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Abstract There is a large body of literature dealing with
the interaction of solids and classical fluids, but the mechan-
ical coupling of solids and complex fluids remains practi-
cally unexplored, at least from the computational point of
view. Yet, complex fluids produce much richer physics than
classical fluids when they interact with solids, especially
at small scales. Here, we couple a nonlinear hyperelastic
solid with a single-component two-phase flow where the
fluid can condensate and evaporate naturally due to temper-
ature and/or pressure changes. We propose a fully-coupled
fluid–structure interaction algorithm to solve the problem.
We illustrate the viability of the theoretical framework and
the effectiveness of our algorithms by solving several prob-
lems of phase-change-driven implosion, a physical process
in which a thin structure collapses due to the condensation
of a fluid.
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1 Introduction

1.1 Interaction of complex fluids and solids

Traditional fluid–structure interaction (FSI) methods have
mainly focused on the interaction of solids with classical flu-
ids governed by the Navier–Stokes equations of incompress-
ible or compressible flows [8,26,45–47,55,58,60,63,64,67,
70,72,66]. Yet, there are a number of open FSI problems
that cannot be modeled using this paradigm because they
fundamentally depend on physical mechanisms not captured
by the Navier–Stokes equations. Prime examples are fluid–
solid systems that involve multi-phase and/or multi-component
flows, liquid crystals or micropolar fluids. These are just
some examples of a broad class of fluids typically referred
to as complex fluids [28]. One of the areas that could po-
tentially benefit from accurate and efficient computational
methods for the interaction of complex fluids and solids is
that of mechanobiology. Just as an example, phenomena as
important as cellular migration [51] or even cellular divi-
sion [50] seem to be controlled to a significant extent by me-
chanics, and it seems plausible that at cellular scale capillary
forces and spontaneous polarizations need to be considered.

Here, we present our initial steps toward a computational
method for the interaction of complex fluids and solids. To
illustrate our ideas, we focus on a particular engineering
application, namely, the implosion of solids that enclose a
compressible fluid. Structures containing a compressible fluid
at a pressure below the external pressure have the potential
to collapse inwards. For example, an air-filled structure may
suffer an implosive collapse when it is immersed underwa-
ter, due to the increase of the external pressure. This is just
an example of implosion which has been addressed before
in the literature [25,26,37,41,49,80], and that may be mod-
eled using classical fluid theories. However, the aforemen-
tioned mechanism is not the only one that can cause the
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implosive collapse of a structure. For example, in the case
of vapor-filled structures, thermal variations can make va-
por transform into liquid, reducing the internal pressure. We
will refer to this phenomenon as phase-change-driven im-
plosion, and this will be the subject of the current paper. It is
clear that to model phase-change-driven implosion the way
we have defined it, we will need a complex-fluid theory in
which the fluid can undergo phase transformations.

1.2 Fluid dynamics with phase changes

Our approach to phase transformation is based on the diffuse-
interface of phase-field method. The diffuse-interface ap-
proach can be defined as an alternative to the classical sharp-
interface description. In the sharp-interface theory, several
partial-differential equations must be solved on the differ-
ent phases and they are coupled through boundary condi-
tions that hold on a moving, and a priori unknown, inter-
face. Thus, this technique may result in mathematical mod-
els that require complex numerical treatment. The key idea
of the diffuse interface method is to use a field, namely the
phase field, which is defined on the entire computational do-
main, and is a marker of the location of the different phases.
The phase field varies smoothly on the computational do-
main, and naturally produces thin layers which represent
interfaces between phases. This conceptualization notably
simplifies the numerics because the problem reduces to solv-
ing a partial-differential equation on a fixed and known do-
main. From the computational point of view, the main disad-
vantage of the phase-field approach is that it typically leads
to higher-order partial-differential equations that are stiff in
space and time, and produce thin layers which evolve dy-
namically over the computational domain. However, most
of these computational challenges are being addressed [30,
32,34,44], and computational phase-field modeling is be-
coming a mature topic. Phase-field models have been widely
used in the condensed matter physics [18,27,48,79] and ma-
terial science [13,54] and are rapidly getting established in
the engineering field [12,31,82]. In this paper, we employ a
phase-field approach based on the Navier–Stokes–Korteweg
(NSK) equations to describe the behavior of the fluid in the
implosion problem. The NSK equations constitute the most
widely accepted mathematical model for single-component,
two-phase (liquid and gas) flows [33]. Thus, the NSK the-
ory may be used to model fluid flows in which the fluid can
evaporate and condensate naturally due to pressure and/or
temperature variations. The NSK system is the result of sev-
eral works. The contribution of Gibbs [29], Korteweg, van
der Waals [81] and Dunn and Serrin [23] should be high-
lighted. The current form of the system has been known for
several years, though very few numerical solutions can be
found in the literature. Notable exceptions include [20,33,
44].

1.3 Computational challenges

From the computational point of view, there are at least two
significant challenges in the phase-change-driven implosion
problem as compared to other FSI simulations. First, phase-
change-driven implosions lead to a violent and rapid col-
lapse of the structure with strong compressions and large
deformations [40]. Strong implosions may also involve con-
tact, plastic deformation, and fracture, although this is out
of the scope of this paper. Second, the NSK theory is more
difficult to treat numerically than classical Navier–Stokes
equations due to the presence of thin interfaces that must
be resolved by the computational mesh. We try to address
these challenges by using Isogeometric Analysis (IGA) for
the spatial discretization of the problem. IGA is a general-
ization of the finite element method that was introduced in
[35] and further developed in [1,2,5,15–17,24,57,83]. The
main idea of IGA is to use functions from computational
geometry to represent both the solution and the domain of a
boundary-value problem. The most frequently utilized func-
tions are Non-Uniform Rational B-Splines (NURBS) which
are widely used in computational geometry and design, and
will also be used in this work for our simulations.

We feel that IGA successfully addresses the two compu-
tational challenges that we mentioned before. In particular,
IGA has been shown to perform well under large structural
deformations [11,42]. Additionally, IGA has been success-
fully used in computational phase-field modeling. In fact, it
was shown that the higher-order global continuity of NURBS
leads to a more accurate and stable solution of the thin lay-
ers that naturally arise in the solution of phase-field theo-
ries [30]. Finally, IGA has been previously used to solve FSI
problems with remarkable success [4–7].

