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SUMMARY

This paper presents a comparison between two high-order methods. The first one is a high-order finite
volume (FV) discretization on unstructured grids that uses a meshfree method (moving least squares
(MLS)) in order to construct a piecewise polynomial reconstruction and evaluate the viscous fluxes. The
second method is a discontinuous Galerkin (DG) scheme. Numerical examples of inviscid and viscous
flows are presented and the solutions are compared. The accuracy of both methods, for the same grid
resolution, is similar, although the DG scheme requires a larger number of degrees of freedom than the
FV-MLS method. Copyright © 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The field of computational fluid dynamics has developed greatly during the last decade. The
increase of computer capabilities has allowed the possibility of solving progressively more complex
problems, which require numerical methods with the capability for capturing the flow features in a
very accurate way. DNS and LES of turbulent flows, or aeroacoustics simulations are examples of
these kind of problems. In aeroacoustics, for example, an accurate solution of flow field is needed
due to the very low magnitude of acoustic waves. Indeed, the use of first- and second-order upwind
schemes can lead to excessive numerical dissipation that absorbs the acoustic wave propagation
and drives the simulation to a wrong or not accurate enough solution. In addition, in problems
where turbulent effects play a significant role, the numerical method has to avoid interactions with
the turbulence model.

Pseudospectral methods and finite differences are the most natural and commonly used numerical
schemes when very high accuracy is needed. They are extremely competitive on simple or moder-
ately complex geometries, and unbeatable, both in terms of accuracy and efficiency, by unstructured-
grid approaches. However and even though the use of multiblock grids allows the extension of
structured-grid procedures to rather complex geometries, the development of unstructured-grid
methodologies is nowadays perceived as the most promising compromise to achieve the dreamed
accurate-fast-automated final objective. It is within this context of unstructured-grid methods that
the present study originated.

Continuous finite element formulations for fluid dynamics are applicable to a wide variety
of flow conditions. Unfortunately, the too frequently required stabilization, with its associated
numerical dissipation and lack of robustness, has hampered their widespread use for compressible
flow applications.

Finite volume (FV) schemes are widely used, including in industrial problems. Nevertheless,
the usual order achieved in these simulations is usually two. This is due to the difficulty of
evaluating high-order derivatives of the field variables from scattered, point wise information.
These derivatives are required for the reconstruction of field variables by Taylor approximation
[1-3]. Moreover, most of multidimensional schemes are extensions of one-dimensional solvers,
so if the direction of the flow is not normal to the cell interface, dissipation is a fact [4]. This
difficulty is overcome by methods that solve the problem with a Lagrangian approach, the so called
meshfree or particle methods. In this context, the smooth particle hydrodynamics method was first
introduced by Gingold and Monaghan [5] in astrophysical applications. For acoustic applications,
Eldredge, Colonius and Leonard have used a vortex particle method for the calculation of a
corotating vortex pair [6]. In [7-9] a method that uses a meshfree technique (moving least squares
(MLS)) has been proposed to calculate high-order derivatives of the field variables, achieving
a truly multidimensional high-order approach with a FV scheme. In this method, the spatial
FV discretization uses the MLS approximation as a kind of ‘shape functions’ for unstructured
grids.

On the other hand, few years ago, discontinuous Galerkin (DG) schemes have attracted the
attention of researchers. This method was first applied in the solution of neutron transport problems
in 1973 by Reed and Hill [10], and has only been recently extended to general problems in fluid
dynamics [11-14]. This technique combines the physics of wave propagation inherent to finite
volume methods with the accuracy of high-order polynomial approximations within elements.
In opposition to continuous finite elements, this method allows the solution to be discontinuous
between elements. The coupling between elements is achieved by means of numerical fluxes, as
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in the FV technique. However, the discontinuous nature of the approximation brings the main
drawback of this method: the increasing number of degrees of freedom (dof).

In this paper we compare two high-order methods (the DG and the FV-MLS schemes) by using
numerical tests. For the DG method, we take third-order polynomials for the reconstruction of the
variables. A Taylor reconstruction up to the third derivative is used for the convective terms on
the FV-MLS method. Viscous fluxes are computed directly at the quadrature points with a cubic
reconstruction. Therefore, a comparison is made between two fourth-order methods.

We study the accuracy of both methods only for cases with smooth solutions. Notice that the
FV-MLS method works well in problems with non-smooth solutions [7-9], by using shock limiter
techniques designed for FV solvers.

The outline of the paper is as follows. Section 2 presents the governing equations and Sections 3
and 4 are devoted to numerical formulations. Interpolation methods are examined in Section 5,
whereas accuracy test and representative simulations are exposed and discussed in Sections 6
and 7. Finally, conclusions are drawn.

2. GOVERNING EQUATIONS

The two-dimensional Navier—Stokes equations can be written in conservative form as

A%
ou N O(F,—FY) N 0(Fy—Fy) _o

— 1
ot 0x Jy M
with
0
PUx
U= 2
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PUx pUy
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pvy+p PUxVy
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with
pE = pe+3p(v-V) (5)
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p
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In the above expressions, U is the vector of conserved variables, v= (v, vy) is the velocity,
u is the effective viscosity of the fluid, H is the enthalpy, E is the total energy, e is the total
internal energy and p is the density. The notation & = (F,,F,) and & V= (F)Y, F ;’) will be used
hereafter in reference to the inviscid and viscous fluxes, respectively.

The thermal flux (q=(gx, gy)) is modeled by Fourier’s law

=L, g=—i ©

ox’
Alternative formulations are possible. The authors are working on developing alternative formula-
tions for the calculation of thermal fluxes based on Cattaneo’s law [15].
It is assumed that the viscosity depends on the temperature according to Sutherland’s law

Tref SO 1 =
= u I 10
ref 1 So Tret ( )

where the subindex ref refers to a reference value and So=110.4K is an empirical constant.

3. HIGH-ORDER FV METHOD

3.1. Overview

The first discretization analyzed in this study is a high-order unstructured-grid FV method for
convection-dominated flows developed by the authors [7-9]. The key ingredient of this scheme is a
point-wise local high-order approximation framework, which provides a continuous representation
of the solution, and thus allows a simple and efficient discretization of equations with high-order
terms.

The usual approach of high-order FV schemes is pragmatic and bottom-up. Starting from an
underlying piecewise constant representation, a discontinuous reconstruction of the field variables is
performed at the cell level. An important practical consequence is that the discretization of higher-
order terms requires some kind of recovery procedure, which is, almost invariably, inconsistent with
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the aforementioned reconstruction. Our approach is somewhat the opposite. We start from a high-
order and highly regular representation of the solution, obtained by means of MLS approximation
[16], and well suited for general, unstructured grids. This approach is directly suitable for the
discretization of elliptic/parabolic equations and high-order spatial terms. For equations with a
predominantly hyperbolic character, the global representation is broken locally, at the cell level,
into a piecewise polynomial reconstruction, which allows to use the powerful FV technology of
Godunov-type schemes for hyperbolic problems (e.g. Riemann solvers, limiters).

