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The Swift–Hohenberg equation is a central nonlinear model in modern physics. Originally
derived to describe the onset and evolution of roll patterns in Rayleigh–Bénard convection,
it has also been applied to study a variety of complex fluids and biological materials,
including neural tissues. The Swift–Hohenberg equation may be derived from a Lyapunov
functional using a variational argument. Here, we introduce a new fully-discrete algorithm
for the Swift–Hohenberg equation which inherits the nonlinear stability property of the
continuum equation irrespectively of the time step. We present several numerical exam-
ples that support our theoretical results and illustrate the efficiency, accuracy and stability
of our new algorithm. We also compare our method to other existing schemes, showing
that is feasible alternative to the available methods.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Swift–Hohenberg model is an evolutive nonlinear higher-order partial differential equation (PDE) which develops
complicated dynamics. Since it was proposed in the late seventies [1] as a model for the description of Rayleigh–Bénard con-
vection [2,3], it has become one of the paradigms of nonlinear dynamical system leading to complex pattern formation [4,5].
Apart from fluid convection, the Swift–Hohenberg equation has also been employed to describe complex fluids and biolog-
ical tissues [6]. The Swift–Hohenberg equation may be derived from a Lyapunov functional using a variational argument,
which endows the theory with a nonlinear stability property. If inadequate algorithms are employed, this important prop-
erty of the model can be lost after numerical discretization, leading to non-physical solutions. For example, an standard ex-
plicit method would require Dt � Dx4 for the discrete solution to be energy-decreasing. This imposes a severe restriction over
the periods of time that can be simulated. Here we present a fully discrete algorithm that inherits the nonlinear stability of
the continuum model irrespectively of the mesh and time step sizes (in what follows, an algorithm verifying this property
will be called unconditionally stable or thermodynamically consistent). Thus, our algorithm eliminates the restriction over
the time step and opens the possibility to perform simulations over very large periods of time with the additional guarantee
that the numerical solution will satisfy an important physical property of the model.

Thermodynamically consistent algorithms have been extensively studied in solid [7–10] and fluid mechanics [11–14], but
remain rather unexplored for complex pattern-forming PDE’s (some exceptions may be found in [15–24]). Previous work on
the numerical simulation of the Swift–Hohenberg equation includes [25–31]. Remarkably, thermodynamically consistent
algorithms for the Swift–Hohenberg equation have been proposed in [32,20]. Here we present a new space–time
. All rights reserved.
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discretization for the Swift–Hohenberg equation that is unconditionally stable and second-order time-accurate. The space
discretization of our algorithm is based on variational forms whose well-posedness requires the use of globally C1-continu-
ous basis functions. We satisfy this requirement using Isogeometric Analysis [33,34], a recently proposed generalization of
the Finite Element Method, that permits generating higher-order and higher-continuity basis functions. Compared to stan-
dard finite element formulations based on mixed methods, our method leads to half of the global number of degrees of free-
dom and exhibits better approximability properties than widely used C0-continuous piecewise polynomials [35]. For these
reasons, our method is very attractive for the simulation of extended systems over large periods of time.

We present several numerical examples that support our theorems proving second-order time accuracy and uncondi-
tional stability. These computations are related to fluid convection on square and circular domains. The outline of this paper
is as follows: In Section 2, we describe the Swift–Hohenberg equation. Section 3 presents our algorithm for this equation. We
present numerical examples in Section 4. Finally, we draw conclusions in Section 5.
2. The Swift–Hohenberg equation

The Swift–Hohenberg equation describes the onset and evolution of roll patterns in Rayleigh–Bénard convection [36–39].
It may be derived from the fundamental equations of fluid mechanics in the limit of large Prandtl number, under the
assumption of the Boussinesq approximation [1]. However, for the purpose of this work, it is more useful to derive it as a
dissipative evolution equation of a non-conserved phase variable. By dissipative equation, we understand one for which a
Lyapunov functional exists. In what follows, we introduce the Lyapunov functional of the Swift–Hohenberg equation, and
derive an evolution equation whose solutions lead to a time-decreasing Lyapunov functional.

2.1. Lyapunov functional

Let u be a scalar phase variable defined on X, an open subset of R3. Let us call C the boundary of X. We assume C to have a
continuous unit outward normal n. We define the following free-energy functional
FðuÞ ¼
Z

X
WðuÞ þ D

2
ðDuÞ2 � 2k2jruj2 þ k4u2
h i� �

dx ð1Þ
where D and k are real constants, and W is a nonlinear function of u, defined as
WðuÞ ¼ � �
2

u2 � g
3

u3 þ 1
4

u4 ð2Þ
Here � and g are positive constants, which represent physically relevant quantities. In what follows, we introduce the Swift–
Hohenberg model, and show that F is indeed a Lyapunov functional of the equation.