2 Governing equations

2.1 Kinematics

Let us introduce a reference domain Ωx̂xx which is fixed in
time, and whose points are parameterized by coordinates x̂xx.
The reference domain is arbitrary and may take on different
interpretations. Let us define a mapping φ̂φφ : Ωx̂xx×]0,T [→Ωt ,
where ]0,T [ is the time interval of interest. For each time
t ∈]0,T [, the function φ̂φφ maps the reference domain Ωx̂xx into
its spatial configuration at time t, namely Ωt . Let us call xxx
the coordinates in the spatial configuration, such that Ωt 3
xxx = φ̂φφ(x̂xx, t). In the following, we will also use the notation
φ̂φφ t(x̂xx) = φ̂φφ(x̂xx, t). Using the mapping φ̂φφ , we can define the
displacement of a point in the referential domain

ûuu(x̂xx, t) = φ̂φφ(x̂xx, t)− x̂xx, (1)
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and its velocity

v̂vv =
∂ ûuu
∂ t

. (2)

Let us also define the mapping φφφ : ΩXXX×]0,T [→Ωt . For each
time t ∈]0,T [, this mapping transforms each material parti-
cle XXX into its spatial coordinate at time t, that is, xxx = φφφ(XXX , t).
Note that due to the arbitrariness of the referential domain,
the mapping φφφ can be simply thought of as a particular case
of φ̂φφ , but each mapping will be employed for a different
purpose in this work, so we will use different notations.
From the mapping φφφ , we can define the deformation gra-
dient FFF = ∂φφφ

∂XXX , the particle displacement

uuu(XXX , t) = φφφ(XXX , t)−XXX , (3)

and the particle velocity

vvv =
∂φφφ

∂ t
=

∂uuu
∂ t

. (4)

In what follows, we will also make use of the Eulerian coun-
terpart of the particle velocity vvv, namely, vvv◦φφφ

−1. From now
on, in most instances, we will only use one symbol to de-
note a physical quantity (velocity, in this case) even if the
functions vvv and vvv ◦ φφφ

−1 are clearly different. To avoid am-
biguity in our notation we will use subscripts to clarify how
derivatives are to be understood. For example, we will use
the notation ∂uuu

∂ t |X (respectively, ∂uuu
∂ t |x̂) to indicate that the

time derivative is taken by holding XXX (respectively, x̂xx) fixed.
When neither |X nor |x̂ are used in the time derivative, it is
assumed to be taken by holding xxx fixed. We use a similar
convention for spatial derivatives. For example, we denote
by ∇ the gradient with respect to the spatial coordinates xxx. If
coordinates other than xxx are used, the gradient operator will
be assigned the appropriate subscript.

2.2 Governing equations of solid mechanics

The equations governing the structural dynamics will be pre-
sented in Lagrangian description, therefore all quantities are
derived from the mapping φφφ . The deformation gradient takes
on the form FFF = III +∇X uuu, where III denotes the identity ten-
sor. We will also make use of the Cauchy–Green deforma-
tion tensor CCC = FFFT FFF , and the Green–Lagrange strain tensor
EEE = (CCC− III)/2. The momentum balance in Lagrangian form
can be written as

ρ
s
0

∂ 2uuu
∂ t2

∣∣∣∣
X
= ∇X ·PPP+ρ

s
0 fff s, (5)

where ρs
0 is the mass density in the initial configuration, fff s

represents body forces per unit mass, and PPP is the first Piola–
Kirchhoff stress tensor. To define PPP, we need to introduce a
constitutive theory. We will use a hyperelastic model, there-
fore, the material behavior is described by a stored elastic

energy density per unit volume of the undeformed config-
uration W . In particular, we will use the generalized neo-
Hookean model with dilatational penalty proposed in [52],
which is defined by

W =
µ

2

(
J−2/d tr(CCC)−d

)
+

κ

2

(
1
2
(
J2−1

)
− lnJ

)
, (6)

where d is the number of spatial dimensions, κ and µ are
the material bulk and shear moduli; tr(·) denotes the trace
operator and J = det(FFF). Note that in Eq. (6), the lnJ term
stabilizes the equation for the regime of strong compression,
while the J2−1 term penalizes the deviation of the Jacobian
from unity. The second Piola–Kirchhoff stress tensor can be
computed from W as

SSS =
∂W
∂EEE

= µJ−2/d
(

III− 1
d

tr(CCC)CCC−1
)
+

κ

2
(
J2−1

)
CCC−1.

(7)

The first Piola–Kirchhoff stress tensor is simply defined as
PPP = FFFSSS. For future reference, we define the solid Cauchy
stress tensor as

σσσ
s = J−1FFFSSSFFFT = J−1PPPFFFT . (8)

2.3 Governing equations of fluid mechanics

In our model, the fluid dynamics is governed by the NSK
equations, which account for mass, momentum and energy
conservation. The NSK equations allow for liquid-gas and
gas-liquid phase transformations, which can happen sponta-
neously without precursors. In the Eulerian frame, the NSK
equations are given by

∂ρ

∂ t
+∇ · (ρvvv) = 0, (9a)

∂ (ρvvv)
∂ t

+∇ · (ρvvv⊗ vvv)−∇ ·σσσ f −ρ fff = 0, (9b)

∂ (ρs)
∂ t

+∇ · (ρsvvv)+∇ ·
( qqq

θ

)
= P, (9c)

where s is the entropy density and the entropy production P
depends on the fluid constitutive theory described later in the
paper. The rest of the notation is as follows: ρ is the density,
vvv is the velocity vector, and⊗ denotes the usual vector outer
product; σσσ f is the fluid stress tensor and fff represents body
forces per unit mass; s is the entropy density, θ the temper-
ature, and qqq the heat flux. Notice that to completely define
the NSK equations, we need constitutive equations for the
stress tensor and the heat flux, as well as a thermodynamic
potential from which we can derive the state variables.
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2.3.1 Stress tensor

The fluid Cauchy stress tensor σσσ f is given by

σσσ
f = τττ− pIII + ςςς , (10)

where p is the pressure, τττ is the viscous stress tensor, and
ςςς denotes the so-called Korteweg tensor. We consider New-
tonian fluids, therefore, the viscous stress tensor is defined
as

τττ = µ̄
(
∇vvv+∇

T vvv
)
+ λ̄∇ · vvvIII, (11)

where µ̄ and λ̄ are the viscosity coefficients. Throughout
this paper, we will assume that the Stokes hypothesis is sat-
isfied, that is, λ̄ = −2µ̄/3. The Korteweg tensor is defined
by the expression

ςςς = λ

(
ρ∆ρ +

1
2
|∇ρ|2

)
III−λ∇ρ⊗∇ρ, (12)

where λ > 0 is the capillarity coefficient, and | · | denotes
the Euclidean norm of a vector. The Korteweg tensor gives
rise to capillary forces which are withstood by gas-liquid
interfaces. Note also that since ςςς depends upon ∆ρ , the lin-
ear momentum balance equation includes third-order partial
differential operators.