3.2. General formulation

Consider a system of conservation laws of the form
du H E -
5+V~(97 +Z7)=S inQ (11)

supplemented with suitable initial and boundary conditions. The fluxes have been generically split
into a hyperbolic-like part, F H, and an elliptic-like part, 7 E Consider, in addition, a partition
of the domain Q into a set of non-overlapping control volumes or cells, 7 " —I. Furthermore, we
define a reference point (node), X inside each cell (the cell centroid).

The spatial representation of the solution is as follows: consider a function u(x), given by its
point values, u; =u(xy), at the cell centroids, with coordinates x;. The approximate function v’ (x)
belongs to the subspace spanned by a set of basis functions {N;(x)} associated to the nodes, such
that v’ (x) is given by

v (x) = XX: Nj(x)u; (12)
=1

which states that the approximation at a point x is computed using certain ny surrounding nodes.
This set of nodes is referred to as the cloud or stencil associated to the evaluation point x. In
particular, the above approximation is constructed using MLS approximation [16]. Note that, using
MLS, the approximate function u’(x) is not a polynomial in general. An interesting feature of
this MLS approach is the centered character of the approximation; thus, avoiding the spatial bias,
which is often found in patch-based piecewise polynomial interpolation.

Consider now the integral form of the system of conservation laws (11) which, for each control
volume 7, reads as

5
/ Mo+ (yH+yE)-ndr:/ SdQ (13)
Q, 0t I, Q;

Introducing the component-wise reconstructed function u”, the spatially discretized counterpart of
(13) reads as

h
/ M ot (therhE).ndr:/ S"dQ (14)
Q, Ot ry Q;

A direct evaluation of the fluxes in (14) is possible and efficient when the inherent dissipation
mechanism is strong enough to overpower the convective terms. In convection-dominated problems,
where the character of the equations is predominantly hyperbolic, this centered approach can lead
to unstable computations. For this latter type of problems, we introduce a ‘broken’ reconstruction,
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u’}” , which approximates u” (x) (and, therefore, u(x)) locally inside each cell 7, and is discontinuous

across cell interfaces [7, 9]. In general, we require the order of accuracy of the broken reconstruction
to be the same as that of the original continuous reconstruction. One possible choice is to use
Taylor series expansions; a quadratic reconstruction inside cell I, for example, would read as

upP () =u} + Vu] - (x—x)) + 5 (x—x,) TH" (x—x/) (15)

where the gradient Vu}l’ and the Hessian matrix H” involve the successive derivatives of the
continuous reconstruction u” (x), which are evaluated at the cell centroids using MLS. This dual
continuous/discontinuous reconstruction of the solution is crucial in order to obtain accurate
and efficient numerical schemes for mixed parabolic/hyperbolic problems. The cell-wise broken
reconstruction defined here is actually a piecewise continuous approximation to u”. The advantage
is that it allows to make use of Riemann solvers, limiters and other standard FV technologies,
while keeping some consistency in terms of functional representation. Thus, the general continuous
reconstruction is used to evaluate the viscous (elliptic-like) fluxes, whereas its discontinuous
approximation is used to evaluate the inviscid (hyperbolic-like) fluxes.
The final semidiscrete scheme for the continuous/discontinuous approach can be written as

0 h
/ M 4o+ H(uhb+,uhb_)dr+/ F'E.ndl= | §"dQ (16)
Q, Ot I, T, Q;

hb+

where H(u u?~) is a suitable numerical flux.

3.3. MLS approximation

Consider a function u(x) defined in a domain Q. The basic idea of the MLS approach is to approx-
imate u(X), at a given point X, through a weighted least-squares fitting of u(x) in a neighborhood
of x as

u(X) i (x)= Zl Pi ()% (2) | g=x =P (X)U(Z) | 1=x a7)

pT(x) is an m-dimensional polynomial basis and a(z)|,—x is a set of parameters to be determined,
such that they minimize the following error functional:

J(0(Z)]1=x) = W@ —y, h)|=x[u(y) —p" (1)ot(2) |,=x]* dQx (18)

yeQx

where W(z—y, h)|;—x is a kernel with compact support (denoted by Q) centered at z=x.
The parameter % is the smoothing length, which is a measure of the size of the support Q.
The minimization of J leads to

/ o PY)W(Z—Y, h)|z=xu(y) dQx =M(X)at(2) |;=x (19)
yeiix
M(x) is the moment matrix, defined by
M(x) = / PYW (Z—y. 1) |=xp" () dQy (20)
Y€l
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In numerical computations the global domain Q is represented by a set of nodes or particles.
The integral in (18) is thus evaluated using those nodes inside Qy as quadrature points. In discrete
form, the set of parameters a that minimize the functional J are given by

(2)|=x=M"" (x)Po, Wy (X)ug, 2h

where the vector ug_ contains the pointwise values of the function to be reproduced (u(x)), at the
nx nodes inside Q.
Introducing (21) in (17), the interpolation structure can be identified as

a(x) =pT (M~ (x)Po Wx)ug, =NTxug, = 3 N;(®)u; (22)
j=I1

In analogy to finite elements, the approximation is written in terms of the MLS ‘shape
functions’ as

NTx) =p" )M~ (x)Po, W(x) (23)

The basis of functions used in this study comprise scaled and locally defined monomials.
Thus, in order to reconstruct a one-dimensional function at a location x;, we use basis of the

form
X—XxJ x—x1\? x—xr\? T

P(X)—(l A ( A ) ( A ) ) (24)
The functional basis p(x) is strongly related to the accuracy of the MLS fit. For a pth-order
MLS fit (pth-order complete polynomial basis) and general, irregularly spaced points, the nominal
order of accuracy for the approximation of an sth order gradient is roughly (p —s+1). In general,
any linear combination of the functions included in the basis is exactly reproduced by the MLS
approximation. In multidimensions we follow the same idea of p-complete basis, constructed using
products of scaled and locally defined monomials.

The MLS shape functions are data independent and, therefore, for fixed grids they need to be
computed only once at the preprocessing phase. In order to prevent the moment matrix M from
being singular or ill-conditioned, the cloud of neighbors must fulfill certain ‘good neighborhood’
requirements. The definition of the cloud (the MLS stencil) for each evaluation point is a crucial
issue that requires careful attention. The selection process must be suitable for general unstructured
grids, and the stencil should be as compact as possible for the sake of computational efficiency
and physical meaning. Note that these stencils are typically centered around the node, and thus
the MLS approximation avoids the spatial bias, which is often found in patch-based piecewise
polynomial approximations.

The particles needed for the application of the method are identified with the centroids of every
cell of the grid. In the case of boundary cells, we add nodes (ghost nodes) placed in the middle
of the edge wall.

