Phonon Spectra and Thermal Properties of InGaAs <100> NW M. Salmani-Jelodar, A. Paul, T. Boykin, G. Klimeck

Objective:

nanoHUB

 Calculation of phonon dispersion and thermal properties including sound velocities, specific heat (Cv) and ballistic thermal conductance (κ₁)

an NCN project

Approach:

- Enhance Valance Force Field (EVFF) with virtual crystal approximation to calculate phonon dispersion
- Sound velocity: slope of acoustical branches near q→0

Impact/Results:

- Flattening in NWs phonon dispersion
 - Phonon confinement
- Sound velocities more than 20% in <100> NWs less than bulk
 - Flattening in acoustical modes
 - Specific heat of NWs is about twice as bulk
 - Higher surface to volume ratio
 - Phonon confinement

 M. Salmani-Jelodar, A. Paul, T. Boykin, G. Klimeck, "Calculation of Phonon Spectrum and Thermal Properties in Suspended <100> In_xGa₁₋ _xAs Nanowires"

accepted for publication *Journal of Computational Electronics* (2012)
M. Salmani-Jelodar, A. Paul, T. Boykin, G. Klimeck "Phonon Spectrum and Thermal Properties of free standing <100> and <111> InGaAs alloy nanowires" APS March Meeting 2012