2.3.2 Heat conduction

We use the isotropic Fourier law, that is, qqq = −k∇θ , where
k is the thermal conductivity.

2.3.3 Entropy production

With the above-presented constitutive theory, the entropy
production P takes on the form

P = k
1

θ 2 |∇θ |2 + 1
θ

τττ : ∇vvv+
ρr
θ

+
ρ fff · vvv

θ
, (13)

where r is the heat supply per unit mass.

2.3.4 State variables

The NSK theory fits into classical thermodynamics, and as a
consequence, state variables can be derived from a Helmholtz
free-energy potential. To allow for phase transformations in
the fluid, we do not use the classical Helmholtz free-energy
of a perfect gas, but that of a so-called van der Waals fluid
[20,43]. The peculiarity of the van der Waals Helmholtz
free-energy is that it may be non-convex for low temper-
atures, allowing for spontaneous phase changes. Using the
van der Waals–Helmholtz free-energy and standard thermo-
dynamics [43], we obtain the pressure as

p = Rb
(

ρθ

b−ρ

)
−aρ

2, (14)

which is known as van der Waals equation. In Eq. (14), R
is the specific gas constant, while a and b are positive con-
stants. Also from the Helmholtz free-energy, we can obtain
the entropy density as

s =−R log
(

ρ

b−ρ

)
+ cvvv log

(
θ

θc

)
(15)

where cvvv is the specific heat capacity and θc is a reference
temperature to be defined later. In the NSK theory, phase
transformations are naturally accommodated without intro-
ducing additional fields, and without precursors. The density
itself is a marker of the vapor and liquid phases (see [33]).
To give a precise definition of the phases, let us consider θ a
parameter in Eq. (14). Fig. 1 shows a non-dimensional plot
of the pressure as a function of density for different values of
θ . We observe qualitatively different behaviors for θ > θc,
and θ < θc, where

θc =
8

27
ab
R

(16)

is the so-called critical temperature. For θ > θc, p is a mono-
tonic function of ρ , the gaseous phase is stable and the liq-
uid phase is unstable (not proven here). For θ < θc, there
is a density interval, namely (ρv,ρl), in which ∂ p/∂ρ < 0,
and as a consequence, there may be stable co-existence of
gas and liquid. In this temperature range, the gaseous phase
is defined by ρ ∈ (0,ρv), while the liquid phase is defined by
ρ ∈ (ρl ,b). The region ρ ∈ (ρv,ρl) has no physical meaning,
but in the NSK theory, may be interpreted as a smooth inter-
face between the vapor and liquid phases which spans over
a length scale

√
λ/a. Note also that in the inviscid, non-

conducting limit, the NSK equations are ill-posed for λ = 0,
and capillary forces are necessary to restore well-posedness.
For further details on the NSK equations, the reader is re-
ferred to [33,43].

Remark Note that our model neglects the thermal physics
in the solid. Although it would be straightforward to con-
sider a thermo-elastic theory, we believe that it is not a key
ingredient for the objectives of this paper.

3 Numerical formulation

In this section we propose FSI algorithms to solve the im-
plosion problem. Our methods extend those presented in [4]
to the realm of complex fluids.

3.1 Computational framework

In our model, the structure is treated as a nonlinear hyper-
elastic solid in Lagrangian description. The fluid is a com-
plex, viscous and compressible fluid, governed by the NSK
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Fig. 1 Non-dimensional plot of van der Waals pressure as a function of
density. The pressure is a non-monotone function of density for θ < θc.
For comparison purposes, we note that for a given temperature, the
pressure-density law of a perfect gas, would be a straight line tangent
to the van der Waals curve at ρ = 0.

theory. The NSK equations hold on a moving domain, and
heretofore, have been presented in Eulerian description. From
a computational viewpoint, we aim at using a semidiscrete
algorithm in which space discretization is performed using
IGA, and time discretization is carried out by a finite-difference-
type method. Eulerian descriptions are not well-suited for
semidiscretized methods on moving domains, so we will use
the Arbitrary Lagrangian-Eulerian (ALE) formulation [21,
22,36]. In ALE methods the partial time and space deriva-
tives employed in the balance equations are taken with re-
spect to different domains, namely, the reference and the
current domain. This particularity allows for a straightfor-
ward use of semi-discrete methods, even when the equations
are posed on a moving domain [4].

Using the techniques presented in [9,22], the NSK sys-
tem in the ALE description may be written as:

∂ρ

∂ t

∣∣∣∣
x̂
+(vvv− v̂vv) ·∇ρ +ρ∇ · vvv = 0, (17a)

ρ
∂vvv
∂ t

∣∣∣∣
x̂
+ρ (vvv− v̂vv) ·∇vvv−∇ ·σσσ f −ρ fff = 0, (17b)

∂ (ρs)
∂ t

∣∣∣∣
x̂
+(vvv− v̂vv) ·∇(ρs)+ρs∇ · vvv+∇ ·

( qqq
θ

)
= P,

(17c)

where v̂vv is the fluid domain velocity [4], which is associated
to the mapping φ̂φφ that transforms the referential domain into
the spatial configuration. The details of the mapping φ̂φφ will
be will be provided later in the paper.

Remark For moving domain applications, the Eulerian form
of the NSK equations may be discretized using a space–time
technique, an alternative to the ALE approach. See refer-
ences [9,10,56,59–62,65,67–69,71] for recent advances in
space–time methods for fluid mechanics and FSI.

Fig. 2 Fluid and solid subdomains in the reference and spatial config-
uration.