The approximate derivatives of u(X) can be expressed in terms of the derivatives of the MLS
shape functions, which are functions of the derivatives of the polynomial basis p(x_hx’ ) and the
derivatives of C(x) [7,9]. For example, the first-, second- and third-order derivatives of u(x),
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evaluated at x;, are given by

ou(x) ~ "X"I: ‘) 0N (x)
5)Ca X=X7 j=1 5)Ca X=X/
Cu| S TN 25
0x4,0xp wox, 1= / 0x4,0x Y, (25)
63u(x) L ' 63Nj(x)
0x4,0x30x; wox, 4= / 0x4,0x Ox; X,

In this work we have used a polynomial cubic basis in (24), so we can compute until the third
derivative. Therefore, the maximum order of the FV-MLS scheme we can get with this basis is
four. The polynomial basis also defines the minimum number of neighbors (nodes) needed in the
stencil for the MLS approximation. Thus, for the cubic basis and two-dimensional problems at
least 10 points are required. However, it is recommended to increase slightly this number in order
to avoid an ill conditioning of the moment matrix M. On the other hand, it is possible to obtain
higher orders by using quadratic or higher basis. In this case, the number of points in the stencil
needs to be increased. In practical applications, however, the maximum attainable orders within
the MLS context is up to fourth—sixth order.

3.4. MLS-based reconstruction

Standard high-order FV schemes are constructed through the substitution of a piecewise constant
representation for a piecewise continuous (usually polynomial) reconstruction of the flow variables
inside each cell. Owing to the fact that the reconstructed fields are still discontinuous across
interfaces, the discretization of viscous terms must be done carefully. This ‘bottom-up’ procedure
is quite different from the way in that the FV-MLS method works. Here, we work with pointwise
values of the conserved variables, associated to the cell centroids. The spatial representation
provided by the MLS approximants is continuous and high-order accurate. In order to deal with
convection-dominated problems and to take the most of the FV technology for hyperbolic terms,
we break the continuous representation inside each cell by means of Taylor expansions (‘top-down’
procedure). The resulting scheme is like a Godunov method in the convective terms, but with a
much clearer and more accurate discretization of elliptic terms. In the following sections, it is
shown how the reconstruction process is made.

3.4.1. Reconstruction: inviscid fluxes. To apply a FV scheme, a reconstruction scheme to evaluate
the value of the variables at the edges of the element and compute the numerical flux is needed.

Using a Taylor series expansion, the linear component-wise reconstruction of the field variables
inside each cell I reads as

Ux)=U; +VU; - (x—x/) (26)

Uy is the average value of U over [ (associated to the centroid), x; denotes the Cartesian coordinates
of the centroid and VUj is the gradient of the variable at the centroid. The aforementioned
gradient is assumed to be constant inside each cell and, therefore, the reconstructed variable
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is still discontinuous across interfaces. Note that we have broken the continuity of the spatial
representation of the variable. The first-, second- and third-order derivatives of the field variables
will be computed using MLS approximation.

Analogously, the quadratic reconstruction reads as

Ux)=U;+VU; - (x—x))+ 3 (x—x;) " H; (x—X/) 27)

where H; is the centroid Hessian matrix.
In case of cubic reconstruction

U =U;+VU;- (x—x))+ 1 (x—x)TH; (x—x/) + L A>X] T/ (x—x/) (28)
with
A’x] = ((x—x)*(y—yn?) (29)
eu; M of!
ox3 0x2dy
=] X (30)
oUy oUy
0x0y? 0y3

For unsteady problems, additional terms must be introduced in (27) and (28) to enforce conser-
vation of the mean, i.e.

1

— Ux)dQ=U; (31)
AI xeQy

Thus, the quadratic reconstruction for unsteady problems reads as

U0 =Us VU, (x4 o) T s [ 1e 2 20, 28 g Y] o)
X)= X=X+ -(x—x X—X/)——— — — S
I I 1 ) I I I 2A; XX Ox2 Xy axay yy ayz
with
Ixx=/Q(x—x1)2dQ, Ixy=/ﬂ(x—m)(y—y1)d9, Iyy=/Q(y—y1)2dQ (33)

3.4.2. Direct evaluation of the viscous fluxes. The discretization of the viscous terms is a somewhat
challenging task for methods that use piecewise polynomial approximations. A popular approach
for second-order schemes is to use the average of the derivatives of the flow variables on either side
of the interface to compute the viscous fluxes. This is not acceptable, however, for higher-order
discretizations. Another option, which is customary in DG methods, is to decompose the original
second-order problem into a first-order one, with the subsequent introduction of additional dof,
which, in some cases, can be expressed in terms of the primal ones, and therefore ‘eliminated’.
The proposed FV scheme, through the use of MLS approximations, performs a centered, direct
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evaluation of the viscous fluxes at the quadrature points on the edges using information from
neighboring cells. Thus, focusing on the Navier-Stokes equations, the evaluation of the viscous
stresses and heat fluxes requires interpolating the velocity vector v=(vy, vy), temperature 7', and
their corresponding gradients, Vv and VT, at each quadrature point X;,. Using MLS approximation,
these entities are readily computed as

Nig Nig
Vig= > ViNj(Xig), Tig=7 TjN;j(Xiq) (34)
j=1 j=1
and
nig nig
VV,'qZ Z Vj®VNj(Xiq), VT,'qZ Z TjVNj(X,'q) (35)
j=1 j=1

where n;, is the number of neighbor centroids given by the stencil. Then, the diffusive fluxes can
be computed according to (4).

3.5. The kernel function

In this work the following cubic kernel is used for the FV-MLS calculations

1—%s2+%s3, s<1

W(s)=112-s)°, 1<s<2 (36)
0, s>2
In (36) s=""%0 and h=rxmax(|x;—x;[) with j=1,...,ny,. We have chosen the value of

x=0.7 for the calculation of the derivatives of the MLS shape functions used in the computation
of inviscid fluxes and the value of k=0.52 for the direct evaluation of viscous fluxes. For the case
of inviscid fluxes, the influence of the value of x in the properties of the scheme can be examined
using a Fourier analysis of the linear convection equation. The dispersion and dissipation of the
scheme are related to the real and imaginary parts of the modified wave number. In Figure 1, it is
shown the variation of the properties of the scheme with the parameter x for the 1D convection
equation.

