
WWW = {www, θ} ∈ W1 ×W2 ×W3 ×Wθ, where

B(SSS,WWW) = (wi, (ρüi − fi)) +
(
wi,j, σij + ησ′ij

)
− (wi,jk, µij,k)

+
(
q,
(
Cvθ̇ − Ξθ(ui,iu̇j,j − 3ui,iu̇i,i)− g

))
+ (κq,i, θ,i). (20)

Here, the operator (·, ·) denotes the L2 inner product on the domain Ω.

3.2. The Semi-Discrete Formulation

To derive the semi-discrete formulation of Eq. (20), we define the conforming trial so-
lution spaces Shi ⊂ Si and Shθ ⊂ Sθ. Let us also define the conforming weighting function
spaces Wh

i ⊂ Wi and Wh
θ ⊂ Wθ. We will use the Galerkin method, so a member of Shi is

constructed by taking a member of Wh
i and adding a sufficiently smooth function that veri-

fies the Dirichlet boundary conditions. The variational problem over the finite-dimensional
spaces may be stated as follows:

B(ShShSh,WWWh) = 0, (21)

where WWWh is defined as

WWWh = {wwwh, qh}, whi (xxx, t) =

nb∑
A=1

wiA(t)NA(xxx), qh(xxx, t) =

nb∑
A=1

qA(t)NA(xxx), (22)

where the NA’s are the basis functions, and nb is the dimension of the discrete space. In
Eq. (22) the wiA’s are the coordinates of whi in the space Wi. In the context of isogeometric
analysis, these coordinates are called control variables. Note that the condition Wh

i ⊂ Wi

mandates our displacements discrete space to be at least H2-conforming. In practice, to
simplify our implementation, we will use an H2-conforming space also for the temperature
field, even if an H1-conforming space would suffice. Note that H2 spaces can be generated
using the NURBS basis functions with C k global continuity for k ≥ 1. For a detailed
description of how NURBS functions are defined, we refer the reader to [32].
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3.3. Time Discretization and Implementation

We use the generalized-α method for time integration. This method finds a wide range
of applications in the computations where control over high frequency dissipation is useful,
such as, for example, nonlinear structural dynamics and turbulence [69, 70, 71]. Recently,
this method has been applied in the IGA framework to the Cahn-Hillard equation [72] and
the isothermal Navier-Stokes-Korteweg equations [73]. Here, we take advantage of the fact
that generalized-α permits a straightforward one-step discretization of a coupled system of
first- and second-order ordinary differential equations, which is precisely the structure of our
semi-discrete form.

3.4. Time Stepping Scheme

Let us assume that the time interval (0, T ) is divided into N subintervals In = (tn, tn+1),
n = 0, . . . , N − 1. We call UUUn = {uuuA}A=1,...,nb

and ΘΘΘn = {θA}A=1,...,nb
the vectors associated

to displacements and temperature global degrees of freedom (control variables) at time tn.
We define YYYn = {UUUn,ΘΘΘn}T . The first and second time derivatives of YYYn are denoted by ẎYYn

and ŸYYn, respectively. We now define the following residual vectors:

RRR = {RRRuuu,RRRθ}T , (23.1)

RRRuuu = {RuuuiA}, (23.2)

RuuuiA = B
(
{NAeeei, 0}, {uuuh, θh}

)
, (23.3)

RRRθ = {Rθ
A}, (23.4)

Rθ
A = B

(
{0, NA}, {uuuh, θh}

)
, (23.5)

where {eee1,eee2,eee3} is the canonical basis of the space R3. Our time-integration algorithm may
be formulated as follows: Given YYYn, ẎYYn and ŸYYn and ∆tn = tn+1 − tn, find YYYn+1, ẎYYn+1, ŸYYn+1,
such that

RRRuuu
(

YYYn+αf
, ẎYYn+αf

, ŸYYn+αm

)
= 0, (24.1)

RRRθ
(

YYYn+αf
, ẎYYn+αf

, ŸYYn+αm

)
= 0, (24.2)

YYYn+αf
= YYYn + αf (YYYn+1 −YYYn) , (24.3)

ẎYYn+αf
= ẎYYn + αf

(
ẎYYn+1 − ẎYYn

)
, (24.4)