3.2 Definition of the computational domain

Let Ω0 denote the initial configuration of the entire domain
of the problem, that is, the fluid and solid domains com-
bined. Ω0 will be adopted as the reference configuration and
also as material configuration. We may decompose Ω0 as

Ω0 = Ω
f

0 ∪Ω s
0, with Ω

f
0 ∩Ω

s
0 = /0, (18)

where superscripts s and f refer to the solid and the fluid
domain, respectively. We may also decompose the spatial
configuration of Ω0 at time t, namely Ωt , as

Ωt = Ω
f

t ∪Ω s
t , with Ω

f
t ∩Ω

s
t = /0. (19)

Let Γ0 and Γt be the fluid-solid interface where the subscripts
0 and t denote the initial and the current configuration, re-
spectively. We will denote by Γ s

0 and Γ s
t the boundary of the

solid subdomain without the part of the fluid-structure inter-
face. Likewise, Γ

f
0 and Γ

f
t denote the boundary of the fluid

subdomain without the fluid-structure interface. See Fig. 2
for an illustration.

3.3 Continuous problem in the weak form

3.3.1 Solid mechanics problem

To define the weak form of the solid problem we need to
consider suitable boundary conditions. Let us assume that
the solid boundary Γ s

0 can be decomposed into Neumann
and Dirichlet parts denoted by (Γ s

0 )N and (Γ s
0 )D, respec-

tively. Note that this splitting may be different for each spa-
tial direction, although this is not explicitly indicated in our
notation. Let us define a trial solution functional space X s =

X s(Ω s
0) whose members verify the Dirichlet boundary con-

ditions of the problem, and a weighting function space Y s =

Y s(Ω s
0) which is identical to X s, but verifies homogeneous

conditions on (Γ s
0 )D. The variational formulation can be stated

as follows: Find uuu ∈X s such that ∀wwws ∈ Y s,

Bs(wwws,uuu) = Fs(wwws), (20)
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where

Bs(wwws,uuu) =
∫

Ω s
0

(
wwws ·ρs

0
∂ 2uuu
∂ t2

∣∣∣∣
X
+∇X wwws : PPP

)
dΩ

s
0 (21)

and

Fs(wwws) =
∫

Ω s
0

wwws ·ρs
0 fff sdΩ

s
0 +

∫
(Γ s

0 )N

wwws · ĥhhd(Γ s
0 )N . (22)

Note that this variational formulation weakly enforces Eq.
(5), and the Neumman boundary condition PPPn̂nns = ĥhh on (Γ s

0 )N .
Here, ĥhh is a given traction and n̂nns is the unit outward nor-
mal to the solid boundary in the referential domain. For
future reference, we note that the boundary condition cor-
responding to a follower load p in the direction of the in-
ner normal to the solid boundary may be imposed by taking
ĥhh =−pJFFF−T n̂nns.

3.3.2 Fluid mechanics problem

To derive our weak form we need to specify suitable bound-
ary conditions. For the time being, we will focus on solid-
wall boundary conditions. In classical compressible gas dy-
namics, solid-wall boundary conditions may be imposed, for
example, by setting velocity and temperature to given val-
ues. This is not sufficient to get a well-posed boundary value
problem for the NSK equations, due to the third-order spa-
tial derivative of the density in the linear momentum bal-
ance. To attain well-posedness, the boundary condition

∇ρ ·nnn f =−|∇ρ|cos(ϕ) (23)

may be imposed. Here, nnn f denotes the unit outward nor-
mal to the fluid boundary, and ϕ is the contact angle be-
tween the liquid-vapor interface and the solid, measured in
the vapor phase. Let us also mention that to derive our weak
form, we will split the momentum balance equation (17b)
into two lower-order equations by introducing a new vari-
able defined as ϒ = ∆ρ . Notice that this step is not neces-
sary with isogeometric analysis since IGA allows to use the
globally C1-continuous basis functions that are required to
approximate the NSK equations in primal form (see [33]).
However, to allow for the use of classical C0 finite elements,
and to simplify the imposition of the boundary condition
(23), we chose to use the split form. Let us introduce the
trial solution space X f =X f (Ω f

t ) whose members satisfy
all Dirichlet boundary conditions. The weighting functions
space Y f =Y f (Ω f

t ) is identical to X f , but all restrictions
on the Dirichlet boundary are homogeneous. The variational
formulation is stated as follows: Find UUU = {ρ,vvv,ϒ ,θ} ∈
X f such that ∀WWW = {w1,www2,w3,w4} ∈ Y f ,

B f (WWW ,UUU ; v̂vv) = 0, (24)

where

B f (WWW ,UUU ; v̂vv) =
∫

Ω
f

t

w1
(

∂ρ

∂ t

∣∣∣∣
x̂
+(vvv− v̂vv) ·∇ρ +ρ∇ · vvv

)
dΩ

f
t

+
∫

Ω
f

t

www2 ·
(

ρ
∂vvv
∂ t

∣∣∣∣
x̂
+ρ (vvv− v̂vv) ·∇vvv−ρ fff

)
dΩ

f
t

+
∫

Ω
f

t

∇www2 : (τττ− pIII)dΩ
f

t

+
∫

Ω
f

t

∇ ·www2
λ

(
ρϒ +

1
2
|∇ρ|2

)
dΩ

f
t

−
∫

Ω
f

t

∇www2 : λ∇ρ⊗∇ρdΩ
f

t

+
∫

Ω
f

t

w3
ϒ dΩ

f
t +

∫
Ω

f
t

∇w3 ·∇ρdΩ
f

t

+
∫

Γ
f

t ∪Γt

w3|∇ρ|cos(ϕ)d(Γ f
t ∪Γt)

+
∫

Ω
f

t

w4
(

∂ (ρs)
∂ t

∣∣∣∣
x̂
+(vvv− v̂vv) ·∇(ρs)

)
dΩ

f
t

+
∫

Ω
f

t

w4
(

ρs∇ · vvv− 1
θ

τττ : ∇vvv− k
1

θ 2 |∇θ |2
)

dΩ
f

t

−
∫

Ω
f

t

w4
(

ρr
θ

+
ρ fff · vvv

θ

)
dΩ

f
t

−
∫

Ω
f

t

∇w4 · qqq
θ

dΩ
f

t . (25)

Note that the variational formulation (24)–(25) weakly im-
poses the NSK equations and the boundary condition (23).
If Dirichlet boundary conditions are not set on the entire
boundary for velocity or temperature, then the variational
formulation weakly imposes the conjugate stress-free con-
dition or vanishing heat flux at the wall.