For inviscid fluxes, the derivatives of the variables are used to compute a Taylor reconstruction
of the variables inside the cell. For the direct evaluation of viscous fluxes or elliptic terms, the
behavior is different, since the derivatives or variables that we compute are used directly. If we
consider a one-dimensional stencil, Fourier analysis gives the modified wave number for the MLS
approximation

QO ON;: .
Modified wave number=MWN= (—i) }_ a—ljelk(mx) (37)
I=—p 0X

where P is the number of neighbors to the left of the cell / and Q is the number of neighbors
to the right of the cell /. Moreover, k is the wave number. In order to get some conclusions, we
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Figure 1. Variation of the properties of the FV-MLS scheme for the 1D linear convection equation. On

the left, we show the real part of the modified wave number, related to the dispersion. On the right, we

plot the imaginary part of the modified wave number that is related with the dissipation. These results
can be related to the behavior of the scheme for the approximation of inviscid fluxes.

particularize for the case of a five-element stencil P=Q =2

Q ON;; .
MWN — (_1) Z l] elk(lAX)
1=—p O0x

ON ON(— ON ON(—
=sin(2kAx)< u+2  ONa 2>>+Sin(kAx)( a+ny _ INu 1))
0x Ox Oox Ox
ON ON(- ON ON(- ON
—i| cos(ZkAx) U2) 20D ) 4 cos(kAx) U+ TR ) L T ) (3
Ox Ox Ox ox Ox

For an isotropic distribution of points and a given stencil for the cubic spline, there is no influence
of the parameter k on the real part of the MLS approximation, since the difference of the shape
functions

ON+iy  ONu—i

ox 0x
iS constant. MOI'COV@I'
ON
o (39)
Ox
ONa+iy _ ONu-i
= — 40
Ox Ox (40)

Then, the imaginary part of the approximation vanishes, and there is no dissipation. We remark
that these results only hold for the kernel (36). Even though for a given stencil the modified wave
number is independent of x, it affects the size of the support and therefore it modifies the weighting
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Figure 2. Variation of the shape of the cubic kernel in terms of x. The kernel is centered in the cell 7 =0.
The distance between nodes is Ax=1.

Figure 3. Support with different smoothing lengths (left) and orientation of inertial axis (right).

of the points of the stencil, as we show in Figure 2. Using radial weighting, the support of the
kernel expands over a circle of radius 24, so it is worth to note that the selection of a value of x
small could lead to a bad conditioning of the moment matrix M. As a practical rule ¥>0.52. In
unstructured grids, the distribution of nodes is not isotropic and the behavior of the scheme will
be affected. It is possible to define an optimum value of x for each point of the grid, and this
subject is currently under research. On the other hand, it is clear that a different selection of the
kernel function produces different properties of the scheme.

3.5.1. Isotropic and non-isotropic kernels. The most frequently used kernels in the literature are
splines and exponential functions. Kernels are defined over a support whose size is controlled by the
smoothing length /. If the same smoothing length is used for each direction in a two-dimensional
problem, the support will be a circle with radius 2A. Another possibility would be to use different
smoothing lengths for every direction. Then, if the kernel is defined as the product of the kernels
in every direction, the support will be a rectangle (Figure 3, left), but any other geometric form
is possible (i.e. elliptical kernels). In addition, there is the possibility of taking a kernel in the
x-direction different of the kernel taken for the y-direction.
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In order to build an anisotropic kernel, we take the clouds of points given by the stencil and
calculate their principal inertial axis. Then we can obtain the direction of these axes (Figure 3,
right). In two dimensional, this is given by

2y
tan(20) = F (41)
xx —lyy

Then, changing the coordinates, with f=—o
cosff —sinf
X = X (42)
sinf  cosf

Now, we obtain the smoothing lengths in each new direction as

hx*zkxmax(”xj_xlu)s j:17"'7nxl
. (43)
hy*:KymaX(”)’j_yI”)s J:17"'7nxl
and the rectangular anisotropic kernel will be given by
W =Wy Wys (44)
The derivatives in global coordinates are given by
ON ON
ox cosfp —sinB\ | o+
0x _ 0x (45)
N sinf  cosp ON
dy oy*
and the second derivatives by
&N N N N
ox2  0Ox0y cosfp —sinf 0x*2 Ox*0y* cosff  —sinf 46)
2n x| \sinp  cosp PN PN sinf  cosf
dyox  0y? Oy*ox* Oy*2

Higher-order derivatives are straightforward.

3.6. Full stencil of the MLS—FV scheme

Figure 5 shows the stencils to compute the MLS shape functions for the fourth-order FV-MLS
method. A complete description of the stencils can be found in [8, 9]. For inviscid problems, the
stencil of a cell [ is obtained as the union of its MLS stencil (Figure 4) and the MLS stencils of
its first neighbors. As it can be seen in Figure 5 the full stencil comprises 25 cells. Analogously,
the stencil of the ‘viscous’ discretization is obtained as the union of the MLS stencils associated
to all the edges of cell 7. This stencil comprises 21 cells.
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Figure 5. Full fourth-order FV-MLS stencil: Euler and Navier-Stokes (left) and elliptic problems (right).

4. DG METHODS

This section presents a brief introduction to DG methods for convection-dominated problems. For
a deeper insight, we refer the reader to [11, 13, 17-20] among others.
The weak form of (1) is

ZUgja%dﬂ—/geV(p.F(U,VU)dQJr?g

¢n-F(U, VU)] -0 Vo 47)
e 0Qe

where F=% — 7. We have split the integral over the domain into the sum over the elements e.
It is important to notice that boundary integrals are referred to the element boundary, and we
let the solution to be discontinuous. As a consequence, the flux function in the contour integral
is not uniquely defined. As in the FV method, a numerical flux h(U", U™, n) depending on the
internal (+) and the external (—) interface values of the variable U and on the unit normal n
is used. The numerical flux has another important function. It is the coupling between elements,
which is missing by the discontinuous nature of the approximation. We can choose any of the
numerical fluxes used in FV solvers as numerical flux functions for the convective part. Here, we
have chosen the same one as in the FV-MLS method. The problem appears in the definition of
numerical fluxes for the viscous surface integrals. In this case, if we use the common approach in
FV schemes of central difference discretization for the evaluation of viscous fluxes, the solution
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seems to converge as we refine the mesh. However, it will be wrong and the error will have a

component independent of grid size [17]. There are many possibilities to deal with viscous fluxes

in a DG framework. Here, we will use the local discontinuous Galerkin (LDG) discretization [18].
We transform the second-order Navier—Stokes equations in a first-order equivalent system as

S=vU (48)
E—i—V-Q”(U)—V-g” U,S)=0 (49)
We can write the weak form of both equations as
/ ShqﬁdQe-i-/ Uthb(u)dQe—j£ Up-n¢pdo=0 (50)
Q, Q. T,
¢——dQe— | FUpVepdQ.+ | F " (Up,Sp)VPdQe,
Q O Q, Q.
—i—% ?(Uh)-nqbda—% ZV (U, S1) ngde=0 (51)
T, I,

Following Arnold et al. [19] we define on every interior edge the average {g} and the jump [q]
operators as follows. Let e be an interior edge shared by two elements Q" and Q. We define the
unit normal vectors n™ and n~ on e pointing exterior to Qj and Q. Then, we set the following:

For g scalar
la)=3@*+q7)
q 2lg +4q (52)
[g1=¢ " +¢ n~

For ¢ vector
{0} =L@ +o7)
(53)
[pl=¢@" n"+¢ -n"

For the first equation, the LDG scheme defines the following numerical flux. If the edge e is
inside the domain Q, then

Uy -n=({U}+B-[U]D)-n (54)
and if e lies on the boundary of Q

gp'n onlp
U, n= (55)
U-n onTIy

where I'p and I'y are the Dirichlet and Neumann boundaries, and gp is the value of U on the
Dirichlet boundary.