2.2. The Swift–Hohenberg equation

The Swift–Hohenberg equation may be written as
@u
@t
¼ � dF

du
ð3Þ
where
dF
du
¼ W0ðuÞ þ Dk4uþ 2Dk2Duþ DD2u ð4Þ
denotes the variational derivative of F with respect to variations du that verify du ¼ rðduÞ � n ¼ 0 on C. Let us introduce the
real-valued function F defined as FðtÞ ¼ Fðuð�; tÞÞ. Multiplying Eq. (3) with dF=du, and integrating over the domain X, we
obtain the expression
dF
dt
¼ �

Z
X

dF
du

� �2

dx ð5Þ
which leads to the inequality
dF
dt
6 0: ð6Þ
The expression (6) may be thought of as a purely mechanical version of the Clausius–Duhem inequality [40] (continuum ver-
sion of the second law of thermodynamics), and we consider it the fundamental stability property of the Swift–Hohenberg
equation. The objective of this paper is to develop a fully discrete numerical method which inherits this property irrespec-
tively of the mesh and time step sizes.
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2.3. Initial/boundary-value problem

We state the following initial/boundary-value problem for the Swift–Hohenberg equation over the spatial domain X and
the time interval ð0; TÞ: given u0 : X # R, find u : X� ½0; T�# R such that
@u
@t
¼ �lðuÞ � Dk4u� 2Dk2Du� DD2u in X� ð0; TÞ ð7Þ

rð2Dk2uþ DDuÞ � n ¼ 0 on C� ½0; T� ð8Þ
ru � n ¼ 0 on C� ½0; T� ð9Þ
uðx;0Þ ¼ u0ðxÞ in X ð10Þ
where lðuÞ stands for W0ðuÞ. Eqs. (8) and (9) may be considered natural boundary conditions of the Swift–Hohenberg equa-
tion in a variational formulation. In practice, most calculations involving the Swift–Hohenberg equation are performed using
periodic boundary conditions in all directions.

3. Numerical formulation for the Swift–Hohenberg equation

In this section we present our numerical formulation for the Swift–Hohenberg equation. We first derive a semidiscrete
form, and then introduce our unconditionally stable time-integration scheme.

3.1. Semidiscrete formulation

Our starting point is the weak formulation of the continuous problem. At this point we assume periodic boundary con-
ditions in all directions. Let us call V the space of trial and weighting functions which are assumed to be the same. We sup-
pose V � H2, where H2 is the Sobolev space of square integrable periodic functions with square integrable first and second
derivatives. The problem may be stated as follows: find u 2 V such that for all w 2 V
w;
@u
@t
þ lðuÞ þ Dk4u

� �
� rw;2Dk2ru
� �

þ Dw;DDuð Þ ¼ 0 ð11Þ
where ð�; �Þ is the L2-inner product with respect to the domain X.To perform the space discretization of (11) we employ
Galerkin’s method. We approximate (11) by the following finite-dimensional problem over the finite element space
Vh � V: find uh 2 Vh such that for all wh 2 Vh
wh;
@uh

@t
þ lðuhÞ þ Dk4uh

� �
� rwh;2Dk2ruh
� �

þ Dwh;DDuh
� 	

¼ 0 ð12Þ
We define the discrete space Vh as Vh ¼ spanfNAgA¼1;...;nb
, where the NA’s are basis functions yet to be defined, and nb is the

dimension of the discrete space. As a consequence, uh in Eq. (12) may be written as,
uhðx;tÞ ¼
Xnb

A¼1

uAðtÞNAðxÞ ð13Þ
where the uA’s are the coordinates of uh on Vh. The function wh is defined analogously. We emphasize that the condition
Vh � V requires the discrete space to be a subset of H2. Standard C0-continuous finite elements do not satisfy this require-
ment, and may not be utilized directly in the variational formulation (12). To handle this situation, we employ Isogeometric
Analysis [33,34], which is a generalization of Finite Element Analysis [41] possessing several advantages [42–52]. Isogeomet-
ric Analysis is a recently introduced technology that is based on the developments of Computer Aided Design (CAD). Ideally,
it would permit generating computational meshes directly from geometrical models encapsulated in CAD files, making use of
the underlying parametrization of the CAD design. This holds promise to simplify, or even eliminate altogether, the mesh
generation and refinement process, currently the major bottleneck of analysis. Following the isoparametric concept, the geo-
metrical parametrization is also employed to generate the discrete space used to approximate the solution. Geometrical
models in CAD files are usually parametrized using Non-Uniform Rational B-Splines (NURBS). NURBS are projective transfor-
mations of B-Splines, which, in turn, are piecewise polynomials [53,54]. NURBS not only permit generating computational
models from CAD designs, but have also shown superior approximation capabilities compared to classical piecewise poly-
nomials [50]. Even more importantly for this paper, the use of NURBS permits generating globally C1-continuous basis func-
tions easily, which leads to simple treatment of higher-order operators and has proved significantly accurate and robust
[18,35,55,56]. In what follows we show how to generate our basis functions and discrete spaces.

