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Abstract

A variational formulation and numerical implementation of the phase-field models for shape memory alloys using distributed

computing are reported in the paper. The numerical implementation is based on the isogeometric analysis framework, consti-

tuting the rich NURBS basis functions. The phase field models are developed using the strain based order parameter and the

Ginzburg-Landau theory. The fourth order fully coupled thermo-mechanical 2D and 3D models are solved with the isogeo-

metric finite element methodology in the distributed computing environment. The weak scaling performance studies on the 2D

model demonstrate current challenges and open a way for future improvements.
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1. Introduction

Shape memory alloys (SMAs) are a prime example of materials exhibiting multiscale and multiphysics be-

haviors. Upon thermal and mechanical loadings, the atoms rearrange from a highly symmetric crystal lattice to its

lower symmetric counterpart, giving rise to macroscale phenomena like shape memory effect and superelasticity.

Although the first SMA material was discovered in 1932 (by Ölander in Au-Cd alloy [1]), up until today their

mathematical modeling remains a challenging task in science and engineering. The main reasons behind that are

the inherent coupling between thermal and mechanical (structural) physics and the martensitic phase transforma-

tions. Coupling effects are difficult to treat numerically and the resulting complex problem is often reduced to a

simple formulation, at the expense of details leading to physical considerations away from reality.

Several modeling approaches have been developed over the last years to capture the behavior of SMAs ob-

served experimentally. Extensive discussions of corresponding models are given in the review papers [2, 3, 4].
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Specifically, the phase-field (PF) models are of particular interest here. The PF models provide a unified frame-

work that can describe stress and temperature induced phase transformations, including their dynamics, in the

variational settings. These models have been used to study microstructures and mechanical properties of SMAs

across different length scales [5, 6, 7, 8, 9, 10, 11]. We have developed the 2D and 3D models with main focus

on capturing the thermo-mechanical coupling in SMAs, which has been treated predominantly under isothermal

assumptions in the literature [8, 9].

The strain based PF model formulation leads to fourth-order partial differential equations (PDEs) in space

by introducing a smoothly varying interface between different phases in a domain. Numerical methodologies

such as finite difference, finite volume, and spectral methods have been traditionally used in this field for solv-

ing higher order PDEs [9, 12]. These methodologies have been mostly applied to simple geometries. However,

for the real world SMA applications [1], a more geometrically flexible technology needs to be utilized. A fi-

nite element method (FEM) is an effective choice to meet this requirement. In the literature, the FEM has been

used to solve the second order PDEs, where the continuity requirements on the trial functions can be reduced to

global C 0-continuity. For the fourth-order PDEs, the basis functions need to be piecewise smooth and globally

C 1-continuous [13]. The finite elements constructed from the class of global C 1-continuous basis functions are

referred as C 1-elements. There are limited finite elements which possess C 1-continuity on complex geometries

[14]. Recently, Hughes et al. [13] introduced a new finite element methodology known as the isogeometric analy-

sis (IGA). IGA employs the complex non-uniform rational B-spline (NURBS) based geometry in a finite element

analysis application directly. IGA offers unique advantages in solving problems involving higher-order PDEs such

as higher order accuracy, robustness, two- and three- dimensional geometric flexibility, compact support, and C 1

or higher-order continuity. The IGA methodology has been successfully applied to obtain the solutions to a num-

ber of important problems (e.g. the higher-order PDEs in [15, 14], among others). In this paper, we propose the

IGA method to solve the developed 2D and 3D phase-field models. To the best of our knowledge, we are using

the IGA method for the first time to solve the 3D PF models for SMAs. These models are too complex (having

highly nonlinear hysteretic behavior [16], strong thermo-mechanical coupling, and fourth-order differential terms

in a space), to solve on a regular workstation. We use the distributed computing environment for the numerical

solutions.

In the following sections, we first describe the development of phase-field models based on the non-convex free

energy functional, followed by the numerical implementation using isogeometric analysis. Later, the numerical

experiments using the developed models in the distributed computing environment are described followed by the

simulation results.

