

Electronic structure calculation for broken-gap devices

P. Sengupta, T. Kubis, Y. Tan, M. Povolotskyi, and G. Klimeck

Objective

 Accurately model the eigen spectrum of broken-gap devices and topological insulators → Applicable when classical electron hole description fails

Method

- Consider all states as electronic and assume a positive charge background
- Screening of core shell electrons is neglected (ε = 1)
- Total charge density per atom = electron density per atom + ionic charge
- To compute positive background charge: Calculate bulk density in TB
- Electron density at each atom = positive ionic charge
- Bulk parameters are transferred to heterostructures
- Self-consistently solve the Schrodinger-Poisson equation with bulk parameters

Result

- Charge self-consistent tight-binding calculation done for a Bi₂Te₃ thin-film
- Energy separation between Dirac cones gets enhanced
- Fermi velocity of Dirac states changes

