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Numerical simulation of asymptotic states of the damped Kuramoto-Sivashinsky equation
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The damped Kuramoto-Sivashinsky equation has emerged as a fundamental tool for the understanding of the
onset and evolution of secondary instabilities in a wide range of physical phenomena. Most existing studies about
this equation deal with its asymptotic states on one-dimensional settings or on periodic square domains. We utilize
a large-scale numerical simulation to investigate the asymptotic states of the damped Kuramoto-Sivashinsky
equation on annular two-dimensional geometries and three-dimensional domains. To this end, we propose
an accurate, ef cient, and robust algorithm based on a recently introduced numerical methodology, namely,
isogeometric analysis.We compared our two-dimensional results with several experiments of directed percolation
on square and annular geometries, and found qualitative agreement.
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I. INTRODUCTION asymptotic states we use a numerical simulation. Thus, we
propose an effective, accurate, and robust numerical scheme

e T ot 1 e damped Kramato-Svashins euaton, whih i
P y 9 another contribution of this work.

asymptotic state. In many relevant systems, these asymptotic The numerical simulation of the damped Kuramoto-

states consist of spatially and temporally ordered Ce"u"”“.%ivashinsky equation presents several challenges. This is the

structures. In the past decades, there has been Increasiidison why most calculations available in the literature are
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Sivashinsky equation is not a gradient systet][ Thus equation on a disk28-30]). We feel that one of the main
: Y €q g y © 7l . reasons for this is that the damped Kuramoto-Sivashinsky
there is no known Lyapunov functional for the equation. This

fact siani cantly limits our capacity to studv its asvmptotic equation includes a fourth-order partial-differential operator.
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states using analytical technlques, SO a numenc_al S'r.nu'at'ogquations is signi cantly less developed than that of second-
appears as a very attractive alternative. At this point, the

one-dimensional equation is fairly well understodd,17] order problems. For example, in the context of nite-element
In past years sig?]i cant progre)s/s has been made i.n th%igher-order operator problem, yet fourth-order equations are
understanding of the two-dimensional equatiag]] but the ecoming ubiquitous, primarily due to the fast development of
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results are limited to periodic square domains. Given the stronB This work proposes a numerical formulation based on
dependence of the asymptotic states on the geometry and the : : P o
dinr:ensionality of the ﬁor?wainlﬁ,w], the undgrstandirr?g of ISogeometric analysis3f], which is a generalization of
the late-time states on nonsquare two- and three—dimensiong
domains is considered a very relevant research topic. This |
precisely one of the objectives of this work. To investigate th
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FIG. 12. (Color online) Numerical solution to the Kuramoto-Sivashinsky equation atttem8500 for = 0.195. The computational
domain is [Q128F and boundary conditions are periodic in all directions. The computational mesh is composeti@f-fj2adratic elements.
The left-hand side shows isosurfaces of the solution, while the right-hand side presents slices along several planes.

these three types of asymptotic states, we make use &f’the loops. This behavior is consistent with the breathing hexagonal
energy, de ned as state, and thus it is not present in the phase plane that
. corresponds to = 0.195.
E={lullz= (uu)”* (18

TheL? energy has been identi ed as a fundamental quantity
to understand the dynamics of the Kuramoto-Sivashinsky
equation $2-54]. In Fig. 2 we plot the time evolution of
theL? energy for = 0.225, = 0.210, and = 0.195. In The breathing hexagonal state has been experimentally
the same gure, we also depict three subplots correspondingbserved in a pattern of two-dimensional je@k pbtained by

to the evolution of thel? energy during the time interval way of a directed percolation experiment. In the same work,
t [1200013000]. These subplots show the complexity ofthe authors observe a stationary hexagonal state with several
the evolution of thel.? energy and illustrate the difference topological defects. They identify the so-called penta-hepta
between the steady state€ 0.225), the breathing hexagonal defect which consists of a spot surrounded by seven (rather
state ( = 0.210), and the chaotic state € 0.195). Thus, than six) dots and a neighbor of it enclosed by ve. Here we
for = 0.225, thelL? energy is constant in time, which is aim to show that our simulations of the damped Kuramoto-
consistent with a stationary solution. For= 0.210, the Sivashinsky equation reproduce this topological defect. For
L2 energy exhibits a two-scale behavior. The small-scalghis purpose, we performed a simulation for 0.225 on a
component is quasiperiodic and its frequency approximatelgigni cantly larger domain, namely, = [0,512F. Figure4
coincides with the temporal frequency of the oscillatingshows a snapshot of the solution with several penta-hepta
pattern. Finally, for = 0.195, we observe a complex defects marked (a) and a detailed view of the area where the
evolution consistent with a chaotic state. penta-hepta defects are located (b).

Additional insight may be obtained by plotting the? As an additional comparison, we perform a statistical
energy phase plane, which is the set of poirEsE] for a  study of the average time before the system reaches a stable
given time interval (her& denotes the time derivative &). state of constant energy from a chaotic initial condition. The
TheL? energy phase plane is regarded as a fundamental toalitial conditions correspond to different realizations of a
for the understanding of the damped Kuramoto-Sivashinskghaotic asymptotic state calculated using= 0.195. Then,
equation $2,53]. In Fig. 3 we plot theL ? energy phase plane we suddenly increase the value ofand measure the time
for (a) = 0.225, (b) = 0.210, and (c) = 0.195. Note before the system reaches a stable state of constant energy.
that the vertical scales of the three sub gures are different. FovWe sampled seven values of which lead to stationary

= 0.225 we observe a typical phase plane of a stationargolutions from = 0.225 to = 0.240. For each value of
solution. For = 0.210 and = 0.195 we plot the phase , we performed 11 calculations corresponding to different
planes during the time interval [1490Q15000], which  chaotic initial conditions. Figur&(a) shows the evolution of
corresponds to the last 100 units of time of the simulationtheL? energy from a chaotic state to a stable state for several
We observe that for = 0.195, E takes values one order of values of and different initial conditions. From these curves
magnitude larger than those achieved for 0.210. Thisis we calculated the average time before stabilization In
a consequence of wilder and rougher variations of tke  Fig. 5(b) we plot vs > The data ts a straight line
energy, which are consistent with a more chaotic behaviomwith a coef cient of determination 0.9982. The behavior is the
We also observe that the phase plane for 0.210 reveals qualitatively the same as that found in a experiment of directed
a quasiperiodic structure that manifests itself through orderedercolation 3], where the same scaling has been measured.

2. Comparison with experiments
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