For the second equation, the inviscid flux is one of the commonly used in FV method. Numerical
viscous flux for the edges inside the domain is the following:

F¥n=({F"}-p-[F7 " ]1-oU])n (56)
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and for the boundaries
(97\/+ —a(U"—gp)n)-n onI'p

FY .n= (57)
gn-n on I'y

where gy is the value of & V on the Neumann boundary.
Following [20] the value of o =1 has been chosen, and the definition of § on each edge e is as
follows:

B-n=sign(v-n)/2 (58)

where v is an arbitrary but fixed vector with nonzero components. This vector is taken as v= (1, 1).
After assembling all the elemental contributions, the system can be written as
dU,

M-* +R(Uy) =0 (59)

where M is the mass matrix and R is the residual.

5. PIECEWISE POLYNOMIAL INTERPOLATION VERSUS MLS

Most of the existing high-order schemes are based on piecewise polynomial interpolation. Following
this approach, higher-order accuracy is obtained by creating new dof inside each element/cell,
which are used to construct an interpolating polynomial. From the perspective of pure interpolation,
the reconstructed value at a point inside an element depends solely on the variables at the nodes
inside that element. It is clear that for points located at edges and corners of the element, there
is a bias in the direction of the incoming information, which necessarily has an impact on the
global accuracy of the numerical scheme. Furthermore, even for moderately high-order polynomial
interpolations the Runge phenomenon prevents the use of uniform nodal distributions. While
an approximation that is discontinuous across interfaces seems somewhat natural for hyperbolic
problems, it is rather inconvenient for the discretization of terms involving high-order derivatives.

On the other hand, MLS provide a general, pointwise centered, approximation framework,
which may be used in order to construct both higher-order reconstructions in the sense of classical
Godunov-type methods, and also accurate discretizations of elliptic-like terms. It is interesting at
this point to examine the relative performance of piecewise polynomial and MLS approximations.
First, this analysis will provide some insight into the efficiency of the schemes, in terms of how
much information is extracted from a given grid. Second, the results of the present analysis may
help understanding, at least in part, the relative accuracy in the numerical solution of boundary
value problems achieved by techniques that use one method or the other.

An important remark is that, while one may construct polynomial expansions of arbitrarily high
orders (provided that a careful choice of expansion basis and collocation points is made), MLS
approximation are necessarily restricted to low or moderately high-order expansions. We believe,
however, that the attainable orders within the MLS context (up to fourth-sixth order) are high
enough for practical unstructured-grid computations.

This section presents a comparison in the approximation of a smooth function given by
u=sin(2nx)sin(2wy), defined on the square [0, 1]x [0, 1]. The Cartesian grid for the piecewise
polynomial interpolation has 13 x 13 cubic elements (p =3). With the aim of maintaining the same
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spatial resolution, the MLS grid has been constructed by dividing each edge of the elements by
three, and thus comprises 39 x 39 cells.

In order to compute the L, error norm, the function is evaluated at the same points, which are
the 4 x 4 Gauss—Legendre quadrature nodes inside each cell of the MLS grid. As data we take the
Gauss—Lobatto points for the piecewise polynomial interpolation and the centroid of each MLS
cell for the MLS interpolation. We note that this implies a smaller number of known values for the
MLS interpolation (Table I). MLS stencils as the one shown in Figure 4 for interior points have
been used. For boundary points and its first neighbors, the stencil is comprised by the nearest 18
neighbors.

The results are shown in Figures 6 and 7. The distribution of the error is more homogeneous for
the MLS interpolation and the maximum error is lower for both the variable and its gradient. In
Table II we show the L, norm of the error. We note that although MLS interpolation uses a smaller
number of known points than piecewise polynomial interpolation, L, errors for the variable are
very similar, and for the gradient MLS achieves better results.

We further analyze the behavior of both interpolation methods with a non Cartesian distribution
of the data. The grid for piecewise polynomial interpolation has 16 x 16 elements and MLS grid
has been built as in the structured case. Both grids are shown in Figure 8. Table III shows the

Table I. Known values required for the interpolation.

Piecewise polynomial interpolation MLS
Known values 13x13x16=2704 39x39=1521
Ghost nodes — 39x4=156
Corner ghost nodes — 4
Total 2704 1681

|
(b) Sig

(c) {d)

Figure 6. Absolute value of the error for piecewise polynomial interpolation (a, ¢) and MLS
interpolation (b, d), for u =sin(2mx) x sin(2ny) on a Cartesian grid. a and b show a perspective
of the domain, ¢ and d show a front view.
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(b)

(3] (d)

Figure 7. Absolute value of the error for piecewise polynomial interpolation (a, c) and MLS
interpolation (b, d), for the gradient of u=sin(2nx) x sin(2wy) on a Cartesian grid. a and b
show a perspective of the domain, c and d show a front view.

Table II. L, norm of the errors for the interpolation of u =sin(2nx) x sin(2xy)
and its derivatives on a Cartesian grid.

Piecewise polynomial interpolation MLS
U 1.28E—-05 1.57E—-05
w 1.12E—03 8.31E—04
& 1.12E—03 8.31E—04
vU 1.58E—03 1.18E-03

L, norm of the error, which again reveals a similar accuracy, although the MLS approximation
achieves the best results in both the variable and derivative. Also, the distribution of the error is
more uniform and the maximum errors are smaller. This is shown in Figures 9 and 10.

As pointed out in [9] for the one-dimensional case, the main drawback of MLS is the approx-
imation near boundaries, where the stencils are necessarily biased. In two dimensional, corners
are the most difficult points, due to the bad conditioning of moment matrix M. Nevertheless, the
errors at the boundaries are of the same order of magnitude as those in the rest of the domain,
which suggests that a good design of the stencil may overcome, or at least alleviate, the effect
of boundaries. We believe that these better results of MLS in comparison with piecewise poly-
nomial interpolation are due to its local and centered characteristics. These features are specially
appealing for non-regular point distributions. It is precisely in this kind of environment where
MLS more clearly outperforms piecewise polynomial interpolations. Also, the continuous nature
of MLS interpolation across interfaces is a great advantage for the numerical solution of elliptic
terms.
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Figure 8. 16 x 16 non-structured piecewise polynomial interpolation grid (left) and 48 x 48
MLS grid (right), for u =sin(2nx) x sin(2wy). MLS grid was built by dividing by three each
edge of each element of the grid on the left.