3.3.3 Fluid domain motion

The goal of this motion is to produce a smooth evolution of
the fluid domain given the displacement data on the fluid–
solid interface. This motion will be associated to the map-
ping φ̂φφ , and will be understood as a succession of fictitious
linear elastic boundary-value problems [4,39,53,73–76]. Let
us use the notation φ̂φφ t(x̂xx) = φ̂φφ(x̂xx, t). We may define the dis-
placement of the reference domain at time t as

ûuut(x̂xx) = ûuu(x̂xx, t) = φ̂φφ(x̂xx, t)− x̂xx. (26)

The function φ̂φφ t̃ is the analogue of φ̂φφ t at time t̃, and ûuut ◦ φ̂φφ
−1
t̃

is simply the displacement of the reference domain at time t
with respect to the configuration of the reference domain at
time t̃. Here, we understand t̃ < t as a time instant close to t,
which in a time-discrete context is usually the final configu-
ration of the previous time step. To determine φ̂φφ t , and thus,
the motion of the fluid subdomain, we use the identity

φ̂φφ t(x̂xx) = φ̂φφ t̃(x̂xx)+
(

ûuut ◦ φ̂φφ
−1
t̃

)(
φ̂φφ t̃(x̂xx)

)
, (27)
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where ûuut ◦ φ̂φφ
−1
t̃ is obtained from a linear elastic boundary-

value problem. Let us call uuum our “approximation” of ûuut ◦
φ̂φφ
−1
t̃ obtained by solving a fictitious linear-elastic bound-

ary value problem. The unknown uuum is subject to Dirichlet

boundary conditions uuum = uuut ◦ φ̂φφ
−1
t̃ on Γ̃t , where uuut is the par-

ticle displacement at time t. These Dirichlet boundary con-
ditions are strongly built into the trial solution space V m =

V m(Ω f
t̃ ). The corresponding weighting function space, sat-

isfying homogeneous conditions on the boundary, is denoted
by W m =W m(Ω f

t̃ ). The variational formulation can be stated
as follows: Find uuum ∈ V m such that ∀wwwm ∈W m,

Bm(wwwm,uuum) = 0, (28)

where

Bm(wwwm,uuum) =
∫

Ω
f

t̃

∇
sym
x̃ wwwm : 2µ

m
∇

sym
x̃ uuumdΩ

f
t̃

+
∫

Ω
f

t̃

∇x̃ ·wwwm
λ

m
∇x̃ ·uuumdΩ

f
t̃ , (29)

while µm and λ m are the Lamé parameters of the fictitious
elastic model characterizing the motion of the fluid domain;
∇x̃ is the gradient operator on Ωt̃ and ∇

sym
x̃ is its symmetric

part. Once uuum has been determined, the ALE mapping in the
fluid subdomain can be obtained from Eq. (27) by replacing

ûuut ◦ φ̂φφ
−1
t̃ with uuum.

3.3.4 Coupled FSI problem

Here, we present the coupled fluid-structure interaction prob-
lem. The variational formulation of the problem is stated as
follows: Find UUU = {ρ,vvv,ϒ ,θ} ∈ X f , uuu ∈ X s and uuum ∈
V m such that ∀WWW = {w1,www2,w3,w4} ∈ Y f , ∀wwws ∈ Y s and
∀wwwm ∈W m,

B f (WWW ,UUU ; v̂vv)+Bs(wwws,uuu)+Bm(wwwm,uuum) = Fs(wwws), (30)

with the following fluid-solid interface conditions:

vvv =
∂uuu
∂ t
◦ φ̂φφ
−1

on Γt , (31)

www2 = wwws ◦ φ̂φφ
−1

on Γt . (32)

In (30), v̂vv is obtained from φ̂φφ which is determined as ex-
plained in Sect. 3.3.3. Note also that Eq. (31) ensures strong
kinematical compatibility at the fluid-structure interface. Eq.
(32) leads to a weak enforcement of traction compatibility
at the interface, which in the spatial configuration may be
expressed as σσσ f nnn f +σσσ snnns = 0 on Γt , where nnns is the unit
outward normal to the solid in the spatial configuration.

3.4 Semidiscrete formulation

For the spatial discretization of the coupled problem we make
use of NURBS-based isogeometric analysis. We define finite-
dimensional approximations of the funtional spaces, namely,
X f

h , X s
h and V m

h such that X f
h ⊂ X f , X s

h ⊂ X s, and
V m

h ⊂ V m. Analogously, we introduce Y f
h ⊂ Y f , Y s

h ⊂
Y s, and W m

h ⊂ W m. We approximate (30) by the follow-
ing variational problem over the finite element spaces: Find
UUUh = {ρh,vvvh,ϒh,θh} ∈ X f

h , uuuh ∈ X s
h and uuum

h ∈ V m
h such

that ∀WWW h = {w1
h,www

2
h,w

3
h,w

4
h} ∈ Y f

h , ∀wwws
h ∈ Y s

h and ∀wwwm
h ∈

W m
h ,

B f (WWW h,UUUh; v̂vvh)+Bs(wwws
h,uuuh)+Bm(wwwm

h ,uuu
m
h ) = Fs(wwws

h), (33)

where

ρh(xxx, t) = ∑
A∈I f

ρA(t)NA(xxx, t), w1
h(xxx, t) = ∑

A∈I f

w1
ANA(xxx, t),

(34a)

uuuh(XXX , t) = ∑
A∈Is

uuuA(t)N̂A(XXX), wwws
h(XXX) = ∑

A∈Is

wwws
AN̂A(XXX),

(34b)

uuum
h (x̃xx, t̃) = ∑

A∈I f

ûuuA(t̃)ÑA(x̃xx, t̃), wwwm
h (x̃xx, t̃) = ∑

A∈I f

wwwm
A ÑA(x̃xx, t̃),

(34c)

while the discrete fluid mesh velocity in the spatial configu-
ration is given by

v̂vvh(xxx, t) = ∑
A∈I f

∂ ûuuA

∂ t
(t)NA(xxx, t). (35)

The variables vvvh ,ϒh and θh are defined analogously to ρh,
while www2

h, w3
h and w4

h are defined similarly to w1
h. In Eqs.

