

Network for Computational Nanotechnology (NCN)

UC Berkeley, Univ. of Illinois, Norfolk State, Northwestern, Purdue, UTEP

Band Structure Lab

Nicolás Esquivel Camacho, Yi Shen Network for Computational Nanotechnology (NCN) Purdue University, West Lafayette IN

Synopsis

- 1. What is band structure
- 2. Calculating band structures
- 3. Features of "Band Structure Lab"
- 4. Results
- 5. Question

Nature of band structure

Quantum levels

Splits in two

Bands of energy

Importance of Band Structure

- Materials can be divided into three groups depending on bandgap
- Band structure determines the material's electronic and optical properties

Band Strucutre

An example:

K (≈ linear momentum)

Importance of Band Structure

Moore's Law

Transistor is the most used semiconductor device

Quantum mechanics plays a central role in systems performance

- Atom by atom description
- Wave nature of electron

Tight Binding Method:

- Approximations
- Based on atomic orbitals
- Different models

By http://www.chemcomp.com/

NEMO5:

- NanoElectronics MOdeling tool by Prof. Klimeck research group
- Computes band structure using tight binding method
- Atom by atom analysis
- Requires a specific input file

Methods

RAPPTURE (Rapid APPlication InfrastucTURE):

- Tool used to easily generate friendly graphical user interface(GUI)
- Allow users to customize simulations and outputs

1) Dimensionality and Material + 2) Device Parameter + (3) Job Description + (4) Simulate

Result: Structure Bands

> Input deck Symmetry points

Download

Inputs

- Material
- Tight binding model
- Strain
- Points

```
Material
         name = GaAs
         tag = substrate
         crystal_structure = zincblende
         regions = (1)
         Bands:TB:sp3d5sstar_S0:param_set = param_Klimeck
Bands:TB:sp3d5sstar_S0:param_Klimeck:VBO = 0.0
}
Domain
         name = structure1
         type = pseudomorphic
         base material = substrate
         dimension = (1,1,1)
         periodic = (true,true,true)
         crystal_direction1 = (0,1,1)
crystal_direction2 = (1,0,1)
         crystal_direction3 = (1,1,0)
         space_orientation_dir1 = (0,1,1)
         space_orientation_dir2 = (1,0,1)
         regions =(1)
         geometry_description = simple_shapes
}
Domain
         name = structure2
         type = pseudomorphic
         base_material = substrate
```


Results

- Intended to scientific and educational environments
- Intuitive input options and output results

Vector and boundaries of the allowed values for **K** (x axis).

Is called First Brillouin zone

Results - Band Structure

Band Structure

Outputs

Results - NEMO5 Input Deck

Summary and Acknowledgments

Summary

- Band structure
 - Its nature and Importance
- Calculation
 - Tight binding
 - NEMO5
- Band Structure Lab
 - Features and Results

Acknowledgments

- Michael Povolotskyi
- Denis Areshkin
- Prof. Gerhard Klimeck