ŸYYn+αm = ŸYYn + αm

(
ŸYYn+1 − ŸYYn

)
, (24.5)

ẎYYn+1 = ẎYYn + ∆tn

[
(1− γ) ŸYYn + γŸYYn+1

]
, (24.6)

YYYn+1 = YYYn + ∆tnẎYYn +
(∆t)2

2

[
(1− 2β) ŸYYn + 2βŸYYn+1

]
. (24.7)

Note that, although the vectors of degrees of freedom YYYn+1, ẎYYn+1 and ŸYYn+1 are treated
independently, they must honor Eqs. (24.6)–(24.7), and, as a consequence, only one of them
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is independent. The authors of [68] showed that the algorithm (24) achieves second-order
accuracy for a second-order ordinary differential equation if

γ =
1

2
+ αm − αf , (25)

and

β =
1

4
(1− αf + αm)2 , (26)

while unconditional stability (for a linear problem) requires

αm ≥ αf ≥
1

2
. (27)

Jansen et al. [69] showed that the generalized-α algorithm can also be applied to first-order
ordinary differential equations just dropping the YYY variables (ẎYY and ŸYY are kept) in Eqs.
(24). Additionally, they showed that conditions (25) and (27) for accuracy and stability will
still hold true (condition (26) does not apply to the first-order problem because when the YYY
variables are dropped, the parameter β plays no role in the algorithm).

The generalized-α algorithm permits optimal high-frequency dissipation by parameter-
izing αm and αf in terms of the spectral radius of the amplification matrix as ∆t → ∞,
namely %∞. Optimal high-frequency dissipation is achieved when all the eigenvalues of the
amplification matrix take on the value %∞. For the first-order problem this may be achieved
by taking [69]

α(1)
m =

1

2

(
3− %(1)

∞

1 + %
(1)
∞

)
, α

(1)
f =

1

1 + %
(1)
∞
, (28)

while for the second-order problem we need [68]

α(2)
m =

2− %(2)
∞

1 + %
(2)
∞
, α

(2)
f =

1

1 + %
(2)
∞
. (29)

Since we want to equate the residuals to zero at the same α-levels for both the first- and
the second-order equations, we need α

(1)
m = α

(2)
m , and this can only be achieved with optimal

high-frequency damping if %
(1)
∞ = %

(2)
∞ = 1. The case %∞ = 1 corresponds to the midpoint

rule, which leads to vanishing high-frequency damping and, in our opinion, this is not robust
enough for nonlinear computations. In the calculations presented in this paper, we selected
αm and αf by taking %∞ = 1/2 in Eqs. (28). This makes the temperature equation optimally
damped, while the structural equations have sub-optimal dissipation. Note that with this
choice, second-order accuracy and unconditional stability of a linear system of coupled first-
and second-order ordinary differential equations is still guaranteed. We note, however, that
the problem of interest in this paper is nonlinear and unconditional stability cannot be
expected [74], but we believe that this choice will permit taking relatively large time steps
retaining stability.
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In what follows, we approximate the solution to the equation

RRR
(

YYYn+αf
, ẎYYn+αf

, ŸYYn+αm

)
= 0, (30)

using Newton’s method. Note that as indicated in Eqs. (24.3)–(24.5), the α-levels are
nothing else but linear interpolations of the variables at times tn and tn+1. In addition, Eqs.
(24.6)–(24.7) must be satisfied, which indicates that YYYn+αf

, ẎYYn+αf
, ŸYYn+αm can all be written

in terms of ŸYYn+1 (they can also be written in terms of YYYn+1 and ẎYYn+1), which is the variable
we select to perform the linearization. Before we start the nonlinear iterative process, we
need a prediction for ŸYYn+1 that will be denoted by ŸYYn+1,(0). The prediction is based on the

equal-velocity approximation, namely ẎYYn+1,(0) = ẎYYn. Then, our predictions are

ẎYYn+1,(0) = ẎYYn, (31.1)

ŸYYn+1,(0) =
γ − 1

γ
ŸYYn, (31.2)

YYYn+1,(0) = YYYn + ∆tnẎYYn +
(∆tn)2

2

[
(1− 2β) ŸYYn + 2βŸYYn+1,(0)

]
, (31.3)

where we have used (24.6) and (24.7) to derive (31.2) and (31.3), respectively. After comput-
ing the predictions, we repeat the following steps for i = 1, 2, · · · , imax or until convergence
is reached:

1. Evaluate iterates at the α-levels

YYYn+αf ,(i−1) = YYYn + αf
(
YYYn+1,(i−1) −YYYn

)
, (32.1)

ẎYYn+αf ,(i−1) = ẎYYn + αf

(
ẎYYn+1,(i−1) − ẎYYn

)
, (32.2)

ŸYYn+αm,(i−1) = ŸYYn + αm

(
ŸYYn+1,(i−1) − ŸYYn

)
. (32.3)

2. If the convergence conditions∣∣∣RRRuuu (YYYn+αf ,(i−1), ẎYYn+αf ,(i−1), ŸYYn+αm,(i−1)

)∣∣∣∣∣∣RRRuuu (YYYn+αf ,(0), ẎYYn+αf ,(0), ŸYYn+αm,(0)

)∣∣∣ < toluuu (33)

and ∣∣∣RRRθ
(

YYYn+αf ,(i−1), ẎYYn+αf ,(i−1), ŸYYn+αm,(i−1)

)∣∣∣∣∣∣RRRθ
(

YYYn+αf ,(0), ẎYYn+αf ,(0), ŸYYn+αm,(0)

)∣∣∣ < tolθ (34)

are simultaneously satisfied, then we set the variables at time tn+1 as,

ŸYYn+1 = ŸYYn+1,(i−1), (35.1)

ẎYYn+1 = ẎYYn+1,(i−1), (35.2)

YYYn+1 = YYYn+1,(i−1), (35.3)
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and exit the nonlinear iteration algorithm. If Eqs. (33) and (34) are not satisfied, then
we proceed to the next step.

3. Use the solutions at the α-levels to assemble the residual and the tangent matrix of
the linear system

KKK(i−1)∆ŸYYn+1,(i) = −RRR(i−1). (36)

Solve this linear system using a preconditioned GMRES algorithm to a specified tol-
erance.

4. Use ∆ŸYYn+1,(i) to update the iterates as

ŸYYn+1,(i) = ŸYYn+1,(i−1) + ∆ŸYYn+1,(i), (37.1)

ẎYYn+1,(i) = ẎYYn+1,(i−1) + γ∆tn∆ŸYYn+1,(i), (37.2)

YYYn+1,(i) = YYYn+1,(i−1) + β (∆tn)2 ∆ŸYYn+1,(i). (37.3)

The tangent matrix KKK(i−1) in Eq. (36) is a block matrix with the structure

KKK =

(
KKK11 KKK12

KKK21 KKK22

)
, (38)

where the sub-index (i − 1) has been omitted for notational simplicity. We also note
that

KKK11 =
∂RRRuuu

∂ÜUUn+1

, KKK12 =
∂RRRuuu

∂Θ̈ΘΘn+1

, KKK21 =
∂RRRθ

∂ÜUUn+1

, KKK22 =
∂RRRθ

∂Θ̈ΘΘn+1

. (39)

To compute the blocks of the tangent matrix KKK we use the chain rule because the
residuals are not functions of ŸYYn+1, but of YYYn+αf

, ẎYYn+αf
, and ŸYYn+αf

. Let us illustrate
this by computing KKK11 as follows:

KKK11 =
∂RRRuuu

∂ÜUUn+1

=
∂RRRuuu

∂UUUn+αf

∂UUUn+αf

∂UUUn+1

∂UUUn+1

∂ÜUUn+1

+
∂RRRuuu

∂U̇UUn+αf

∂U̇UUn+αf

∂U̇UUn+1

∂U̇UUn+1

∂ÜUUn+1

+
∂RRRuuu

∂ÜUUn+αm

∂ÜUUn+αm

∂ÜUUn+1

=
∂RRRuuu

∂UUUn+αf

αfβ (∆tn)2 +
∂RRRuuu

∂U̇UUn+αf

αfγ∆tn +
∂RRRuuu

∂ÜUUn+αm

αm. (40)

The remaining blocks of KKK can be obtained analogously.