2. Phase-Field Models of SMA Dynamics

The SMAs have temperature dependent microstructure phases. The material exists in the symmetric phase

(austenite) above the transition temperature θm and low temperature phases (martensites) below θm. This behavior

can be described by using the Landau theory of phase-transformations in terms of polynomial expansion of order

parameter (OP; OP is introduced to distinguish different phases in a domain) expressed as the non-convex free

energy functional. The minima of the free energy correspond to stable or meta-stable phases in SMAs. The

domain wall between martensites is introduced via the Ginzburg term. A generalized form of the free energy

functional F is written as

F = Fnop +Fop +Fgradient, (1)

where Fop is the energy part due to the OPs, which contributes to MT as per the Landau-Devonshire theory, Fnop

is the energy part due to the elastic energy, and Fgradient is the gradient energy which contributes to the energy cost

required for maintaining different phase domains in a structure and interface formed between physical boundaries

and domain. The gradient energy term (or the Ginzburg energy) maintains a non-zero width in austenite-martensite

and martensite-martensite interfaces, and prevents the system from creating an infinite number of interfaces [17].

The free energy functional components of the 2D model are
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where ai j, E0, kg are the material parameters and τ is the rescaled temperature coefficient as a function of

transition temperature θm. The ei are the strain components following the Voigt’s notation defined using the

Cauchy-Lagrange strain tensor e with ei j =
[(
∂ui/∂x j

)
+
(
∂u j/∂xi

)]
/2 (using the repeated index convention) and

u = {ui}|i=1,2,3 are the displacements along x, y, and z direction, respectively. The dissipational functional R is

defined as

R =
η

2

n∑
i=1

ė2
i , (4)

where η is the dissipation coefficient.

The coupled equations of dynamic thermoelasticity are derived following the governing equations of momen-

tum and internal energy [11] as

u̇ = v, (5)

ρv̇ = ∇ ·σσσ + ∇ ·σσσ′ +σσσg + f, (6)

ρė −σσσT : (∇v) + ∇ · q = g, (7)

where ρ is the mass density, fff , and g are the mechanical and thermal loadings. The stress tensors σσσ, dissipational

stress tensors σσσ′, and gradient components of stress σσσg are defined as

σσσ =
∂

∂ei j

(
Fnop +Fop

)
, σσσ′ =

∂R

∂ėi j
, σσσg =

∂

∂ei j

(
Fgradient

)
. (8)

The two-way thermo-mechanical coupling is established between equations (5)-(7) via temperature θ, strain,

and strain rate. We convert the governing equations into the non-dimensional form and solve them numerically

using isogeometric analysis.

3. Isogeometric Analysis

We first convert the system of the governing equations into the weak formulation. The domain is discretized

using C 1-continuous functions required for the fourth-order PDEs [13, 15]. The generalized-α method is used for

time integration along with an adaptive time stepping scheme developed by the authors of [15].
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3.1. Weak Formulation
Let Ω ⊂ R

d be an open set in the d-dimensional space (d = 2,3). The boundary is denoted by Γ and its outward

normal by n. The weak formulation of Eqs. (5)-(7) is derived by multiplying the equations with weighing func-

tions {UUU,VVV ,Θ} and transforming them by using the integration by parts. Let X denote both the trial solution and

weighting function spaces, which are assumed to be identical. Initially, we consider periodic boundary conditions

in all directions. Let (·, ·)Ω denote the L2 inner product with respect to the domain Ω. The variational formulation

is stated as follows:

Find solution S = {u, v, θ} ∈ X such that ∀W = {U,V,Θ} ∈ X :

B(W,S) = 0, (9)

with

B(W,S) =

(
U,
∂u
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)
Ω

+

(
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)
Ω
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)
Ω
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where cv, κ are the material constants, and the weak coupling terms (χd)Ω for the d-dimensional space are defined

as
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where a2 and Ξ are the constants.

3.2. Semi-Discrete Formulation
The semi-discrete formulation is used for solving the coupled dynamic thermo-mechanical Eqs. (9). The space

is discretized using the Galerkin finite element scheme and time is treated as continuous. We approximate Eqs.

(9) by the following variational problem over the finite element spaces (denoted by superscript h):

Find Sh = {uh, vh, θh} ∈ Xh ⊂ X such that ∀Wh = {Uh,Vh,Θh} ∈ Xh ⊂ X :

B(Wh,Sh) = 0, (13)

with Wh and Sh defined as

WWWh = {UUUh,VVVh,Θh}, UUUh =

nb∑
A=1

UUUANA, VVVh =

nb∑
A=1

VVVANA, Θh =

nb∑
A=1

ΘANA, (14)

SSS h = {uuuh,vvvh, θh}, uuuh =

nb∑
A=1

uuuANA, vvvh =

nb∑
A=1

vvvANA, θh =

nb∑
A=1

θANA. (15)

where NA’s are the basis functions, and nb is the dimension of the discrete space. The NURBS basis functions

with C 1-continuity are used [13].