3.2. Basis functions and discrete space

Here we show how to generate the NURBS basis functions that we employ for spatial discretization. The first step is to
define a one-dimensional B-Spline basis in parametric space. A B-Spline basis is a set of n piecewise polynomial functions
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of order p denoted by fBi;pgi¼1;...;n. These functions are defined from a knot vector, which is an array containing nþ pþ 1 non-
decreasing coordinates in parametric space called knots. We consider the knot vector
Kn ¼ fn1; n2; . . . ; nnþpþ1g ð14Þ
which defines the parametric space ½n1; nnþpþ1�. Since the functions will be eventually mapped into physical space, we may
assume without loss of generality n1 ¼ 0 and nnþpþ1 ¼ 1. Given a knot vector, the B-Spline basis functions of order p are de-
fined recursively from their lower-order counterparts. The process is started with the zero-th order functions fBi;0gi¼1;...;n gi-
ven by
Bi;0ðnÞ ¼
1 if ni 6 n 6 niþ1

0 otherwise

�
ð15Þ
Then, the following algorithm is applied
Bi;aðnÞ ¼
n� ni

niþp � ni
Bi;a�1ðnÞ þ

niþpþ1 � n

niþpþ1 � niþ1
Biþ1;a�1ðnÞ; i ¼ 1; . . . ;n; a ¼ 1; . . . ; p ð16Þ
The functions fBi;pgi¼1;...;n are C1 everywhere except at knots. At a non-repeated knot, the functions have p� 1 continuous
derivatives. If a knot is repeated k times the number of continuous derivatives at that point is p� 1� k.

A three-dimensional B-Spline basis is defined taking tensor products of one-dimensional basis in three orthogonal para-
metric directions. Therefore, given three polynomial orders p; q; r, and three knot vectors, Kn; Kg; Kf of lengths
nþ pþ 1; mþ qþ 1; lþ r þ 1, we can compute
Bijkðn;g; fÞ ¼ Bi;pðnÞBj;qðgÞBk;rðfÞ ð17Þ
Analogously to the one-dimensional case, the knot vectors define the parametric space, which we denote N. Again, for sim-
plicity, we take N ¼ ½0;1�3. Using the three-dimensional B-Spline basis functions we can generate a geometric mapping
F : N # X
Fðn;g; fÞ ¼
Xnþpþ1

i¼1

Xmþqþ1

j¼1

Xlþrþ1

k¼1

CijkBijkðn;g; fÞ ð18Þ
which defines the geometric object X. The values Cijk 2 R3 are called control variables.At this point, we may define NURBS
geometrical objects in Rd, which are projective transformations of B-Spline geometrical entities in Rðdþ1Þ. Let bCijk 2 R3 be a
set of control points in three-dimensional space and xijk a set of positive real numbers called weights such that
ðbCijk;wijkÞ 2 R4. We define the following B-Spline geometrical object in R4 as,
bX ¼ bFðNÞ ð19Þ
where
bFðn;g; fÞ ¼ Xnþpþ1

i¼1

Xmþqþ1

j¼1

Xlþrþ1

k¼1

ðbCijk;wijkÞBijkðn;g; fÞ; ðn;g; fÞ 2 N ð20Þ
The NURBS object XR is defined as
XR ¼ FRðNÞ ð21Þ
where the geometrical mapping FR takes the form,
FRðn;g; fÞ ¼
Xnþpþ1

i¼1

Xmþqþ1

j¼1

Xlþrþ1

k¼1

bCijk

wijk

wijkBijkðn;g; fÞPnþpþ1
a¼1

Pmþqþ1
b¼1

Plþrþ1
c¼1 wabcBabcðn;g; fÞ

; ðn;g; fÞ 2 N ð22Þ
Denoting,
Cijk ¼
bC ijk

wijk
; Wðn;g; fÞ ¼

Xnþpþ1

i¼1

Xmþqþ1

j¼1

Xlþrþ1

k¼1

wijkBijkðn;g; fÞ; Rijkðn;g; fÞ ¼
wijkBijkðn;g; fÞ

Wðn;g; fÞ ð23Þ
we have that
FRðn;g; fÞ ¼
Xnþpþ1

i¼1

Xmþqþ1

j¼1

Xlþrþ1

k¼1

CijkRijkðn;g; fÞ; ðn;g; fÞ 2 N ð24Þ
We will call Rijk NURBS functions in parametric space.NURBS functions in physical space are defined as the push forward of
the functions Rijk. Thus, the discrete space that we use for our numerical method is the space spanned by those functions,
namely
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Vh ¼ spanfRijk � F�1
R g ð25Þ
Note that we invoke the isoparametric concept, because the geometrical mapping FR is defined in terms of NURBS functions.

