

Multi-Million Atom Electronic Structure Calculations for Quantum Dots

Muhammad Usman Ph.D. Research Work Summary Aug. 2005 – Aug. 2010

Address: Electrical and Computer Engineering Department, Network for Computational Nanotechnology, Purdue University, West Lafayette, IN, USA. Email: <u>usman@purdue.edu</u>, Phone: +1-765-418-9489

Outline

nanoHUB

an NCN project

NEMO 3-D – A fully atomistic simulation tool

Program Flow Chart:

an NCN project

Methodology:

- Experimental geometry in input deck
- Strain is calculated using Valence Force Field (VFF) Method
- Linear and Quadratic Piezoelectric potentials by solving Poisson's equation over polarization charge density
- Empirical tight binding parameters -sp³d⁵s^{*} band model with spin orbital coupling

Multi-million Atom Simulations

Capabilities:

- Arbitrary shape/size of quantum dot
- Long range strain, piezoelectric fields
- Interface roughness, atomistic representation of alloy
- External Electrical/Magnetic fields
- Zincblende/Wurtzite crystals

Ref: IEEE Transactions on Electron Devices, Vol. 54, Issue 9, Sept. 2007, Page(s):2079 - 2089 (2007)

Fine Structure Splitting in QDs Crystal Symmetry, Strain, and Piezo-Electricity

Objective:

- Understand experimental data on QD spectra fine structure
- \circ Electron P_x and P_y states are split in energy Why?
- o critical physical items

Approach:

- Implement piezo-electric charges through electrostatic potential
- Compare effects of
 - Crystal Symmetry
 - Strain
 - Piezoelectricity
- Disk shaped dots d=10nm, h=2.5nm, 10nm cap, 20nm substrate, 0.6nm wetting layer

Impact:

- Demonstrated quantitative agreement with experiment
- Atomistic approach is essential
- Ref: (1) Springer Encyclopedia for Complexity, 2008
 - (2) proceedings of IEEE NEMs Jan 16-19, 2007, pgs. 937-942, Bangkok Thailand.

No Strain, No Piezoelectricity

Strain, No Piezoelectricity

Strain + Piezoelectricity

Impact:

- Crystal symmetry alone breaks symmetry of set of first excited states (weak)
- Strain breaks symmetry stronger
 => effective mass, k.p fail!
- Piezoelectric effect opposes strain
 => can flip orientation of the excited state

InAs Bilayer QD Stacks --- Strain Coupling between the QDs --- Atomic vs. Molecular Electronic Structure

Objective:

nanoHl

- Calculate electronic structure of a bilayer QD stack with varying dot-to-dot separation "d"
- o Determine strain coupling between the QDs as a function of "d"
- Demonstrate atomic and molecular electronic states
 Approach:
- Bilayer QD Stack Dome Shaped QDs Upper QD slightly larger than lower QD
- \circ "d" varies from 1nm to 8nm
- Strain over ~15Million atoms
- Electronic Structure
 ~10Million atoms

Impact:

- Long range strain couples the QDs
- Lowest electron and hole states reside in larger QD
- Small "d" → Molecular States
- \circ Large "d" → Atomic States
- Cut off "d" ~ 6nm

Ref: 8th IEEE Conference on Nanotechnology, 2008. NANO '08. Aug. 18-21 2008, Page(s):541-544

First Electron and Hole Wave function Symmetry – Lateral Electrical Field – Polarization Dependent Optical Transitions

e1

E = 0kV/cm

Objective:

nanot

Approach:

- Optical transition strength as magnitude of squared momentum matrix element summed over spin degenerate states using Fermi's golden rule
- [100] E field from 0 to 20kV/cm Impact:
- Hole wave function is aligned along [-110] direction due to strain and piezoelectric field effects
- Sinusoidal pattern of transition rate is due to asymmetric hole wave function distribution
- Electrical field shifts the hole wave function
 - \rightarrow lesser electron-hole overlap
 - \rightarrow optical transition rate reduces

Ref: IEEE proceedings of the 13th International Workshop on Computational Electronics, Tsinghua University, Beijing, May 27-29 2009.

Quantitative Quantum Dot Modeling Selective Overgrowth and Wavelength Tuning

Objective:

- Optical emission at 1.5µm without GaN
- Understand experimental data on QD spectra in selective overgrowth

Approach:

- Model large structure
 - o 60nm x 60nm x 60nm
 - \circ 9 million atoms
- No changes to the published tight binding parameters

Impact:

- Match experiment remarkably well
- Experimental red shift is contributed by:
 Strain
 - $\circ\,$ change in quantum dot aspect ratio
- $\circ\,$ Quantitative model of complex system

Ref: IEEE Transactions on Nanotechnology, Vol. 8, pp. 330-344 (2009)

Selective Overgrowth and Wavelength Tuning Structural Sensitivity

Ref: IEEE Transactions on Nanotechnology, Vol. 8, pp.330-344 (2009)

nanoHUB

Bilayer QD Molecule Electrical Field Tuning of Excitons

Objective

nanot

- Coupling of bilayer QD electronic structure under [001] electrical field
- Understand experimental optical strengths
 - \rightarrow identification of electronic states