Table III. L, norm of the errors for the interpolation of u =sin(2mx) x sin(2ny) and its
derivatives on an unstructured grid.

Piecewise polynomial interpolation MLS
U 1.17E—05 1.10E—05
@ 1.27E—03 9.23E—04
“ 1.03E—03 8.32E—04
vU 1.63E—03 1.24E—03

6. ACCURACY TESTS

This section presents a comparative analysis, in terms of accuracy, of the FV and DG finite element
methods introduced in the previous sections. We have preferred to establish a comparison in terms
of accuracy for the same grid resolution, rather than comparisons of accuracy versus number of
dof or accuracy versus cost, which, being perhaps more fair for the FV scheme, do not solve the
question about the relative spatial accuracy of either scheme. By grid resolution we refer to & (the
typical size of the control volumes in an FV grid), and H/p (the typical size of the DG elements
divided by the polynomial order of the approximation). The accuracy in terms of cost depends,
to a large extent, on the quality of the implementation. On the other hand, the conclusions of a
comparison of accuracy per dof are somewhat incomplete without a rigorous comparison of the
cost per dof. We will just remark that, at least in our implementation, the cost per dof is smaller
in the case of the FV method.

The chosen test cases are representative for compressible flow simulations, and their scope is
twofold:

e Discretization of hyperbolic equations: we present a convergence analysis for Ringleb flow
problem.

e Discretization of viscous terms (elliptic problems): we present a convergence analysis for a
simple Poisson model problem.
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0.00,

{a) (h)

{ch d)

Figure 9. Absolute value of the error for piecewise polynomial interpolation (a, c) and MLS
(b, d) interpolation, for u=sin(2nx) x sin(2wy) on an unstructured grid. a and b show a
perspective of the domain, ¢ and d show a front view.

(a) (h)

(c) (d)

Figure 10. Absolute value of the error for piecewise polynomial interpolation (a, ¢) and MLS interpolation
(b, d), for the gradient of u=sin(27x) x sin(2wy) on an unstructured grid. a and b show a perspective
of the domain, ¢ and d show a front view.

6.1. Ringleb flow

In this first example, we consider the solution of the Ringleb flow problem. This problem is one of
the few non-trivial problems for which a smooth analytical solution of the two-dimensional Euler
equations is known. The analytical solution may be obtained using the hodograph transformation,
see [21]. The transformation equations between the Cartesian variables (x, y) and the hodograph
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variables (V, 1) are

1
Y = —sin?¥ (60)
|4
y—1
A=1-1y2 (61)
2
1 1 1 1 1+c
J=—d et =1 62
c+3c3+5c5 2 1, ©2)
p= @M=D (63)
1 1 J
=—| =29’ |+= 64
x 2p|:V2 :|-i—2 (64)
g
y =+—-cos? (65)
oV

6.1.1. Problem setup. The computational domain is taken inside the regular Ringleb’s domain. It
is the rectangle [—1.15, —0.75] x [0.15,0.55]. As boundary condition we set the (—) state of the
flux function to be the exact one, as obtained through (60)—(65).

The orders of convergence of both methods are checked on a series of successively refined
non-isotropic grids, obtained by half dividing the distance between nodes from the coarsest grid.
The grids corresponding to the three refinement levels are summarized in Table IV, and the coarsest
one is shown on Figure 11. With this selection of the grid, we want to show the ability of the
methods to work on non-isotropic grids, commonly used in CFD to solve boundary layers. Note
that, in order to compare the errors at each refinement level, the grids have been chosen in such
a way that the spatial resolution is the same or, when a total equivalence is not attainable, as
close as possible. Thus, the results on an nxn FV grid are to be compared with those on an
(n/p) x (n/p) DG grid. Note also that, due to node duplications, the DG grids involve more dof
than the FV ones. For scalar problems the number of dof is n? for the FV method, whereas
(for quadrilateral elements and tensor-product expansions) the DG grids use n’(p+1)%/p? dof.
Thus, the ratio DG dof/FV dof is 4, 2.25 and 1.78 for p=1, p=2 and p =3, respectively. We
also remark that with this configuration, the grids corresponding to the FV-MLS exhibit a larger
skewness rate.

We have used the non-isotropic formulation presented in Section 3.5.1.

Table IV. Grids used for the Ringleb flow problem.

FV-MLS DG
All orders p=3 p=2
15x 60 5%20 8x30
30x 120 10 x40 15 x60
60 x 240 20x 60 30x 120
Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 78:1553-1584
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Figure 12. Ringleb flow. Convergence comparison for different reconstruction/polynomial orders (left)
and accuracy against number of degrees of freedom for the fourth-order DG and the fourth-order FV
schemes (right). N is the number of elements and subindex ( refers to the coarsest grid.

6.1.2. Results. Figure 12 (left) presents a comparison of the convergence performance of the
analyzed discretizations. The L, errors and numerical convergence rates are broken down in
Tables V and VI

As it can be seen from the above tables, both methods exhibit the correct convergence rates.
The results for the fourth-order DG method present the smallest error. However, for the third-order
method the FV-MLS gives the best results. This effect may be related to the fact that we use a
polynomial cubic basis for the computation of the MLS shape functions, and the approximation
of the third derivative may be less accurate than the approximation for the second one. We remark
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Table V. Convergence rates for the Ringleb flow and fourth-order discretizations.

DG fourth order FV-MLS fourth order
Grid dofs Error Order Grid dofs Error Order
5x20 6400 1.23E—-08 — 15 x 60 3600 3.22E—08

10x40 25600 7.84E—10 3.97 30x120 14400 2.09E—-09 3.94
20x 80 102400 4.94E—11 3.99 60x240 57600 1.28E—10 4.03

Table VI. Convergence rates for the Ringleb flow and third-order discretizations.

DG third order FV-MLS third order
Grid dofs Error Order Grid dofs Error Order
8x 30 8640 2.41E-07 — 15 x 60 3600 1.01E—07

15x60 32400 3.69E—-08 2.84 30x120 14400 1.55E—-08  2.698
30x120 129600  4.62E—09 2.99 60x240 57600 2.12E—09 2946

again that the FV and DG grids have the same spatial resolution and thus the results for the
fourth-order FV scheme have been obtained with 1.78 less dof.

In this context, Figure 12 (right) presents a comparison of the accuracy of the fourth-order FV
scheme with the fourth-order DG scheme, in terms of accuracy against number of dof.

6.2. Two-dimensional Poisson

This example examines the ability of both methods for the numerical solution of elliptic equations,
and is representative of the relative performance in the discretization of the viscous terms in the
Navier—Stokes equations.