(34), the N̂A’s are a set of basis functions defined on Ω0 and
Is is their global-index set. The N̂A’s are fixed in time and
have square integrable first spatial derivatives. Their conti-
nuity can be arbitrarily high inside the solid and fluid sub-
domains, but they are exactly C 0 on Γ0 (in the normal di-
rection). NA is the push forward of N̂A to the spatial domain

Ωt , that is, NA(xxx, t) = N̂A ◦ φ̂φφ
h
−1
(xxx, t), where φ̂φφ

h
−1

is the dis-

crete counterpart of φ̂φφ
−1

. Likewise, ÑA is the push forward
of N̂A to the spatial domain at time t̃ (see Sect. 3.3.3), i.e.,

ÑA(x̃xx, t̃) = N̂A ◦ φ̂φφ
h
−1
(x̃xx, t̃). I f is the global-index set of the

NA’s.
In order to ensure a correct coupling between the fluid and
solid, we must enforce the compatibility of kinematics and
tractions at the fluid–structure interface Γt . To do so, we use
a unique set of trial functions for the velocity degrees-of-
freedom, and the corresponding test functions for the linear
momentum equations at the fluid–structure interface. This
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leads to a typical monolithic FSI formulation with a match-
ing interface discretization, and gives strong (pointwise) sat-
isfaction of the kinematics, and weak satisfaction of the trac-
tion compatibility conditions.

3.5 Time discretization and numerical implementation

We integrate the FSI equations in time using the generalized-
α method. This method was originally proposed by Chung
and Hulbert [14] for the equations of structural dynamics,
and successfully applied in the context of turbulence simu-
lation [3,38] and phase-field modeling [30,33].

3.5.1 Time stepping scheme

Let UUU , U̇UU , ÜUU denote the vectors of control variable degrees
of freedom of the fluid-structure system, and its first and
second time derivatives, respectively. Let VVV , V̇VV , V̈VV denote
the vectors of control variable degrees of freedom of mesh
displacements, velocities and accelerations. We define the
residual vectors

RRRcont = {Rcont
A }, (36a)

RRRmom = {Rmom
A,i }, (36b)

RRRaux = {Raux
A }, (36c)

RRRener = {Rener
A }, (36d)

RRRmesh = {Rmesh
A,i }, (36e)

where A is a control-variable index and i is an index associ-
ated to the spatial dimensions. The residual components are
defined as

Rcont
A = B f ({NA,0,0,0},{ρh,vvvh,ϒh,θh}; v̂vvh), (37a)

Rmom
A,i = B f ({0,NAeeei,0,0},{ρh,vvvh,ϒh,θh}; v̂vvh)

+Bs(N̂Aeeei,uuuh)−Fs(N̂Aeeei), (37b)

Raux
A = B f ({0,0,NA,0},{ρh,vvvh,ϒh,θh}; v̂vvh), (37c)

Rener
A = B f ({0,0,0,NA},{ρh,vvvh,ϒh,θh}; v̂vvh), (37d)

Rmesh
A,i = Bm(ÑAeeei,uuum

h ), (37e)

where eeei is the ith cartesian basis vector. Our time stepping
scheme can be defined as follows: Given the discrete ap-
proximation to the global vectors of control variables at time
tn, namely, UUUn, U̇UUn, ÜUUn, VVV n, V̇VV n, V̈VV n and the current time step
∆ t = tn+1− tn find UUUn+1, U̇UUn+1, ÜUUn+1, VVV n+1, V̇VV n+1, V̈VV n+1

such that

RRRcont(UUUn+α f ,U̇UUn+α f ,ÜUUn+αm ,VVV n+α f ,V̇VV n+α f ,V̈VV n+αm) = 0,

RRRmom(UUUn+α f ,U̇UUn+α f ,ÜUUn+αm ,VVV n+α f ,V̇VV n+α f ,V̈VV n+αm) = 0,

RRRaux(UUUn+α f ,U̇UUn+α f ,ÜUUn+αm ,VVV n+α f ,V̇VV n+α f ,V̈VV n+αm) = 0,

RRRener(UUUn+α f ,U̇UUn+α f ,ÜUUn+αm ,VVV n+α f ,V̇VV n+α f ,V̈VV n+αm) = 0,

RRRmesh(UUUn+α f ,U̇UUn+α f ,ÜUUn+αm ,VVV n+α f ,V̇VV n+α f ,V̈VV n+αm) = 0,
(38)

U̇UUn+1 = U̇UUn +∆ t((1− γ)ÜUUn + γÜUUn+1),

UUUn+1 =UUUn +∆ tU̇UUn +
∆ t2

2
(
(1−2β )ÜUUn +2βÜUUn+1

)
,

V̇VV n+1 = V̇VV n +∆ t((1− γ)V̈VV n + γV̈VV n+1),

VVV n+1 =VVV n +∆ tV̇VV n +
∆ t2

2
(
(1−2β )V̈VV n +2βV̈VV n+1

)
,

(39)

where

�n+α f =�n +α f (�n+1−�n) , (40a)

�n+αm =�n +αm (�n+1−�n) , (40b)

and � denotes a generic control variable vector. Note that al-
though UUUn+1, U̇UUn+1, ÜUUn+1 are treated separately in the algo-
rithm, they are not independent because they need to satisfy
Eqns. (39). The same argument applies to VVV n+1, V̇VV n+1 and
V̈VV n+1. The parameters α f , αm, γ and β are chosen as in [4]
to ensure second-order accuracy and unconditional stability
of the time-integration algorithm.
The non-linear system of equations (38) may be solved us-
ing a Newton–Raphson iteration procedure, which leads to
the following two-stage predictor-multicorrector algorithm.
Predictor stage: There are different options for the predic-
tor phase. Here, a constant-velocity predictor is adopted.
Thus, we take

U̇UU (0)
n+1 = U̇UUn,

ÜUU (0)
n+1 =

γ−1
γ

ÜUUn,

UUU (0)
n+1 =UUUn +∆ tU̇UUn +

∆ t2

2

(
(1−2β )ÜUUn +2βÜUU (0)

n+1

)
,

V̇VV (0)
n+1 = V̇VV n,

V̈VV (0)
n+1 =

γ−1
γ

V̈VV n,

VVV (0)
n+1 =VVV n +∆ tV̇VV n +

∆ t2

2

(
(1−2β )V̈VV n +2βV̈VV (0)

n+1

)
, (41)

where in the above equations, and in what follows, an index
with parentheses is the nonlinear iteration index.
Multicorrector stage: Repeat the following steps for i =
1,2, ..., imax or until convergence
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1. Evaluate solution iterates at the α-levels

