Spin-Orbit Coupling (SOC) Parameters in Si/SiGe QWs: Structure (SIA) and Bulk (BIA) Inversion Asymmetry

Objective:

• Previous theoretical models for T₂ do not agree with experimental results, as they ignore BIA effects.

an NCN project

 We want to determine the SIA α and BIA β coupling parameters

Approach:

- Using NEMO-3D we compute the splitting of the lowest valleys due to SOC as a function of in-plane *k*
- We get α and β as a function of:
 - •QW width, L
 - Electric field E_z

Impact:

- SOC determines T₂ and T₁, essential for quantum computation.
- Atomistic approach is essential for the interfaces: first time α and β computed using this method

Result:

- Surprisingly, $\alpha << \beta$
- SOC has inter- and intra-valley contributions
- α and β linear in *k*, *E*_z and are sample dependent
- Two regimes as a function of E_z :
 - Weak Field, α and β decrease with L
 - Strong Field: α and β independent of L

