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ABSTRACT 

 

We present the algorithm for the construction of the transfer matrix, associated with the 

Hamiltonian of the arbitrary one-dimensional structure possessing translational or screw 

symmetry.  The advancement of our technique is three-fold.  First, it allows to handle ar-

bitrarily singular Hamiltonian sub-blocks, which are likely to appear in the 1-D structures 

with screw symmetry.  Secondly, it produces the transfer matrixes, which have only non-

zero eigenvalues.  That means the transfer matrixes are of the smallest possible size and 

hence have maximum computational efficiency.  And finally, the absence of zero eigen-

values greatly enhances the numerical precision.  To demonstrate the utility of the 

method we examine the conductance of (10,7) and (8,8) nano-tubes as the function of the 

bending angle using Landauer’s formalism with Environment-Dependent Tight-Binding 

[Tang et al., Phys. Rev. B 53, 979 (1996)] and its self-consistent extension [Areshkin et 

al., J. Phys.: Condens. Matter 16 6851 (2004)].  With minor difference both methods in-

dicate that the nano-tube conductance is very stable with respect to bending.  The appear-

ance of the kink does not appreciably deteriorate the conductance up to the point when 

the opposite sides of the nanotube in the kink region begin to interact with each other.  At 

that point the small increase of the bending angle, which is 60° for both tube types, trig-

gers the abrupt decrease of the conductance.  Further bending up to 120° does not have 

much effect on the conductance, which constitutes approximately 25% and 70% from the 

ideal value for (10,7) and (8,8) nano-tubes respectively.  The self-consistent model indi-

cates mild charge depletion (~0.1 electron charge) in the kink area. 
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I.  INTRODUCTION 

 

The popular application of the transfer matrix technique is the solution of the 

problem associated with the Schrödinger eigensystem equation 

[ ]i i iH c cλ ε⋅ = .  (1)

The task is to find all possible scalars λi and associated eigenvectors ci for the given value 

of ε.  Matrix H[λ] depends on λ as  

[ ] ( )  
(0) ( ) ( )
   

1

M
n T n n n

n

H h h hλ λ λ−

=

= + +∑  , 
  

(1-a)

where h(n) are known square m×m matrixes.  Solution of Eq.(1) is the essential part of the 

algorithm for the construction of the Green’s functions as it is explained in the previous 

paper.  The standard way to handle the problem is to assemble the transfer matrix T[ε], 

such that some or all of its eigenvalues correspond to the set {λi}, which satisfies Eq.(1).  

The set of vectors {ci} is constructed from the corresponding eigenvectors of matrix T.  

When h(n) (n = 1,…M) are non-singular the construction of T is straightforward.1,2  In that 

case the size of matrix T is 2 M m, and all T eigenvalues coincide with the set {λi}.  Vec-

tors ci can be chosen as the first m components of the corresponding eigenvectors of T.   

However, non-singular h(n) is more an exception than a rule.  The first attempt to 

resolve the problem associated with the singular h(n) has been undertaken by Chang and 

Schulman.1  Their method was formulated for the special type of singularity inherent to 

the coupling between crystalline planes.  That was not considered a deficiency of the 

method, because it was adequate for the physical problem in hand.  However, with the 

advent of 1-D quantum wires, this shortcoming became noticeable, since the singularity 

structure of the coupling matrixes associated with 1-D Hamiltonian does not generally 

match any regular pattern and cannot be handled with the Chang and Schulman’s algo-

rithm.  The singularity issue has been recently addressed by Tomfohr and Sankey2 who 

have developed the transfer matrix technique for an arbitrary singular h(M), but with the 

constraints on the singularity type of matrix h(i) for i < M.  Even with such restriction the 