UUU (i)
n+α f

=UUUn +α f

(
UUU (i−1)

n+1 −UUUn

)
, (42a)

U̇UU (i)
n+α f

= U̇UUn +α f

(
U̇UU (i−1)

n+1 −U̇UUn

)
, (42b)

ÜUU (i)
n+αm = ÜUUn +αm

(
ÜUU (i−1)

n+1 −ÜUUn

)
, (42c)

VVV (i)
n+α f

=VVV n +α f

(
VVV (i−1)

n+1 −VVV n

)
, (42d)

V̇VV (i)
n+α f

= V̇VV n +α f

(
V̇VV (i−1)

n+1 −V̇VV n

)
, (42e)

V̈VV (i)
n+αm = V̈VV n +αm

(
V̈VV (i−1)

n+1 −V̈VV n

)
. (42f)

2. Use the solutions at the α-levels to assemble the residual
and the tangent matrix of the linear system

∂RRRcont
(i)

∂ÜUUn+1
∆ÜUU (i)

n+1 +
∂RRRcont

(i)

∂V̈VV n+1
∆V̈VV (i)

n+1 =−RRRcont
(i) , (43a)

∂RRRmom
(i)

∂ÜUUn+1
∆ÜUU (i)

n+1 +
∂RRRmom

(i)

∂V̈VV n+1
∆V̈VV (i)

n+1 =−RRRmom
(i) , (43b)

∂RRRaux
(i)

∂ÜUUn+1
∆ÜUU (i)

n+1 +
∂RRRaux

(i)

∂V̈VV n+1
∆V̈VV (i)

n+1 =−RRRaux
(i) , (43c)

∂RRRener
(i)

∂ÜUUn+1
∆ÜUU (i)

n+1 +
∂RRRener

(i)

∂V̈VV n+1
∆V̈VV (i)

n+1 =−RRRener
(i) , (43d)

∂RRRmesh
(i)

∂ÜUUn+1
∆ÜUU (i)

n+1 +
∂RRRmesh

(i)

∂V̈VV n+1
∆V̈VV (i)

n+1 =−RRRmesh
(i) . (43e)

The resulting linear system is solved using a precondi-
tioned GMRES algorithm.

3. Use ∆ÜUU (i)
n+1 and ∆V̈VV (i)

n+1 to update the iterates as

ÜUU (i)
n+1 = ÜUU (i−1)

n+1 +∆ÜUU (i)
n+1, (44a)

U̇UU (i)
n+1 = U̇UU (i−1)

n+1 + γ∆ t∆ÜUU (i)
n+1, (44b)

UUU (i)
n+1 =UUU (i−1)

n+1 +β∆ t2
∆ÜUU (i)

n+1, (44c)

V̈VV (i)
n+1 = V̈VV (i−1)

n+1 +∆V̈VV (i)
n+1, (44d)

V̇VV (i)
n+1 = V̇VV (i−1)

n+1 + γ∆ t∆V̈VV (i)
n+1, (44e)

VVV (i)
n+1 =VVV (i−1)

n+1 +β∆ t2
∆V̈VV (i)

n+1. (44f)

This completes one nonlinear iteration. The nonlinear itera-
tive algorithm should be repeated until the norm of each of
the residual vectors defined in (36) has been reduced to a
given tolerance ε of its value using the predictions defined
in (41). In this work, we use ε = 10−4.

Remark To solve the FSI equations, we adopt a quasi-direct
solution strategy (see [76–78] for the definition of terminol-
ogy and methods), where the fluid and solid equations are
solved in a coupled fashion, while the mesh motion equa-
tions are solved separately, using the data from the fluid–
solid solve as input. As a result, the so-called shape deriva-
tives, that is, the derivatives of the continuity, momentum

and energy residuals with respect to the mesh motion vari-
ables, are omitted. It was shown in [4,19] that omitting shape
derivatives has little effect on the convergence of Newton–
Raphson iterations, and leads to non-negligible computa-
tional savings. In the implementation of the quasi-direct so-
lution strategy, Eqns. (43) in the above predictor-multicorrector
algorithm are simplified to

∂RRRcont
(i)

∂ÜUUn+1
∆ÜUU (i)

n+1 =−RRRcont
(i) , (45a)

∂RRRmom
(i)

∂ÜUUn+1
∆ÜUU (i)

n+1 =−RRRmom
(i) , (45b)

∂RRRaux
(i)

∂ÜUUn+1
∆ÜUU (i)

n+1 =−RRRaux
(i) , (45c)

∂RRRener
(i)

∂ÜUUn+1
∆ÜUU (i)

n+1 =−RRRener
(i) , (45d)

∂RRRmesh
(i)

∂V̈VV n+1
∆V̈VV (i)

n+1 =−RRRmesh
(i) , (45e)

where the last equation, which governs the deformation of
the fluid mechanics mesh, is solved using the solution of the
first four equations as input.

4 Numerical examples

We present two numerical examples of phase-change-driven
implosion of relatively thin structures initially filled with
water vapor. The first one corresponds to a cylinder of in-
finite length, which is modeled as a two-dimensional sys-
tem. The second one studies the implosive collapse of a
three-dimensional box. All the parameters and the results
presented in Sect. 4 are given in non-dimensional form. To
do so, we have rescaled the units of measurement of length,
mass, time and temperature by L0, bL3

0, L0/
√

ab and θc, re-
spectively, where L0 = 1 denotes a length scale of the com-
putational domain size. Using this non-dimensionalization,
it may be shown that the fluid mechanics problem has four
dimensionless numbers,

Re =
L0b
√

ab
µ̄

, Ca =

√
λ/a
L0

, (46)

Pr =
L0ab2

√
ab/θc

k
, c =

8
27

cv

R
, (47)

where Re is the Reynolds number, Ca denotes the capillary
number, Pr is the Prandtl number, and c is the dimensionless
heat capacity. The solid mechanics problem has two dimen-
sionless numbers,

µ̂ =
µ

ρs
0ab

, κ̂ =
κ

ρs
0ab

. (48)

The capillary number Ca and the Reynolds number Re were
chosen according to the methodology proposed in [33], which
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is an upscaling method to desensitize the solution to mesh
refinement. In particular, we take

Ca = h/L0 and Re = αL0/h, (49)

where h is a characteristic length scale of the spatial mesh
(see [33]) and α is an O(1) constant. Following [33], we
have adopted α = 2 for all the computations.