4. Numerical Simulations

In this section, we present numerical studies on nanostructured SMAs subjected to
temperature-induced loadings. The microstructure evolution and in turn its effect on thermo-
mechanical properties of SMA specimens have been investigated. For convenience, the de-
veloped thermo-mechanical model described by Eqs. (15) is rescaled in the spatio-temporal
domain as described in Appendix A. The rescaled equations are then converted into the
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rescaled weak formulation of Eqs. (20). The Fe70Pd30 material parameters [14] used for the
simulations have been summarized in Table 1.

As mentioned in Section 1, applications exist where different geometries are required,
often beyond simple cube domains; here we conduct numerical experiments on different
nanostructured SMA geometries. The schematic and nomenclature of different geometries
and their boundaries are described in Fig. 2. The mechanical boundary conditions for
different simulations have been described in the respective subsections. For the thermal
physics, insulated boundary conditions have been used for all the simulations. We discretize
the domains using B-spline or NURBS basis functions with C k global continuity for k ≥ 1.

Table 1: Fe70Pd30 material constants

a1 a2 a3 a4 a5 η
192.3 GPa 280 GPa 19.7 GPa 2.59 × 103 GPa 8.52 × 104 Gpa 0.25 N-s m2

kg θm θ0 Cv κ ρ
3.15 × 10−8 N 270 K 295 K 350 J kg−1 K−1 78 W m−1 K−1 10000 kg m−3

Γx3(+)

x1

x2

x3

Γx3(−)

Γx1(+)Γx1(−)

Γx2(−)

Γx2(+)

Lx1

Lx2

Lx3

Ω

(a)

RoRi

x1

x2

x3

Γx3
(−)

H

Γx3
(+)

ΓRi

ΓRo Ω

(b)

Rto

Rtix1

x2
x3

Rd

Ω

ΓRti

ΓRto

(c)

Figure 2: Schematic and nomenclature of the (a) rectangular prism, (b) cylindrical tube, and (c) tubular
torus domain (Ω) and boundaries (Γ).

In the following subsections, first a mesh convergence and time step studies will be con-
ducted to show the stability and effectiveness of the approach. Next, we analyze temperature-
induced phase transformations and study microstructure morphology on SMA domains of
different geometries.

4.1. Mesh and Time Step Refinement Studies

We begin by performing a refinement study of the spatial mesh holding the time step fixed
at a sufficiently small value. The spatial mesh is refined using the classical h-refinement and
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the new paradigm for mesh refinement introduced by IGA, k-refinement, in which the order
of the basis functions is elevated, but their global continuity is likewise increased. The mesh
convergence studies have been carried out on a Lx1= Lx2= Lx3= 32 nm cube with periodic
boundary conditions and starting with initial random conditions. The cube is discretized
using three meshes: two meshes with uniform C 1-continuous quadratic B-splines with 34
(Mesh 1), and 50 (Mesh 2) basis functions in each direction and a third mesh with uniform
cubic C 2-continuous B-splines with 69 (Mesh 3) basis functions in each direction. The cube
is quenched to temperature corresponding to τ = −1.2 and allowed to evolve for a sufficiently
long time till it is stabilized. We plot the cut lines of OP deviatoric strains e2 and e3 along
the normalized distance x̂ between the two points (0,15,15) nm and (32,15,15) nm on the
opposite surfaces of the cube, for all three meshes as shown in Fig. 3. The maximum error
of the coarsest mesh (Mesh 1) is 2 % with respect to the fine mesh (Mesh 3), thus indicating
that good results can be obtained by using IGA even with the coarsest mesh.

0 0.2 0.4 0.6 0.8 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x̂

e 2

 

 

Mesh 1
Mesh 2
Mesh 3

(a)

0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

x̂

e 3

 

 

Mesh 1
Mesh 2
Mesh 3

(b)

Figure 3: (Color online) Mesh refinement studies: cut-line plot of OPs (deviatoric strains) (a) e2 and (b) e3
along the normalized distance x̂ between points (0,15,15) nm and (32,15,15) nm on a 32 nm side cube.