6.2.1. Problem setup. The boundary value problem is as follows:
Find u:QC R*>— R such that

—Au=f inQ

u=gp On FD (66)

where the source term and the boundary conditions are chosen such that the analytical solution is
u(x,y)=exp(asin(Ax+ By)+ fcos(Cx+ Dy)).

The parameters chosen for this problem are A=5.1, B=—6.2, C =4.3, D=3.4,0=0.1, §=0.3.
The problem is solved in [0, 1] x [0, 1]. The number of cells/elements of the grids is the same
as in the previous example. For the FV method, we have used the same kernel as in the Ringleb
flow problem. Note that, also in the FV scheme, the stencil is based on the cell edges, since the
gradients are computed directly at the quadrature points on the edges.

The magnitude of the errors and convergence rates are shown in Tables VII and VIII.

The expected convergence rates of p+1 for the variable u and p—i—% for the gradient are
recovered with the L, norm. With the Lo, norm, it seems that the orders of convergence are p+1
for the primal variable u# and p for the gradient, as the ones obtained in [20] for the LDG scheme.
The order of convergence in the gradient is clearly superconvergent with the LDG scheme, leading
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Table VII. 2D Poisson equation: Ly errors in the solution (x) and in the gradient (s)
for the p=3 DG and FV methods.

DG L, errors FV-MLS L, errors
h/ho Error u Rate Error s Rate Error u Rate Error s Rate
1 2.50E—04 — 1.47E—-03 — 8.34E—-05 — 2.60E—-03 —
0.5 1.20E—-05 4.38 1.03E—04 3.83 5.60E—06 3.90 2.40E—-04 3.44

0.25 6.05E—07 4.31 8.02E—06 3.69 3.64E—-07 3.94 2.15E-05 3.48
0.125 3.16E—08 4.26 6.61E—07 3.60 2.32E—-08 3.97 1.91E—-06 3.49

Table VIII. 2D Poisson equation: L, errors in the solution (#) and in the gradient (s)
for the p=3 DG and FV methods.

DG Lo errors FV-MLS Lo errors
h/ho Error u Rate Error s Rate Error u Rate Error s Rate
1 3.11E-03 — 4.36E—-02 — 2.6E—-04 — 1.27E—-02 —
0.5 1.84E—04 4.08 5.93E-03 2.88 2.01E-05 3.69 1.74E—03 2.87

0.25 1.10E—05 4.07 7.47E—04 2.99 1.34E—-06 3.90 2.25E-04 2.95
0.125 7.88E—07 3.80 9.46E—05 2.98 8.56E—08 3.97 2.83E—-05 2.99

to a smaller error in the gradient (not in the variable) in finest grids. This result for DG is expected
only with Cartesian grids, in which superconvergence results have been reported in [20]. The
convergence rate for general grids for LDG is expected to be of order p (see [22], for example).
On the other hand, the convergence rate for MLS is expected to be p—i—% on general, irregular
grids (see [9]).

The FV discretization is more accurate in terms of the primary variable, both in the L, and L
error norms. In terms of the gradient, on the other hand, DG is more accurate in the L, norm, while
the FV method is more accurate in the Lo, norm. The differences in the L5, norm, both in the
primary variable and its gradient, are particularly pronounced. Furthermore, it is worth remarking
again that the comparison is made in terms of grid resolution, and therefore the number of dof is
significantly higher in the DG case.

6.3. Summary and comments on the accuracy tests

As it has been seen, the FV-MLS results are comparable with the DG results, or even more
accurate in both the inviscid and viscous test cases. We believe that this is, at least in part, due
to the nature of the interpolation process. In previous sections, it was explained that MLS can be
defined as a ‘centered’ approximation, whereas DG uses an interpolation that is biased. It is clear
that with MLS interpolation, the information ‘comes’ from all directions at every cell (except for
the boundary cells, which require ghost points). Another feature that may have an influence on the
accuracy gap is the fact that the FV scheme is conservative at a smaller scale than the DG scheme,
which is also locally conservative but at the element level. On the other hand, the straightforward
discretization of the viscous fluxes is one of the greatest advantages of the FV-MLS scheme for
practical Navier—Stokes computations.
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7. REPRESENTATIVE SIMULATIONS

In this section, our comparative analysis is extended to more practical unstructured-grid simulations.
As in the previous cases, cubic polynomials for the DG case and cubic reconstruction for the
FV-MLS method are used in order to obtain an equivalent order of accuracy.

It is difficult to compare exactly these methods, because their way of reconstructing the variables
is different. DG uses high-order polynomials to reconstruct the solution within the element. On
the other side, FV-MLS approach uses a Taylor reconstruction for the inviscid fluxes with the
derivatives calculated by using the information of neighbor nodes. As explained before, viscous
fluxes are computed directly at the quadrature points. In these examples, both methods have been
compared by keeping the spatial resolution of the grid constant. Thus, the FV-MLS grid is built
from the DG grid, by constructing the FV-MLS elements from the nodes of the DG elements.
DG nodes are placed at the Gauss—Lobatto points. In this way, from a DG element with 16
nodes (third-order polynomial reconstruction p=3), we obtain 9 MLS elements, as it is shown
in Figure 13. Cell-centered nodes are used for the FV-MLS grid. We note that this comparison
in terms of accuracy for the same grid resolution is unfair for the FV-MLS scheme, because it
entails a smaller number of dofs for this scheme. Nevertheless, we prefer this approximation in
order to try to answer the question about the relative spatial accuracy of either scheme.

7.1. Subsonic flow past an NACA 0012 profile

In this section, the inviscid subsonic flow past an NACA 0012 airfoil is computed. The Mach
number is M =0.63 and the angle of attack is two degrees.

7.1.1. Problem setup. The computational (unstructured) grids are described in Table IX. One of
the key features of a grid for this type of simulations is the number of cells/nodes on the surface
of the profile. In the case of the DG grid, 48 p=3 elements have been placed to lie adjacent to
the surface, which corresponds to 192 nodes over the surface of the airfoil. On the other hand,
the FV-MLS grid has 144 cells on the surface. Both grids are shown in Figure 14. Note that the
FV grid has been obtained by dividing the DG grid, in such a way that both grids have exactly
the same spatial resolution. Freestream boundary conditions have been imposed at a distance of
30 chords.

O O O O
) O) O} f)
7 \
Y ) Y e
7 7 s \
O O O O

Figure 13. DG nodes (o) at Gauss—Lobatto points and FV-MLS elements from a single DG element.
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Table IX. Grid description for NACAOO12 inviscid case.

DG FV-MLS
Elements 803 7227
One variable dofs 12848 7227
Total dofs 51392 28908
Elements over profile 48 144
Nodes over profile 192 144

O]
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-’é‘ef:’:':'i"'"

1%
LIRS

Figure 14. NACA 0012. Detail of the mesh for the DG case (left) and FV-MLS case (right).