3.3. Time integration

Here we present our time integration algorithm for the Swift–Hohenberg equation. Let us divide the time interval ½0; T�
into N subintervals In ¼ ðtn; tnþ1Þ; n ¼ 0; . . . ;N � 1, where t0 ¼ 0 and tN ¼ T. We call uh

n the discrete approximation of uhðtnÞ,
where we have omitted the dependence on the spatial coordinate for simplicity. Our time stepping algorithm is defined as
follows: given uh

n, find uh
nþ1 2 Vh such that for all wh 2 Vh
wh;
suh

nt

Dtn

� �
þ wh;

1
2

l uh
nþ1

� 	
þ l uh

n

� 	� 	
� suh

nt
2

12
l00 uh

n

� 	 !
þ wh;Dk4uh

nþ1=2

� �
� rwh;2Dk2ruh

nþ1=2

� �
þ Dwh;DDuh

nþ1=2

� �
¼ 0 ð26Þ
where
Dtn ¼ tnþ1 � tn; suh
nt ¼ uh

nþ1 � uh
n; uh

nþ1=2 ¼
1
2

uh
nþ1 þ uh

n

� 	
ð27Þ
We summarize the main properties of our time integration scheme in the following theorem.

Theorem 1. The fully-discrete variational formulation (26):

(1) Verifies the nonlinear stability condition
Fðuh
nÞ 6 Fðuh

n�1Þ 8n ¼ 1; . . . ;N
irrespectively of the time step.
(2) Gives rise to a local truncation error s that may be bounded as jsðtnÞj 6 KDt2

n for all tn 2 ½0; T�, where K is a constant inde-
pendent of Dtn.
Proof.

(1) Let f : ½a; b�# R be a sufficiently smooth function. We will make use of the following quadrature formula:
Z b

a
f ðxÞdx ¼ b� a

2
f ðaÞ þ f ðbÞð Þ � ðb� aÞ3

12
f 00ðaÞ � ðb� aÞ4

24
f 000ðnÞ; n 2 ða; bÞ ð28Þ
which was introduced in [18]. Let us apply the quadrature formula (28) to the right-hand side of the identity
Z uh
nþ1

uh
n

W0ðzÞdz ¼
Z uh

nþ1

uh
n

lðzÞdz ð29Þ
and rearrange the resulting equation. It follows that
sWðuh
nÞt

suh
nt
þ suh

nt
3

24
l000ðuh

nþnÞ ¼
1
2

lðuh
nÞ þ lðuh

nþ1Þ
� 	

� suh
nt

2

12
l00ðuh

nÞ; n 2 ð0;1Þ ð30Þ
Taking wh ¼ suh
nt in Eq. (26), applying Eq. (30), and making use of the identities
suh
nt;u

h
nþ1=2

� �
¼ 1

2

Z
X

sðuh
nÞ

2
tdx; rsuh

nt;ruh
nþ1=2

� �
¼ 1

2

Z
X

sjruh
nj

2
tdx ð31Þ

Dsuh
nt;Duh

nþ1=2

� �
¼ 1

2

Z
X

s Duh
n

� 	2
tdx ð32Þ
we obtain the following relation
1
Dtn

Z
X

suh
nt

2dxþ
Z

X
sW uh

n

� 	
tdxþ

Z
X

suh
nt

4

12
l000 uh

nþn

� 	
dxþ

Z
X

Dk4

2
s uh

n

� 	2
tdx�

Z
X

Dk2
sjruh

nj
2
tdx

þ
Z

X

D
2

s Duh
n

� 	2
tdx ¼ 0 ð33Þ
which may be rewritten as
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sFðuh
nÞt ¼ �

1
Dtn

Z
X

suh
nt

2dx�
Z

X

suh
nt

4

12
l000 uh

nþn

� 	
dx ð34Þ
Since l000ðuÞP 0, it follows that
sF uh
n

� 	
t 6 0 ð35Þ
which completes the proof.
(2) We derive a bound on the local truncation error by replacing the time-continuous solution uhðtnÞ into the algorithm

(26). The time-continuous solution does not satisfy the algorithm, giving rise to the local truncation error s, which is
defined by the expression
wh; sðtnÞ
� 	

¼ wh;
suhðtnÞt

Dtn

� �
þ wh;