We now study the impact of the time step size on the solution, holding the spatial dis-
cretization fixed. The simulations have been performed on a cube with sides Lx1= Lx2= Lx3=
50 nm by using periodic boundary conditions and starting with a random initial condition.
We have used three different fixed time steps 0.225 ps, 0.4505 ps, and 0.901 ps. Cut lines of
the OPs e2 and e3 are shown in Figs. 4(a)–4(b), along the diagonal (0,0,0) – (50,50,50) nm,
at time 0.427 ns. The time evolution of the average temperature coefficient τ is plotted in
Fig. 4(c). The maximum error in the OPs of the largest time step (0.901 ps) with respect
to the smallest one (0.225 ps) is 0.02 %. The plots show little sensitivity of the solution to
the time step, and that for this numerical example, the largest time step can be safely used.
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Figure 4: (Color online) Time step refinement studies: cut-line plot of the OPs (deviatoric strains) (a) e2
and (b) e3 along the normalized diagonal x̂ between diagonal points (0,0,0)–(50,50,50) nm and (c) time (ns)
evolution of average temperature coefficient τ .

4.2. Microstructure Morphology on Different Geometries

Most PF simulations in the literature have been conducted on cubic specimens with
periodic or stress-free boundary conditions. However, applications exist where complex ge-
ometries are required. In this section, we generate a thermally-induced microstructure in
SMA specimens of different geometries, by quenching them to the temperature corresponding
to τ = −1.2 and allowing the system to evolve. All the simulations have been started with
a small-amplitude random initial condition, corresponding to the austenite phase, for the
displacement vector uuu. Periodic, constrained or stress-free boundary conditions have been
used on different surfaces for the structural physics. In all the following simulations, the
x1, x2, and x3 directions in the microstructure morphology plots are indicated by x, y and
z directions, respectively. The cube and slab SMA geometries are modeled using uniform
C 1-quadratic B-spline basis functions, while the cylindrical tube and tubular torus geome-
tries require the use of NURBS functions. Before we describe the results, we remark that
all the following simulations have been conducted under the assumption that geometries are
realizable in a single crystal. This stringent assumption can be overcome by incorporating
the grain boundary effects in a polycrystalline model.

4.2.1. Cube Geometry

Fig. 5 shows snapshots of the transient microstructure morphology evolution in the cube
domain (Lx1=Lx2=Lx3= 60 nm). The martensitic variants M1, M2, and M3 are represented
in red, blue, and green color, respectively. Martensitic variants nucleate at different places
autocatalytically and coalesce to form the domain walls along cubic [110] planes. Owing
to the fully periodic boundary conditions, the three martensitic variants exist in approxi-
mately equal proportions. The microstructure morphology results in a competition between
dilatation, shear and gradient energies. The stabilized microstructure after sufficiently long
time, seen in Fig. 5(e) for t = 1 ns, shows chevron or herringbone or multiply banded struc-
tures of martensitic variants. In particular, on the Γx3(+) surface (the front surface in Fig.
5(e)), the primary bands of M1 and M2 are intersected by the M3 variant at 90◦. The ratio
of the widths of primary and secondary bands, i.e., M1:M3 and M2:M3 are approximately
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2:1. A similar ratio was found in [27] and the experimental references therein. The domain
wall orientations are in accordance with experiments [75], crystallographic theory [76] and
other models in the literature [27, 16]. During the microstructure evolution, the tempera-
ture increase is observed due to the insulated boundary conditions and thermo-mechanical
coupling. The time evolution of the average temperature coefficient τ in the cube specimen
is shown in Fig. 9(a) in blue color.

(a) t = 0.036 ns (b) t = 0.09 ns (c) t = 0.18 ns (d) t = 0.27 ns (e) t = 1 ns

Figure 5: (Color online) Microstructure morphology evolution in a cube specimen with side 60 nm (red,
blue, and green colors represent M1, M2, and M3 variants, respectively).

4.2.2. Slab Geometry

Now, if the domain size is reduced to half in one of the directions (Lx1=Lx3= 60 nm
and Lx2= 30 nm) and microstructures are allowed to evolve in the slab domain, we obtain
morphology evolution as shown in Fig. 6. The three variants exist in approximately equal
proportions forming chevron patterns as shown in Fig. 6(e). The microstructure in the slab
domain (Fig. 6(e)) is morphologically different than that of the cube domain (Fig. 5(e)).
The primary bands of M1 and M3 variants are prominent and intersected by a thin secondary
band of the M2 variant at 90◦. The width ratios of primary and secondary bands are 2:1, as
in the cube specimen. The time evolution of the average temperature coefficient τ in the slab
specimen is shown in Fig. 9(a) in red color. The simulations on the cube and slab domains
illustrate the influence of specimen geometry on microstructure evolution and morphology.

