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Numerical simulation of asymptotic states of the damped Kuramoto-Sivashinsky equation
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The damped Kuramoto-Sivashinsky equation has emerged as a fundamental tool for the understanding of the
onset and evolution of secondary instabilities in a wide range of physical phenomena. Most existing studies about
this equation deal with its asymptotic states on one-dimensional settings or on periodic square domains. We utilize
a large-scale numerical simulation to investigate the asymptotic states of the damped Kuramoto-Sivashinsky
equation on annular two-dimensional geometries and three-dimensional domains. To this end, we propose
an accurate, ef�cient, and robust algorithm based on a recently introduced numerical methodology, namely,
isogeometric analysis.We compared our two-dimensional results with several experiments of directed percolation
on square and annular geometries, and found qualitative agreement.
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I. INTRODUCTION

A thermodynamical system far from equilibrium may ex-
hibit primary instabilities which drive it into a inhomogeneous
asymptotic state. In many relevant systems, these asymptotic
states consist of spatially and temporally ordered cellular
structures. In the past decades, there has been increasing
interest in the so-called secondary instabilities [
Kuramoto-Sivashinsky equation [15], which has emerged as
a fundamental universal model describing the onset and
evolution of secondary instabilities [14]. As a consequence,
there is signi�cant interest in the study of the asymptotic states
of the damped Kuramoto-Sivashinsky equation. The main
dif�culty to achieve this goal is that the damped Kuramoto-
Sivashinsky equation is not a gradient system [16]. Thus,
there is no known Lyapunov functional for the equation. This
fact signi�cantly limits our capacity to study its asymptotic
states using analytical techniques, so a numerical simulation
appears as a very attractive alternative. At this point, the
one-dimensional equation is fairly well understood [15,17].
In past years, signi�cant progress has been made in the
understanding of the two-dimensional equation [18], but the
results are limited to periodic square domains. Given the strong
dependence of the asymptotic states on the geometry and the
dimensionality of the domain [18,19], the understanding of
the late-time states on nonsquare two- and three-dimensional
domains is considered a very relevant research topic. This is
precisely one of the objectives of this work. To investigate the
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asymptotic states we use a numerical simulation. Thus, we
propose an effective, accurate, and robust numerical scheme
for the damped Kuramoto-Sivashinsky equation, which is
another contribution of this work.

The numerical simulation of the damped Kuramoto-
Sivashinsky equation presents several challenges. This is the
reason why most calculations available in the literature are
restricted to one-dimensional settings [8,20–24] and only
very recently were two-dimensional simulations on square
domains available [18,25–27]. We do not know of any three-
dimensional simulation nor we are aware of two-dimensional
calculations on nonsquare domains (although we know of
numerical solutions to a modi�ed Kuramoto-Sivashinsky
equation on a disk [28–30]). We feel that one of the main
reasons for this is that the damped Kuramoto-Sivashinsky
equation includes a fourth-order partial-differential operator.
The numerical resolution of higher-order partial-differential
equations is signi�cantly less developed than that of second-
order problems. For example, in the context of �nite-element
higher-order operator problem, yet fourth-order equations are
becoming ubiquitous, primarily due to the fast development of
phase-�eld modeling [31,32].

This work proposes a numerical formulation based on
isogeometric analysis [33], which is a generalization of
�niteelement analysis with several advantages [34–41]. Isoge-
ometric analysis is based on developments of computational
geometry and consists of using nonuniform rationalB splines
(NURBS) as basis functions in a variational formulation. For
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FIG. 12. (Color online) Numerical solution to the Kuramoto-Sivashinsky equation at timet = 3500 for � = 0.195. The computational
domain is [0,128]3 and boundary conditions are periodic in all directions. The computational mesh is composed of 1283 C1-quadratic elements.
The left-hand side shows isosurfaces of the solution, while the right-hand side presents slices along several planes.