1
2

lðuhðtnþ1ÞÞ þ lðuhðtnÞÞ
� 	� �

� wh;
suhðtnÞt2

12
l00ðuhðtnÞÞ

 !
þ wh;Dk4uhðtnþ1=2Þ
� �

� rwh;2Dk2ruhðtnþ1=2Þ
� �

þ Dwh;DDuhðtnþ1=2Þ
� 	

ð36Þ
where tnþ1=2 ¼ ðtnþ1 þ tnÞ=2. Assuming sufficient smoothness, Taylor series can be utilized to prove that
suhðtnÞt
Dtn

¼ @uh

@t
ðtnþ1=2Þ þ OðDt2

nÞ ð37Þ

1
2

l uhðtnþ1Þ
� 	

þ l uhðtnÞ
� 	� 	

¼ l uhðtnþ1=2Þ
� 	

þO Dt2
n

� 	
ð38Þ

suhðtnÞt2

12
l00 uhðtnÞ
� 	

¼ O Dt2
n

� 	
ð39Þ
where we have made use of the Landau notation. Eqs. (36)–(39), together with (12) lead to the identity
wh; sðtnÞ
� 	

¼ wh;O Dt2
n

� 	� 	
ð40Þ
which indicates that jsðtnÞj 6 KDt2
n where K is a constant independent of Dtn. h

4. Numerical examples

In this section we present some numerical examples for the Swift–Hohenberg equation. Our calculations also provide
numerical corroboration of the theoretical results presented in the previous sections. We also present a comparison of
the performance of our new algorithm with other existing techniques. Finally, we present two examples related to the for-
mation of roll patterns in Rayleigh–Bénard convection both in square and circular domains.

4.1. Accuracy test

This example provides numerical evidence for our time integration scheme being second-order accurate. The setup of this
accuracy test is based on that presented in [20]. We solve the one-dimensional Swift–Hohenberg equation on the domain
X ¼ ½0;32�. The parameters of the Swift–Hohenberg equation are D ¼ k ¼ 1; � ¼ 0:025, and g ¼ 0. The initial condition is de-
fined as:
u xð Þ ¼ 0:07� 0:02 cos
2pðx� 12Þ

32

� �
þ 0:0171 cos2 2pðxþ 10Þ

32

� �
� 0:0085 sin2 4px

32

� �
ð41Þ
We computed a reference solution at time t ¼ 1 using a spatial mesh composed of 256 C1 quadratic elements, and a time step
Dt ¼ 7:8125 � 10�3. We assume that this space–time discretization is fine enough as to suppose that the reference solution is
exact. Then, we repeated the computation using larger time steps, and studied how the L2ð½0;32�Þ spatial error norm evolved
as a function of Dt. The results are presented on a doubly logarithmic scale in Fig. 1. The data defines a straight line with slope
2.67, which confirms the results proven in Theorem 1.

4.2. Comparison with other methods

In this section, we compare the performance of our new numerical scheme with other well-established techniques. The
performance of our spatial discretization, that is, NURBS functions in a variational formulation, has been shown superior to
standard finite elements on a per-degree-of-freedom basis in several publications [42,48,50,51]. For this reason, we will
focus on the time discretization algorithm. We take a spatial mesh which is sufficiently fine as to suppose that all the error
can be attributed to time integration. Then, we compare the performance of our new time integration method with the
following algorithms: (1) a semi-implicit method that treats the nonlinear terms explicitly and the linear terms implicitly;



Fig. 1. Accuracy test. L2ð½0;32�Þ spatial error norm with respect to the time step Dt. This plot confirms that our algorithm is second-order time-accurate.

Fig. 2. Comparison with other methods. Initial condition and reference solution at different times. The computational domain is X ¼ ½0;40�2. This solution
has been computed on a sufficiently small space–time mesh.
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(2) the explicit first-order accurate exponential time integrator presented in [57]; (3) the convex-splitting method proposed
in [20] that has been shown to be unconditionally stable for the Swift–Hohenberg equation; (4) the midpoint rule.

To perform the comparison we solve the Swift–Hohenberg equation on the domain X ¼ ½0;40�2. The parameters are
D ¼ k ¼ 1; � ¼ 2, and g ¼ 0. The initial condition is a constant state (u ¼ �1) in which we embed a curvy vertical stripe with
the phase variable taking the value u ¼ 1. The initial pattern evolves developing horizontal fingers that might bifurcate. Fig. 2
shows the initial condition and solution at times t ¼ 20 and t ¼ 40 on a sufficiently fine space–time mesh. The color scale
ranges from �1:75 (blue1) to þ1:75 (red), and will be maintained for all the examples in this section. We consider the solu-
tion in Fig. 2 as our reference solution. We will compare the results produced by all the above-mentioned methods at time
t ¼ 40.

