

Tight-Binding (TB) parameterization of semiconductors using Genetic Algorithms

Objective

 To generate TB parameters for various semiconductors and various temperatures and validate them by matching with experiment.

Approach

a) Generation of parameters

- Reverse-engineering → band gaps, masses, energies obtained from experiment and theory are used to 'fit' or optimize TB parameters.
- Genetic Algorithms are used for this nontrivial optimization.
- Variation of energies with strain included from theory.

b) Validation of parameters

- TB parameters obtained are fed into NEMO3D which simulates dots, wells, etc.
- Parameters validated when optical gap/absorption spectrum of simulated device matches experiment as closely as possible.

GaAs band edges versus hydrostatic strain Band gap (Eg) Vhh. Vh. Vso Pershydro

Result

- TB parameters generated for InAs, GaAs, Si and AlAs at 4K and AlAs at 300K generated.
- TB strain parameters for InAs and GaAs at 300K corrected for better fits at high strain.

Impact

- Found discrepancy in previous InAs and GaAS TB parameters at high strain.
- Different strain models valid for different temperatures.