(a) t = 0.036 ns (b) t = 0.09 ns (c) t = 0.18 ns (d) t = 0.27 ns (e) t = 1 ns

Figure 6: (Color online) Microstructure morphology evolution in a slab specimen with Lx1
= Lx3

= 60 nm
and Lx2

= 30 nm (red, blue, and green colors represent M1, M2, and M3 variants, respectively).

4.2.3. Cylindrical Tube Geometry

The numerical simulations on a cylindrical tube domain have a two-fold purpose: (i) to
study the microstructure morphology, and (ii) to show the flexibility of IGA to model real-life
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geometries as those observed in nanotubes for drug delivery [1] and other applications. The
simulation has been conducted on a tube specimen with Ri = 22.5 nm, Ro = 30 nm, and
H = 120 nm (refer to Fig. 2(b)) that can be modeled exactly using NURBS. To generate
the geometry of the tube we defined first a circular annulus using four NURBS patches as
described in [32]. Then, we swept that annulus in the x3 direction using the procedure
explained in [32]. To achieve C 1continuity across the different patches we used matching
discretizations and built linear constraints into the discrete spaces, so that the solution
and weighting functions are automatically C 1across patches. As for boundary conditions,
the surfaces Γx3(+) and Γx3(−) are constrained in displacement with uuu = 000 and stress-
free boundary conditions have been applied on the outer ΓRo and inner ΓRi

surfaces. The
relevant microstructure morphology corresponding to ∂u3/∂x3 is plotted in Fig. 7. Note
that in Fig. 7, the color map that indicates the microstructure has been plotted on the
deformed configuration to provide information about the displacements field. In the plots,
we observe that the helix microstructure of M3 variant (red color) evolves from the initial
random condition. Such helix microstructures have been reported experimentally in tubular
SMA specimens [77]. Remnant traces of austenite exist near the Γx3(+) and Γx3(−) surfaces
(shown in green) due to the constrained boundary conditions. The time evolution of the
average temperature coefficient τ is shown in Fig. 9(a) in black color.

(a) t = 0.09 ns (b) t = 0.18 ns (c) t = 0.27 ns (d) t = 0.45 ns (e) t = 1 ns

Figure 7: (Color online) Helix microstructure morphology evolution in a tubular specimen with Ri = 22.5 nm,
Ro = 30 nm, and H = 120 nm (red and blue color represent M3, and remaining two variants, respectively).
The microstructure is superimposed with the displacement vector uuu for better clarity.

4.2.4. Tubular Torus Geometry

The simulation has been conducted on a tubular torus SMA specimen with Rd = 100
nm, Rto = 50 nm and Rti = 25 nm (refer to Fig. 2(c)), which can be modeled exactly using
NURBS. The geometry was generated by sweeping a circular annulus in a circular line as
illustrated in [32]. We force the trial solution and weighting functions to be C 1across patches
by imposing linear constraints on the spaces. The specimen is constrained in displacements
with uuu = 000 on the inner surface ΓRti

. Stress-free boundary conditions have been applied
on outer surface ΓRto . The self-accommodated microstructure morphology evolution has
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been presented in Fig. 8. The microstructure evolves into a complex morphology due to
the interplay of the phase-transformation physics with the geometry of the computational
domain. The time evolution of the average temperature coefficient τ in the tubular torus
geometry is shown in Fig. 9(a) in green color.

(a) t = 0.045 ns (b) t = 0.09 ns (c) t = 0.27 ns (d) t = 1 ns

Figure 8: (Color online) Self-accommodated microstructures in a tubular torus specimen with Rd = 100 nm,
Rto = 50 nm, and Rti = 25 nm (red, blue, and green colors represent M1, M2, and M3 variants, respectively).
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Figure 9: (Color online) Time evolution of the average temperature coefficient τ in a (a) cube (blue), slab
(red), cylindrical tube (black) and tubular torus (green) geometries and (b) bigger cube domain.