Fig. 3 shows the results produced by the semi-implicit scheme at time t ¼ 40 using different time steps. For Dt ¼ 0:25 the
solution is totally incorrect. Qualitative agreement is obtained for Dt ¼ 0:125; Dt ¼ 0:0625, and Dt ¼ 0:03125. For smaller
time steps, the solution is almost indistinguishable from the reference solution.

Fig. 4 presents the free energy evolution for the semi-implicit method using different time steps. For Dt ¼ 0:25, the free
energy is oscillating, which indicates that the computed solution is incorrect. For smaller time steps, the energy does de-
crease in time, but the dissipation rate is somewhat underestimated. For the two smallest time steps (Dt ¼ 0:015625 and
Dt ¼ 0:0078125), the energy curves are one on top of each other, which is a sign of numerical convergence.
1 For interpretation of colour in Fig. 2, the reader is referred to the web version of this article.



Fig. 3. Comparison with other methods. Numerical solution at t ¼ 40 with the semi-implicit time integrator using different time steps.

0 5 10 15 20 25 30 35 40
−800

−600

−400

−200

0

200

400

600

Fig. 4. Comparison with other methods. Energy evolution for several time steps using the semi-implicit algorithm.
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Fig. 5 shows the solution at time t ¼ 40 using the exponential time integrator and different time steps. This method per-
mits taking time steps larger than those used for the semi-implicit algorithm. The solution for Dt ¼ 0:5 (Fig. 5(a)) is incorrect.
This is also reflected in the energy plot (Fig. 6), which shows an oscillating evolution. For smaller time steps, the solution



Fig. 5. Comparison with other methods. Numerical solution at t ¼ 40 with the exponential time integrator using different time steps.
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Fig. 6. Comparison with other methods. Energy evolution for several time steps using the exponential algorithm.
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looks qualitatively correct, but quantitative match is only achieved for the two smallest time steps (Dt ¼ 0:03125 and
Dt ¼ 0:015625). This can also be observed in the energy plot (Fig. 6) in which the curves corresponding to those time steps
are superposed.



Fig. 7. Comparison with other methods. Numerical solution at t ¼ 40 with the convex splitting algorithm using different time steps.
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Fig. 8. Comparison with other methods. Energy evolution for several time steps using the convex splitting method.
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Fig. 7 shows the solution using the convex-splitting algorithm proposed in [20]. This method has been shown to be
unconditionally stable for the Swift–Hohenberg equation. This property is certainly reflected in the energy plot (Fig. 8),
which shows time-decreasing energies for all time steps. However, it is know that algorithms based on the convex-splitting



Fig. 9. Comparison with other methods. Numerical solution at t ¼ 40 with the midpoint rule using different time steps.
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Fig. 10. Comparison with other methods. Energy evolution for several time steps using the midpoint rule.
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concept tend to be significantly inaccurate for large time steps [18]. This statement is consistent with the results in Fig. 7,
which show inaccurate solutions at least for Dt ¼ 1 and Dt ¼ 0:5. As we reduce the time step, the solution becomes more
accurate, exhibiting good agreement with the reference solution for Dt ¼ 0:0625.



Fig. 11. Comparison with other methods. Numerical solution at t ¼ 40 with the proposed algorithm using different time steps.
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Fig. 12. Comparison with other methods. Energy evolution for several time steps using the proposed method. We observe that for Dt ¼ 1; Dt ¼ 0:5 and
Dt ¼ 0:25 the curves are almost superposed, which indicates numerical convergence.
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Now, we analyze the results produced by the midpoint rule. This algorithm is an standard second-order accurate method.
For a linear problem it is known to have the lowest truncation error of all second-order accurate A-stable linear multistep
methods [59]. Another feature of the midpoint rule that holds for linear problems is that the algorithm preserves the highest



Fig. 13. Swift–Hohenberg equation on a periodic square. Snapshots of the numerical approximation to the phase variable u at different computational
times. The parameters of the equation are D ¼ k ¼ 1; � ¼ 0:1, and g ¼ 0. The spatial mesh is composed of 20482 C1-quadratic elements. The time step is
Dt ¼ 20.
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Fig. 14. Swift–Hohenberg equation on a periodic square. Time evolution of the energy functional. We appended some snapshots of the solution to the free-
energy curve. We observe that the energy functional diminishes at all times, which confirms our theoretical predictions.
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frequency of the numerical solution at each time step, which makes it difficult to damp out the spurious modes of the
approximate solution. This feature of the method may be observed in Fig. 9(a), which represents the numerical solution
at t ¼ 40 using the time step Dt ¼ 8. This image clearly shows how the high frequencies contained in the initial condition
remain in the solution after several time steps, leading to a significantly inaccurate solution. For Dt ¼ 4, Fig. 9(b), the solution
looks still shaky, showing again the inability of the algorithm to handle the high frequencies of the solution. For smaller time
steps the solution is accurate and smooth, and appears almost indistinguishable from the reference solution.

