Quantum Transport in III-V HEMTs for High Performance Logic Applications

Objective:

- Understand experimental data on III-V HEMT devices for logic applications
- How close to the ballistic limit are short channel III-V devices?

an NCN projec

- What controls their performance? **Approach:**
- Use a 2D quantum (NEGF) simulator
- Simulate the experimental structure using $\delta\text{-}$ doped doping
- Use the sp³d⁵s* TB model to extract the effective mass of the III-V channel

Impact:

- \bullet Devices as short as $\rm L_G$ =60nm are close to the ballistic limit.
- \bullet The series resistance ${\sf R}_{\sf SD}$ and the design of the contacts affects the performance.
- Identified the low doping in the contacts as the most possible reason for the Gm degradation observed in experimental data.

Publications:

• arxiv: 0810.1540

I exhaustion Neophytos Neophytou, Gerhard Klimeck

