

Modeling Nitride TFETs with phenomenological

Inverse Green's

function,

 $G^{R^{-1}}$

scattering

Objective:

Study the effect of strong scattering at quasi-bound states of Nitride TFETs.

Approach:

- 1. Divide into 3 regions:
 - i. Scattering region 1
 - ii. Ballistic region (at center)
 - iii. Scattering region 2
- 2. Add broadening, $i\eta$ to the inverse Green's function of scattering regions.

Here,

 $\Sigma =$ Self-energy

 $\eta(E)$ = Broadening of state E = $\frac{\hbar}{2\tau}$

 τ = Lifetime/relaxation time of carriers **PURDUE**

Huge electron EFP densitv unneling E_{Fn} luge hole density Scattering Scattering region 1 Ballistic region 2 E - HE - H**E** – $-\Sigma(E)$ $-\Sigma(E)$ H - $\Sigma(E)$ $-i\eta(\mathbf{E})$ $-i\eta(E)$

nanoHUB.ord

Modeling Nitride TFETs with phenomenological scattering (Contd.)

Results:

Current density is very sensitive to the **PURDUE** position of the ballistic region. Underestimation of tunneling probability in absence of scattering

2