Fig. 10 shows the energy evolution produced by the midpoint rule for the analyzed time steps. All the curves are mono-
tonically decreasing, which indicates that, for this particular problem and the selected time steps, the midpoint rule respects
the stability property of the Swift–Hohenberg equation. However, this result does not necessarily hold for other problems or
time steps, because the midpoint rule does not achieve unconditional stability for the Swift–Hohenberg equation.

Finally, Fig. 11 shows the solution using our new algorithm. We observe that our method permits using significantly lar-
ger time steps than the semi-implicit, the exponential and the convex-splitting algorithms. The time steps employed are
comparable to those utilized for the midpoint rule. It may be said that for small and intermediate time steps our method
produces results similar to those achieved by the midpoint rule. However, for very large time steps (Dt ¼ 8), although the
solution is inaccurate, is still smooth and its associated energy decreases with time. The numerical solution actually looks
like the exact solution at an earlier time (compare Fig. 2 with Fig. 11(a)). Physically speaking, it may be said that the method
defers the dynamics of the equation for large time steps. This seems to be a feature of unconditionally stable methods for
nonlinear dynamics [18,20,58], and may be also observed in the results produced by the convex splitting method (Fig. 7).
However, the convex-splitting scheme is significantly less accurate than our method. In all, we may conclude that our algo-
rithm represents a good balance between accuracy and stability, with the additional guarantee of energy-decreasing solu-
tions, as shown in Fig. 12. This plot also shows that the dissipation rate is underestimated for large time steps, which is
consistent with the statement that the dynamics of the equation is deferred for large time steps.

4.3. Swift–Hohenberg equation on a periodic square

Here we present the numerical solution to the Swift–Hohenberg equation on the domain X ¼ ½0;1200�2. We assume peri-
odic boundary conditions in both directions. We take the parameters D ¼ k ¼ 1; � ¼ 0:1; g ¼ 0. To define our initial condi-
tion, we set all control variables to zero, and then, randomly perturb their values with a pseudo-random number which is
uniformly distributed on ½�0:005;0:005�. We employ an uniform spatial mesh composed of 20482 C1-quadratic elements.
The time step is Dt ¼ 20.

Fig. 13 shows snapshots of the time-history of the phase variable. We observe that the initial condition induces an insta-
bility into the equation that leads to amplification of the solution and to the emergence of spatial patterns. Those patterns are
composed of stripped regions with zero- and one-dimensional defects as observed in Fig. 13(a) and (b). Global reorganization
of the patterns leads to larger defect-free regions (Fig. 13(c) and (d)) which eventually fill up the whole domain. The simu-
lation results suggest that for this set of parameters the equation presents a stationary solution corresponding to an ordered
stripped pattern as shown in Fig. 13(e) and (f).



Fig. 15. Swift–Hohenberg equation on a disk. Computational mesh (a), and snapshots of the numerical approximation to the phase variable u at different
computational times (b)–(d). The parameters of the equation are D ¼ k ¼ 1; � ¼ 0:1, and g ¼ 1. The spatial mesh is composed of 1282 C1-quadratic
elements. The time step is Dt ¼ 5.
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Fig. 14 shows the time evolution of the energy functional (1). We appended some snapshots of the solution to the free-
energy curve. Note that the time scale is logarithmic, because the dynamics of the equation becomes slower as time evolves.
We observe that the energy functional diminishes at all times, which confirms our theoretical predictions.

4.4. Swift–Hohenberg equation on a disk

We present the numerical solution to the Swift–Hohenberg equation on a disk. This geometry belongs to the class of conic
sections that can be exactly reproduced by NURBS. To generate this geometry we employ quadratic basis functions and the
parametrization defined in [60]. This leads to a mapping with four singular points on the boundary, as shown in the mesh
picture presented in Fig. 15(a). These singularities did not produce any issues in the calculations. The radius disk is 15, and
the computational mesh is composed of 1282 C1 quadratic elements. On the boundary we set homogeneous Dirichlet bound-
ary conditions. The time step is Dt ¼ 5.

The parameters of the Swift–Hohenberg equation are D ¼ k ¼ 1; � ¼ 0:1, and g ¼ 1. The initial condition was gener-
ated following the same process as in the last example. Fig. 15(b)–(d) shows the time evolution of the phase variable u
until the steady state is reached. We notice that the choice of g ¼ 1 leads to the formation of circular structures, rather
than stripes. Note that the circular structures are distorted near the boundary, due to the effect of Dirichlet boundary
conditions.