4. Distributed Computing

We describe the implementation details of the IGA code, cluster configuration, and weak performance scaling

studies in the following subsections.
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4.1. IGA Code Implementation

The models described by Eqs. (9) have highly nonlinear hysteretic behavior, strong thermo-mechanical cou-

pling, and fourth-order differential terms in a space. These equations are not trivial to solve, especially in the 3D

case, to solve on a regular workstation. We have used the distributed computing environment for the numerical

simulations. In this work, we have applied the isogeometric analysis framework originally developed by Prof.

T. Hughes’ group at the Institute for Computational Engineering and Science, University of Texas at Austin, by

adapting a publicly distributed NURBS code [18]. The code is written in the Fortran programming language

(FORTRAN 90). We presented preliminary results for the 2D model using the IGA and serial processing in our

paper [19]. Here, we present the numerical implementation of the 2D and 3D IGA models using the distributed

computing environment. In this implementation, the IGA codes use a multiple instruction, multiple data (MIMD)

architecture. The domain decomposition technique is employed in the distributed computing. The domain is de-

composed spatially into smaller subdomains using a separate Matlab script as shown in Fig. 1. Major subroutines

that are essential to the SMA thermo-mechanical physics in SMAs have been modified. One of the important con-

siderations in solving fourth-order PDEs, with C 1 continuity in the basis functions, is an efficient communication

of additional information data on the boundaries between neighboring processors (shown with blue color lines in

Fig. 1).

Fig. 1. (Color online) Schematic of domain decomposition used in the distributed computing environment. Additional data is passed (shown

in blue color lines) along with the interprocessor communication data (shown in black color lines) and boundary condition data (shown in red

color lines) to maintain C 1 continuity of the basis function in the neighboring processors.

4.2. Cluster Configuration

All the simulations have been performed on the high-performance clusters of the Sharcnet computational

facilities in Canada. More specifically, the simulations have been carried out on the Saw cluster (with each node

having two 4-core Intel E5440 Quad Core Processors (2.83GH, 4 GB + 8GB FBD PC2-5300 Memory, and 120

GB of local storage) with InfiniBand 4X DDR running Linux CentOS release 6.3). The simulations have been

performed utilizing full nodes and the performance data is collected.

4.3. Weak Scaling Performance Studies

We performed the weak scaling test with each MPI (message passing interface) task on a tile of spatial di-

mension 16 nm × 16 nm for the 2D model. The geometry is chosen such that it confirms the multiple of 8n
processors, where node n is chosen as n = 1, 2, 3, 4 and 8 for the MPI studies. The serial study is performed on

1 processor. Each tile is discretized using two different meshes with (a) 128 (16384 elements, 33800 global and

18 local basis functions) and (b) 144 (20736 elements, 42632 global and 18 local basis functions) second order

univariate NURBS basis functions in each direction. Figure 2 shows the performance data of the 2D model for

100 time steps using fixed time step and periodic boundary conditions with increasing number of processors (or

MPI tasks). We access the parallelization performance using the efficiency η and speedup S defined as

η(n) =
1

n
TREF

Tn

Gn

GREF

× 100, S (n) =
TREF

Tn

Gn

GREF

, (16)



1073 R. Dhote et al.  /  Procedia Computer Science   18  ( 2013 )  1068 – 1076 

where TREF is the wall clock time on REF processing cores (in all the simulations REF = 1), and Tn is the wall

clock time on n cores, GREF and Gn are the numbers of global basis functions in the REF and n processing cores,

respectively [20].