4.3. Microstructure Morphology on a Bigger Cube Domain

In Section 4.2, we reported periodic patterns of self-accommodated martensite variants
in a cube specimen. The periodic boundary conditions add artificial constraints by forcefully
imposing the same value for all the degrees of freedom on the two opposite surfaces of the
cube. Thus, periodic boundary conditions can alter the microstructure evolution on small
domains. As the system size becomes larger, we expect the periodic-boundary effect will not
be felt far from the boundaries. To reduce the effect of the periodic boundary conditions on
the microstructure, we conduct numerical simulations on an SMA cube of side 210 nm, which
is probably one of the biggest domains used for microstructure evolution of SMAs. Similar
to Section 4.2, the SMA specimen is quenched to temperature corresponding to τ = −1.2
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and microstructures are allowed to evolve. The domain is discretized using 170 uniform
C 1-quadratic B-spline basis functions (168 elements) in each direction. The total number
of degrees of freedom is approximately 19 millions, which would be approximately 12 times
larger for a mixed formulation using the same number of quadratic Lagrange elements in the
classical finite element method.

Fig. 10 shows time snapshots of the transient microstructure evolution in the bigger cube
domain. The martensitic variants nucleate at several places and they coalesce to form bigger
domains. The smaller domain shows the regular herringbone patterns of variants at the
stabilized state (Fig. 5(e)), however the big domain does not show regular patterns of the
variants. Several features like needle twins, Mi-Mi and Mi-Mj martensitic variants collision,
and a split tip morphology have been revealed. Such features have also been reported in
[27] and the experimental references therein. The time evolution of the average temperature
coefficient τ in the bigger cube specimen is shown in Fig. 9(b). The simulation has also
demonstrated the influence of periodic boundary conditions on the morphology evolution.

(a) t = 0.09 ns (b) t = 0.27 ns (c) t = 0.45 ns (d) t = 1.135 ns

Figure 10: (Color online) Self-accommodated microstructure on a 210 nm side cube (red, blue, and green
colors represent M1, M2, and M3 variants, respectively).

5. Conclusions

We have developed a 3D phase-field theory for modeling cubic-to-tetragonal phase trans-
formations and thermo-mechanical behavior of SMAs. The model is numerically imple-
mented in the IGA framework, which allows the straightforward solution to the fourth-order
differential equations. The microstucture morphology and thermo-mechanical behavior is
in qualitative agreement with the experiments and previously developed models from the
literature. Simulation results indicate that IGA allows the use of relatively coarse meshes,
thus permitting modeling bigger domain sizes. These features, along with modeling complex
geometries, are useful in understanding microstructure morphology, which influences thermo-
mechanical behavior during dynamic loading of SMA nanostructures in real-life application
development. In the future, the developed framework can be extended to incorporate the
grain boundary effects in a polycrystalline SMA material.
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Appendix A. Dimensionless form of the governing equations

We rescale the equations Eqs. (15) to a dimensionless form by using the following change
of variables:

ei = ecēi, ui = ecδūi, x = δx̄, F = FcF̄ , t = tct̄, θ = θcθ̄. (A.1)

The governing thermo-mechanical Eqs. (15.1)–(15.2) can now be converted to the di-
mensionless form as:

ρūī,t̄t̄ = σ̄īj̄,j̄ + η̄σ̄′īj̄,j̄ + µ̄īj̄,k̄k̄j̄ + f̄ī, (A.2a)

C̄vθ̄,t̄ = κ̄θ̄,̄īi + Ξ̄θ̄
(
ūī,̄iūj̄,j̄t̄ − 3ūī,̄iūī,̄it̄

)
+ ḡ, (A.2b)

with

δ =

√
kg
A0

, ā1 =
a1

A0

, ā2 =
a2

A0

, ā4 = 2, ā5 = 1, k̄g = 1,

Fc = δ2e2
cA0, η̄ =

η

A0

√
A0

ρδ2
, C̄v =

ρCvτ

tc
, κ̄ =

κτ

δ2C̄v
, Ξ̄ = −2

3

A0e
2
c

tcτC̄v
. (A.3)

The rescaled free energy takes on the form:

F̄ =

∫
Ω̄

( ā1

2
(ē1)2 +

ā2

2
(ē2

4 + ē2
5 + ē2

6) + ā3τ(ē2
2 + ē2

3) + ā4ē3(ē2
3 − 3ē2

2)

+ā5(ē2
2 + ē2

3)2 +
k̄g
2

[
|∇ē2|2 + |∇ē3|2

] )
dΩ̄. (A.4)
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