7.1.2. Numerical aspects. The calculations have been carried on with p =3 polynomial approxi-
mations for the DG case and a cubic reconstruction in the FV-MLS case. As few elements are used
to define the geometry in the DG case, curved elements are necessary if an accurate approximation
of the geometry is desired. Moreover, Bassi and Rebay [23] showed that the DG method suffers
from lack of accuracy in the case of a slip flow boundary condition, and that this effect could
be minimized by using high-order approximations of the geometry. For the FV-MLS method we
simply use a piecewise linear approximation of the boundaries. In this case the effect of curved
boundaries would be appreciated over the directions of the normal vectors at the edge quadrature
points, and would be required if the full accuracy of the scheme was to be exploited.

As for the MLS approximation, we use the cubic kernel defined by Equation (36) and, due to
the irregularity of the grid, we use rectangular anisotropic weighting.

7.1.3. Results. Figure 15 shows the Mach number contours given by both methods, which are
practically identical. Figure 16 presents the pressure coefficient (Cp,) profiles, as well as the
corresponding lift and drag coefficients, respectively Cp, and Cp, whose reference values are
C1,=0.335 and Cp=0. The differences between the DG and FV solutions are minimal at this
grid resolution which is, on the other hand, typical of aerodynamic computations. The errors in
the lift coefficients with respect to the reference ones may be attributed, to a certain extent, to the
straightforward enforcement of the freestream boundary conditions.

Another important feature that is worth analyzing is the entropy generation. An inviscid flux of
this kind is isentropic, so any generation of entropy in the solution is an evidence of dissipation
introduced by the numerical scheme. Focusing on the entropy generation, we can see that at zones

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 78:1553-1584
DOI: 10.1002/nme



FV AND DG DISCRETIZATIONS FOR COMPRESSIBLE FLOW 1579

12 —— : 1.15 {
1.0 5§ | |
0.8 ’—Xi}” 1.10 il
e RN |_eFv-MLS " L ® FV-MLS
0.6 CI 1.05 Jeexex,,
04 ¢ 00 R ..
0.2 P ST S LW 1.00 g %
o N 0 iy a 2 "
S e e e e 8 ; .
-0.2 | 0.95 . .
X
-0.4
0.6 g 0.90 2 x %
C° =000023 C* =0328__ | x “
08 ChMs= 0,00025 C[“*"5=0.327 0.85 e S
_:1] g i i i 0.80 -
0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.05 0.10 0.15 0.20
x/c xlc

Figure 16. NACA 0012. Pressure coefficient and detail.

with higher curvature over the airfoil we have more generation of entropy with the FV-MLS
method. The total amount of entropy generation is reduced by refining the mesh at the leading
edge, so this problem may be related to the use of rectilinear cells with the FV-MLS method.
Another source of numerical dissipation near the airfoil surface could be related to the MLS
stencils in those areas, which may affect the accuracy of the approximation. In any case, as shown
in Figure 17, the entropy production is quite small and its maximum value is only slightly larger
than the DG one.

7.2. Subsonic viscous flow past an NACA 0012 profile

This example examines the behavior of both methods for full Navier—Stokes simulations. The
Mach number is set as M =0.8 and the angle of attack is 10 degrees, with a Reynolds number of
Re=500.
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Figure 17. NACA 0012. Entropy generation DG (left) FV-MLS (right).

Table X. Grid description for NACAQ012 viscous case. The viscous dofs are referred to those
introduced by the auxiliary variable on the LDG discretization.

DG FV-MLS
Elements 2013 18117
Inviscid dofs 128832 72468
Viscous dofs 193248 0
Total dofs 322080 72468
Elements over profile 100 300
Nodes over profile 400 300
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Figure 18. NACA 0012 Re=500. Detail of the mesh for the DG case (left) and FV-MLS case (right).

7.2.1. Problem setup. The computational (unstructured) grids are described in Table X and
Figure 18. The DG grid comprises 2013 p =3 elements, with 100 elements placed over the profile.
The FV-MLS mesh has the same spatial resolution, with a total of 18 117 control volumes.

As in the inviscid case, freestream boundary conditions have been placed at a distance of 30c,
and c is the cord of the profile.
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7.2.2. Numerical aspects. The calculations have been carried on with p=3 polynomial approx-
imations for the DG case and a cubic reconstruction in the FV-MLS case. As in the Euler flow
calculations, curved boundaries have been used for the DG case, and rectangular, anisotropic
weighting for the MLS approximation.

The increase in the total number of dofs for the DG case is larger in this case than in Euler
calculations. This is caused by the introduction of the auxiliary variable S in the transformation of
the second-order system of PDEs into a first-order equivalent one (see Equations (48) and (49)).
Most DG discretizations of the viscous terms are designed in such a way that these dof can
be expressed in terms of the primal dof and thus eliminated, although they entail an additional
workload that is not negligible.

7.2.3. Results. As observed in Figures 19-22, the results are very similar, virtually identical. As
control variables, we have chosen the pressure coefficient and the skin friction coefficient. The
results agree with those published in [24]. In this case, the main advantage of the use of FV-MLS is
that at least the same accuracy than DG method is obtained, but with a number of dofs considerably
smaller.

Figure 20. NACA 0012 Re=500. Streamlines for the DG case (left) and FV-MLS case (right).
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Figure 21. NACA 0012 Re=500. Pressure coefficient and detail. Some FV-MLS
points have been skipped for clarity.
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Figure 22. NACA 0012 Re =500. Friction coefficient. Some FV-MLS points have been skipped for clarity.

8. CONCLUSIONS

In this paper, two high-order methods have been compared. The first one is a meshfree interpolation
technique (namely, the MLS method) used in combination with FV discretization (FV-MLS) and
the second one is the DG method.

We have shown the results given by both methods in many cases, for both inviscid and viscous
flows. For these cases we have checked that the convergence of both methods is the expected one.
Moreover, results for the FV-MLS method have an accuracy comparable with the solutions given
by the DG method, at least with the use of third-order polynomial elements and for the same
spatial resolution of the grids. In this case, the FV-MLS fourth-order method requires a number
of dof that is roughly 1.78 times smaller than the DG method, for the resolution of the Euler
equations. This is more remarkable for Navier—Stokes computations. In this case, the number of
dof for DG is increased more than four times. Nevertheless, most DG discretizations of the viscous
terms are designed in such a way that these dof can be expressed in terms of the primal dof and
thus eliminated, although they entail an additional workload that is not negligible.
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We believe that one advantage of the FV-MLS method is its local and centered features and its
continuous nature. Another feature that may have an influence is the fact that the FV scheme is
conservative at a smaller scale than the DG scheme.

Finally, we would like to note that even though we have only shown cases with smooth solutions,
FV-MLS method can be used in cases with non-smooth solutions. In this case, the behavior of
the FV-MLS is similar to any FV solver with shock limiters. In the case of DG method, this is
still an open problem.
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