The plot in Fig. 2(a) indicates that the wall clock time is almost constant beyond 1 node (8 processors) which

is also reflected in the efficiency plot in Fig. 2(b). The efficiency drops significantly to around 55 % and 45 %

using mesh tile with 128, and 144 basis functions, respectively. The steepest drop is due to several reduction

operations used in the code which is evident from Fig. 3 (b). Fig.2(c) shows the speedup for two different

meshes. Fig. 3(a) shows the breakdown of the computational and MPI communication time using mesh with

128 basis functions solved on two nodes with 8 processors each. The code spends 60.7 % time in MPI calls

and Fig. 3(b) indicates the reason for stabilizing the efficiency around 55 % for mesh with 128 NURBS basis

functions. The MPI ALLREDUCE calls consume 83.36 % of MPI time. As the MPI ALLREDUCE is a call

blocking communication, all the processors wait for the statement to execute, thus leading to active waiting. In

the overall simulation, the maximum workload imbalance of 10.9 s has been observed. There is an opportunity

to improve the computational efficiency by changing the code implementation, which is being investigated. We

note that the poor scaling found in our results has nothing to do with the IGA technology itself, but is a result of

our particular implementation. Excellent scalings for IGA algorithms have been achieved by using the concept of

Bézier extraction [21] or PETSc-based implementations (see PetIGA [22]).
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Fig. 2. Weak scaling performance data for the 2D model on the Sharcnet’s Saw cluster using mesh tiles with 128 and 144 NURBS basis

functions (processors (node) used during the simulations are 8(1), 16(2), 24(3), 32(4), and 64(5)).
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Fig. 3. (Color online) Overall percentage breakdown of (a) different times (initialization, computation and MPI), and (b) MPI time during

weak scaling performance simulation using 16 processors on two full nodes with mesh tile having 128 NURBS basis functions.
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5. Numerical Simulations and Results

We present results of numerical simulations using the developed models based on the IGA. The numerical

simulations have been performed on the domain Ωd (with d = 2,3). The IGA is capable of representing any ar-

bitrary complex geometry; however as a proof of concept, we use simple geometries in the 2D and 3D models.

Here we mainly focus on the cubic-to-tetragonal phase transformations in the Fe70Pd30 material, which is gaining

more attention due to its thermal, mechanical, and magnetic coupling and biocompatibile properties [23, 24, 25].

The material parameters for Fe70Pd30 can be found in [8, 11], and [26]. For serial processing, we have recently

presented the mesh convergence study results for the 2D model in [19]. Here, we solve the 2D and 3D models in

the distributed computing environment under different initial and boundary conditions. The NURBS can be used

to model and discretize a complex geometry, however all the simulations here have been performed by employing

a uniform mesh composed of C 1-continuous quadratic elements.

5.1. 2D Model

The 2D simulations have been conducted on a square domain with 100 nm side. The microstructure is evolved

starting from an initial displacement seed ( in dimensionless unit) in the centre of the domain (xc, yc) defined as

u10
= exp−(x−xc)2×103 × exp−(y−yc)2×103 ×10−3, u20

= −u10
,

and initial temperature θ0 = 250 K. All the sides of the domain are constrained in the structural degrees of

freedom. The simulations have been performed on 16 processors (with 4 processors in the X and Y directions).

The microstructure has been allowed to evolve for sufficiently long time by minimizing the energy till it no longer

evolves. Fig. 4(a) shows the stabilized microstructure (deviatoric strain e2). The two variants of martensite (shown

in red and blue colors) are self-accommodated by aligning domain walls diagonally. The self-accommodation of

martensites is in agreement with the model results in the literature (e.g. [9]).

5.2. 3D Model

The 3D simulations have been carried out under the fully periodic boundary conditions on a cube with 80 nm

side. The microstructure has been evolved starting from random initial conditions and initial temperature θ0 = 240

K. The simulations have been performed on 64 processors (4 processors in each direction). Fig. 4(b) shows

the microstructure (deviatoric strain e2) at 1400 time step. The simulation results show that the accommodated

martensitic microstructures are in agreement with known results obtained with other models [27, 26, 10]. We have

used the adaptive time stepping scheme during the microstructure evolution [11, 19]. As mentioned earlier, the

distributed computing code uses several reduction operations, and it is being modified to improve the characteristic

performance.

6. Conclusions

The coupled non-linear thermo-mechanical models for SMAs have been developed by using the Ginzburg-

Landau theory and variational framework. The developed models have been numerically solved based on the

IGA. It has been shown on several examples that the microstructure evolution is in agreement with known results

from the literature. The weak scaling performance studies indicate a pronounced decrease in the efficiency above

8 MPI tasks due to increased communication overhead in the 2D model. These studies demonstrate current

computational challenges and open a way for future improvements.
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(a) (b)

Fig. 4. (Color online) Evolved microstructures (deviatoric strain e2) in FePd specimens using the developed (a) 2D , and (b) 3D phase-field

models at 3000, and 1400 time step, respectively.
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