Remark We note that solving very strong implosions at full
scale is extremely difficult from the modeling and computa-
tional point of view. First, from the computational point of
view, the fluid subdomain volume would be reduced quite
dramatically and remeshing would be necessary. Second,
very strong implosions are associated to strong temperature
reductions in the structure, and the van der Waals equation
is significantly less accurate for low temperatures than for
high temperatures. For these reasons, we focus on moder-
ately strong implosions.

4.1 2D example

Here, we simulate the collapse of a solid ring which is ini-
tially filled with water vapor in equilibrium. The external
radius of the ring is L0 = 1, and the thickness of the solid is
L0/40. We suppose that there is a follower load acting on the
solid external surface, which is identical to the water vapor
pressure inside the ring, so the system is initially in thermal
and mechanical equilibrium. We trigger the implosion by
suddenly reducing the temperature at the fluid–solid inter-
face using the temperature boundary condition. The temper-
ature reduction makes the vapor condensate, reducing the
internal pressure and increasing the density. Our problem
setup is completely symmetric, so we perform the computa-
tion on one quarter of the physical domain (see Fig. 3, where
we specify the geometry and the boundary conditions of the
problem).

Fig. 4 shows the time evolution of the density (left) and
temperature (right) in the fluid subdomain. The solid is ana-
lyzed only by plotting its deformed configuration (we have
also made use of the symmetry for visualization purposes,
and we only represent one quarter of the domain). In the
NSK theory, the density is a marker of the phases, and in
our density color scale, red represents vapor and blue repre-
sents liquid. It may be observed that at the initial time, all the
fluid subdomain is in gaseous state [Fig. 4(a)]. The thin grey
subdomain that encloses the fluid represents the structure.
The problem is initialized by taking as initial density, veloc-
ity and temperature the values ρ0 = 0.1, vvv0 = 0 and θ0 =

0.85, respectively. On the fluid-structure interface we apply
a temperature boundary condition given by θD = 0.5 < θ0
which triggers the implosion. In particular, the temperature
of the gas close to the structure is reduced and the gas turns

Fig. 3 Computational domain of the 2D example. The symmetry con-
ditions for the fluid velocity vvv, density ρ and temperature θ , and for the
solid displacements uuu are indicated on the left and bottom boundaries
(in the plot, �x and �y denote the first and second components of the
vector �, respectively). The external pressure p (follower load) acting
on the structure and the temperature θD applied at the fluid-structure in-
terface are also depicted. Finally, a certain angle ϕ is imposed between
the solid wall and the liquid-vapor interface.

into liquid (blue) [Fig. 4(c)]. The pressure decreases inside
and the structure is deformed due to the external pressure
[Fig. 4(c)]. The process continues so that all the gas is trans-
formed into liquid and the structure is completely collapsed
(data not shown). The parameters employed in this example
are c = 0.73, Pr = 0.013, Re = 256, Ca = 0.0078125 for the
fluid and µ̂ = 1.0 and κ̂ = 1.0 for the solid. The contact an-
gle was assumed ϕ = π/2. We used a computational mesh
composed of 1282 NURBS quadratic elements. The basis
functions have a C 0 line on the fluid–structure interface, but
otherwise are globally C 1-continuous.

4.2 3D example

The setup of this example is identical to that of the two-
dimensional problem, but here we focus on the collapse of
a three-dimensional box of side 2L0. Due to the symmetry
our computational domain is a box of side L0, represent-
ing one eight of the physical domain. The box is hollow
and its thickness is L0/40 [see Fig. 5(a)]. All the parame-
ters and initial conditions are also the same as in Sect. 4.1,
but the collapse is stronger because the structure is geomet-
rically softer. Fig. 5 shows the evolution of the density (left)
and temperature (right). It is observed that the temperature
boundary condition triggers the transformation of vapor into
liquid creating a blue area in the density plot which rep-
resents liquid water. We used a computational mesh com-
posed of 1283 NURBS quadratic elements. The basis func-
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(a) t = 0 (b) t = 0

(c) t = 2.8 (d) t = 2.8

Fig. 4 Evolution of density (left) and temperature (right) in a 2D
phase-change-driven implosion problem. Initially, water-vapor (red
color in the density plot) is filling up a hollow structure (a) and a low
temperature θD = 0.5 is applied at the fluid-structure interface. The
vapor close to the boundaries increases its density and turns into liq-
uid [blue in the density plot, (c)]. The pressure inside is reduced and
the structure deforms due to the external load. We have used the pa-
rameters Re = 256, Ca = 0.0078125, Pr = 0.013, c = 0.73, µ̂ = 1.0,
κ̂ = 1.0.

tions have C 0 lines on the fluid-structure interface, but oth-
erwise are globally C 1-continuous. The time step was se-
lected adaptively using the algorithm proposed in [30].

5 Conclusions

We reported on our initial efforts to study computationally
the interaction of complex fluids and solids. From a method-
ological point of view, our theoretical framework and algo-
rithms may be thought of as an extension of well-established
FSI methods to the realm of complex fluids. We showed the
viability of the approach by way of two numerical examples.
Although our examples focus only on phase-change-driven
implosion, we believe that our theories and algorithms may
be used to solve other, largely unexplored problems that in-
volve the interaction of complex fluids and solids.
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tract #307201), Xunta de Galicia, co-financed with FEDER funds, and
Ministerio de Economia y Competitividad (Contract # DPI2013-44406-
R). YB was partially supported by the NSF CAREER Award OCI-
1055091.

(a) t = 0 (b) t = 0

(c) t = 2.4 (d) t = 2.4

(e) t = 3.3 (f) t = 3.3

Fig. 5 Evolution of density (left) and temperature (right) in a 3D
phase-change-driven implosion problem. Initially, water-vapor (red
color in the density plot) is filling up a hollow structure (a) and a low
temperature θD = 0.5 is applied at the fluid-structure interface. The
vapor close to the boundaries increases its density and turns into liq-
uid (blue color in the density plot) [(c) and (e)]. The pressure inside is
reduced and the structure deforms due to the external load. We have
used the parameters Re = 256, Ca = 0.0078125, Pr = 0.013, c = 0.73,
µ̂ = 1.0, κ̂ = 1.0.
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