these three types of asymptotic states, we make use of theL 2

energy, de�ned as

E = || u||2 = (u,u)1/ 2. (18)

TheL 2 energy has been identi�ed as a fundamental quantity
to understand the dynamics of the Kuramoto-Sivashinsky
equation [52–54]. In Fig. 2 we plot the time evolution of
the L 2 energy for� = 0.225, � = 0.210, and� = 0.195. In
the same �gure, we also depict three subplots corresponding
to the evolution of theL 2 energy during the time interval
t � [12000,13000]. These subplots show the complexity of
the evolution of theL 2 energy and illustrate the difference
between the steady state (� = 0.225), the breathing hexagonal
state (� = 0.210), and the chaotic state (� = 0.195). Thus,
for � = 0.225, theL 2 energy is constant in time, which is
consistent with a stationary solution. For� = 0.210, the
L 2 energy exhibits a two-scale behavior. The small-scale
component is quasiperiodic and its frequency approximately
coincides with the temporal frequency of the oscillating
pattern. Finally, for � = 0.195, we observe a complex
evolution consistent with a chaotic state.

Additional insight may be obtained by plotting theL 2

energy phase plane, which is the set of points (E, �E) for a
given time interval (here�E denotes the time derivative ofE).
TheL 2 energy phase plane is regarded as a fundamental tool
for the understanding of the damped Kuramoto-Sivashinsky
equation [52,53]. In Fig. 3 we plot theL 2 energy phase plane
for (a) � = 0.225, (b) � = 0.210, and (c)� = 0.195. Note
that the vertical scales of the three sub�gures are different. For
� = 0.225 we observe a typical phase plane of a stationary
solution. For� = 0.210 and� = 0.195 we plot the phase
planes during the time intervalt � [14 900,15 000], which
corresponds to the last 100 units of time of the simulation.
We observe that for� = 0.195, �E takes values one order of
magnitude larger than those achieved for� = 0.210. This is
a consequence of wilder and rougher variations of theL 2

energy, which are consistent with a more chaotic behavior.
We also observe that the phase plane for� = 0.210 reveals
a quasiperiodic structure that manifests itself through ordered

loops. This behavior is consistent with the breathing hexagonal
state, and thus it is not present in the phase plane that
corresponds to� = 0.195.

2. Comparison with experiments

The breathing hexagonal state has been experimentally
observed in a pattern of two-dimensional jets [9], obtained by
way of a directed percolation experiment. In the same work,
the authors observe a stationary hexagonal state with several
topological defects. They identify the so-called penta-hepta
defect which consists of a spot surrounded by seven (rather
than six) dots and a neighbor of it enclosed by �ve. Here we
aim to show that our simulations of the damped Kuramoto-
Sivashinsky equation reproduce this topological defect. For
this purpose, we performed a simulation for� = 0.225 on a
signi�cantly larger domain, namely,� = [0,512]2. Figure4
shows a snapshot of the solution with several penta-hepta
defects marked (a) and a detailed view of the area where the
penta-hepta defects are located (b).

As an additional comparison, we perform a statistical
study of the average time before the system reaches a stable
state of constant energy from a chaotic initial condition. The
initial conditions correspond to different realizations of a
chaotic asymptotic state calculated using� = 0.195. Then,
we suddenly increase the value of� and measure the time
before the system reaches a stable state of constant energy.
We sampled seven values of� , which lead to stationary
solutions from� = 0.225 to � = 0.240. For each value of
� , we performed 11 calculations corresponding to different
chaotic initial conditions. Figure5(a) shows the evolution of
theL 2 energy from a chaotic state to a stable state for several
values of� and different initial conditions. From these curves
we calculated the average time before stabilization� 	 � . In
Fig. 5(b) we plot � vs � 	 � Š1. The data �ts a straight line
with a coef�cient of determination 0.9982. The behavior is the
qualitatively the same as that found in a experiment of directed
percolation [13], where the same scaling has been measured.
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