Approach

- Electronic structure calculation
 - \rightarrow Experimental device geometry
 - \rightarrow [001] Electrical field from 15 to 23kV/cm
 - \rightarrow Strain, Linear and Quadratic piezoelectricity
- Optical transition strengths

Impact:

- $_{\odot}$ First hole energy level H1 always in upper QD
- First two electron energy levels E1, E2 are in the lower QD in the range of applied field
 → E1-H1, E2-H1 are dark excitons
- E3 and E4 exhibit inter-dot tunneling
 → E3-H1 and E4-H1 anti-cross at 18.4kV/cm
- Calculated anti-crossing quantitatively match experimental measurement

Ref: under review ACS Nano 2010 Full Paper at arXiv:????

nonoHUB Bilayer QD Molecule online simulation and more Ladder Anti-crossing Spectroscopy

Objective:

- Calculate electronic structure of bilayer QD stack as a function of [001] electrical field
- Demonstrate anti-crossings between electron and hole states with increasing field 60nm Approach: GaAs Cap Layer

(a)

[001]

1nm ⊾5nm

4nm

[100]

GaAs

30nm

d = 10nm

30nm

Ga(0.5)In(0.5)As

21nm

Ga(0.5)In(0.5)As

19nm

GaAs Substrate

- Experimental device geometry
- o Multi-million atom electronic structure calculations with strain
- Linear+Quadratic piezoelectricity
- H1 is taken as reference Impact:
- Probing the electronic states of one QD by anti-crossings with electronic states of second QD:
 - \rightarrow Symmetry of states
 - → Energy level ladder
- Determination of tunneling coupling energies
- From energy level slopes:
 - \rightarrow Separation between QD centers ~ 13.3nm
 - → Intra-dot electron-hole separation ~ 1.67nm
- Ref: under review ACS Nano 2010 Full Paper at arXiv: ???

Bilayer QD Molecule **Critical Importance of Piezoelectricity**

Objective:

nanoHUB

ine simulation and more

- Demonstrate field dependence of E2-H1, E3-H1, and E4-H1 excitons with and without piezoelectricity
- Calculate optical transition strengths and compare with experimental measurements

Approach:

 Calculation of excitonic spectra and optical transition strengths with and without piezoelectricity

1.256

1.254

1.252

1.250

1.248

1.244

1.242

1.240

Relative Intensity (a.u)

Electrical Field (kV/cm)

 $(e^{)})$

 Linear+Quadratic Piezoelectricity 1.258

Impact:

- With Piezoelectricity
- \rightarrow E2-H1 is dark
- \rightarrow E3-H1 \leftrightarrow E4-H1 Anticross
- \rightarrow Calculated transition intensity match experiment
- Without Piezoelectricity
- →Two Anti-crossings
- E2-H1↔E3-H1, E3-H1↔E4-H1
- Incorrect optical spectrum! 0
- Piezoelectricity is critical!

Ref: under review ACS Nano 2010 Full Paper at arXiv: ????

Electrical Field (kV/cm)

Self Assembled Single and Bilayer QDs --- Polarization dependent Optical Spectra --- TE/TM Ratio Tailoring

Objective:

nanoHUB

 TE/TM Ratio tailoring using QD geometry parameters

an NCN project

Approach:

 Calculation of TE[110] and TM[001] optical transition strengths and comparison with experiment

Impact:

- Bilayer QD exhibit lowest TE/TM ratio
- InGaAs increases HH-LH splitting and TE/TM ratio also increases
- NEMO 3-D trends match experiment

(c) TE/TM Ratio Table

	Experiment	NEMO 3-D
Single QD No SRCL	~4.0	~7.3
Double QD No SRCL	~3.5	~4.06
Double QD With SRCL	~5.2	~8.7

Outlook

Short term projects

Columnar Quantum Dots

an NCN project

nanot

- Large Stacks of InAs QDs
- o [001] confinement is relaxed
- No. of QDs ~ 9-11 → TE[110] ~ TM[001]
- $\circ~$ Theoretical design recipe for devices

Laterally Coupled QD Molecules

- Laterally coupled QDs for Quantum Information Science
- External electrical field determines the dotto-dot coupling
- Little theoretical guidance available to-date

Long term projects

QDs Grown on (111) Substrates

- QDs grown on [111] substrate are potential candidates for entangled photons i.e. biexciton → exciton → 0
- Lowest symmetry is $C_{3\nu}$
- Piezoelectricity is along the growth direction and does not lower the symmetry

Growth Simulation → NEMO 3-D

Ref: Cryst. Res. Technol., 1-6 (2009), Wiley Inter Science

Fig. 4 HAADF STEM image of the InGaAs quantum dot under investigation. One and the same quantum dot was characterized by CELFA (see Figs. 5 and 6).

0 4.6 9.2 13.8 18.4 23 27.6 32.2 36.8 41.4 46 0 9.5 19 28.5 38 47.5 57 66.5 76 85.5 95 In-concentration [%] In-concentration [%]

Fig. 5 Color-coded local In-concentration of a QD a) as obtained by CELFA with superimposed {101}-

- Only little is known about QDs
- Shape, Size, Composition, 'In' Segregation?
- Electronic/Optical Spectra have strong dependence on geometry of QDs
- Possibility to drive fully atomistic electronic structure calculations of NEMO 3-D by simulations of the self-assembly growth process?