In Fig. 16 we plot the time evolution of the energy functional. We notice that the energy decreases at all times, which
supports our theoretical result about the unconditional stability of the presented space–time discretization.
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Fig. 16. Swift–Hohenberg equation on a disk. Time evolution of the energy functional. We appended some snapshots of the solution to the free-energy
curve. These snapshots show that fast time-variations of the free-energy correspond to abrupt variations in the spatial pattern. We observe that the energy
functional diminishes at all times, which confirms our theoretical predictions.
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5. Conclusions

The Swift–Hohenberg equation is a higher-order nonlinear partial differential equation endowed with a nonlinear stabil-
ity property. This equation governs the formation and evolution of roll patterns in Rayleigh–Bénard convection. We intro-
duce a new space–time discretization that inherits the nonlinear stability relationship of the continuous equation
irrespectively of the mesh and time step sizes, and that is second-order time-accurate. We present several numerical exam-
ples dealing with fluid convection on square and circular domains. These examples support our theoretical results and show
the accuracy, efficiency and robustness of our new method. We also compare our method to other existing schemes, showing
that is feasible alternative to the available methods.
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[39] Koschmieder EL. Beńard cells and Taylor vortices. Cambridge University Press; 1993.
[40] Gurtin ME. Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 1996;92:178–92.
[41] Hughes TJR. The finite element method: linear static and dynamic finite element analysis. Mineola, NY: Dover Publications; 2000.
[42] Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S. The role of continuity in residual-based variational multiscale modeling of turbulence.

Comput Mech 2007;41:371–8.
[43] Auricchic F, Beirao da Veiga L, Hughes TJR, Reali A, Sangalli G. Isogeometric collocation methods. Math Models Methods Appl Sci

2010;20(11):2075–107.
[44] Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW. Isogeometric analysis using T-splines. Comput Methods Appl

Mech Eng 2010;199:229–63.
[45] Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G. Variational multiscale residual-based turbulence modeling for large eddy simulation of

incompressible flows. Comput Methods Appl Mech Eng 2007;197:173–201.
[46] Bazilevs Y, Hughes TJR. NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 2008;43:143–50.
[47] Buffa A, Sangalli G, Vázquez R. Isogeometric analysis in electromagnetics: B-splines approximation. Comput Methods Appl Mech Eng

2010;199:1143–52.
[48] Cottrell JA, Hughes TJR, Reali A. Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng

2007;196:4160–83.
[49] Elguedj T, Bazilevs Y, Calo VM, Hughes TJR. B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using

higher-order NURBS elements. Comput Methods Appl Mech Eng 2008;197:2732–62.
[50] Evans JA, Bazilevs Y, Babuška I, Hughes TJR. n-widths, sup infs, and optimality ratios for the k-version of the isogeometric finite element method.

Comput Methods Appl Mech Eng 2009;198:1726–41.
[51] Hughes TJR, Reali A, Sangalli G. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-

method finite elements with k-method NURBS. Comput Methods Appl Mech Eng 2008;197:4104–24.
[52] Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR. Robustness of isogeometric structural discretizations under severe mesh distortion. Comput

Methods Appl Mech Eng 2010;199:357–73.
[53] Piegl L, Tiller W. The NURBS book. New York: Springer–Verlag; 1997.
[54] Rogers DF. An introduction to NURBS: with historical perspective. Morgan Kaufmann; 2001.
[55] Gomez H, Hughes TJR, Nogueira X, Calo VM. Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations. Comput Methods Appl Mech

Eng 2010;199:1828–40.
[56] Gomez H, Parı́s J. Numerical simulation of asymptotic states of the damped Kuramoto–Sivashinsky equation. Phys Rev E 2011;83:046702.
[57] Cox SM, Matthews PC. Exponential time differencing for stiff systems. J Comput Phys 2002;176:430–55.
[58] Cheng M, Warren JA. An efficient algorithm for solving the phase field crystal model. J Comput Phys 2008;227:6241–8.
[59] Dahlquist G. A spectral stability problem for linear multistep methods. BIT 1963;3:27–43.
[60] Vuong A-V, Heinrich Ch, Simenon B. ISOGAT: a 2D tutorial MATLAB code for isogeometric analysis. Comput Aided Geometric Design 2010;27:644–55.


	A new space–time discretization for the Swift–Hohenberg equation  that strictly respects the Lyapunov functional
	1 Introduction
	2 The Swift–Hohenberg equation
	2.1 Lyapunov functional
	2.2 The Swift–Hohenberg equation
	2.3 Initial/boundary-value problem

	3 Numerical formulation for the Swift–Hohenberg equation
	3.1 Semidiscrete formulation
	3.2 Basis functions and discrete space
	3.3 Time integration

	4 Numerical examples
	4.1 Accuracy test
	4.2 Comparison with other methods
	4.3 Swift–Hohenberg equation on a periodic square
	4.4 Swift–Hohenberg equation on a disk

	5 Conclusions
	Acknowledgements
	References