Tomfohr and Sankey method formally solves the singularity problem (except the patho-

logical case discussed later) because one can always increase the size of the unit cell in 
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such way that the Hamiltonian for 1-D structure assumes tri-block-diagonal form.  In that 

case M = 1 and Eq.(1-a) transforms to 

[ ]  
(0) (1) 1 (1)T

SC SC SC SCH h h hλ λ λ−= + +  , (1-b)

where matrix hSC
(1) can be arbitrarily singular (subscript SC stands for super-cell).  As it 

will be explained shortly the transformation (1-b) can be the adequate remedy only for 

small matrixes HSC and (or) for the Hamiltonian models with the energy spectrum lying 

within a reasonably small range, e.g. the π-orbital tight-binding Hamiltonian used in the 

previous paper, which eigenvalues span from –8.1 eV to +8.1 eV.  At the same time our 

experience with the problem described in section VII indicates that machine precision is 

by far insufficient to obtain {λi} and {ci} using Tomfohr-Sankey’s method in conjunction 

with Eq.(1-b).  To compensate for the poor numerical performance of this method we had 

to use at least 40 significant digits for the floating numbers representation.   

We present the algorithm for the construction of the transfer matrix T associated 

with 1-D structures possessing translational or screw symmetry.  The practical difference 

between our method and the algorithm devised by Tomfohr and Sankey is twofold.  First, 

our method can handle singular Hamiltonian sub-block matrixes h(i) for i = 1...M.  This 

issue is important because the situation when matrixes h(i) (0 < i < M) may be singular or 

even zero is common for 1-D structures with screw symmetry.  For example, consider the 

helical motif of carbon nano-tube, which consists from only two adjacent atoms.  Sub-

blocks h(i) describes interaction between helical motifs with indexes i and 0.  The nearest 

neighbor of the motif with index 0 has index i1, which corresponds to one “almost com-

plete” revolution along the spiral associated with the nano-tube screw symmetry.  For the 

large diameter nano-tubes some helical motifs (e.g. diametrically opposite to the 0-th 

cell) with indexes between 0 and i1 may have no interaction with cell 0, and hence zero 

h(i).   

 The second principle advantage of our method is the handling of non-physical T 

eigenvalues.  Tomfohr and Sankey construct T matrix in such way that all non-physical 

eigenvalues are substituted by zeros.  On the contrary, our algorithm produces the trans-

fer matrix of the smallest possible size, which means that T does not have non-physical 

zero eigenvalues.  Besides faster eigenproblem computation this aspect provides substan-

tial advantage for the numerical stability of our method.  In a multi-band tight-binding or 
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DFT models the energy range of the allowed states spans over several tens of eV.  The 

larger is the difference between the sampling energy and the allowed energy for the most 

remote energy band, the smaller is the minimal eigenvalue of T.  For every eigenvalue λi 

corresponding to the exponentially decaying state (|λi| < 0), there exists the eigenvalue 

λi
-1, which corresponds to the exponentially growing state.  Therefore, if |λmin| is the 

smallest non-zero eigenvalue, the condition number of T is κ = |λmax| / |λmin| = |λmin|-2.  For 

the valence electron model it is not uncommon to have κ up to 108 (κ is expected to be 

substantially larger for all-electron model).  For such κ the eigenvalue problem can be 

still handled by using machine precision.  However, if T additionally has true zero eigen-

values, the numerical precision of the eigenproblem solution deteriorates due to the mix-

ing between the true null-space eigenvectors and the eigenvectors corresponding to small 

non-zero λ’s.  Non-physical zero eigenvalues, which appear as small non-zero numbers in 

the numeric solution, are difficult to separate from the actual small non-zero λ’s.  Separa-

tion criterion is hard to systemize because it depends on system size, singularity pattern, 

basis set, energy range and other parameters. 

 To exemplify the utility of T matrix algorithm we perform the computation of the 

conductance through the bent (10,7) and (8,8) nano-tubes for the bending angle ranging 

from 0° to 120°.  The transfer matrix is used for the self-energy computation as it is ex-

plained in the previous paper.  We evaluate the conductance using Landauer’s formalism 

with Environment-Dependent Tight-Binding3 and its self-consistent extension.4,5  The 

conductance for both tubes appears to have very little sensitivity for bending up to the 

angle of approximately 60°, when the opposite sides of the tube’s surface in the kink re-

gion begin to interact with each other.  Beyond that point the conductance for (10,7) and 

(8,8) nano-tubes differs substantially: for both nano-tube types the conductance does not 

have strong angular dependence, but its value constitutes approximately 70% from the 

ideal conductance for (8,8) nano-tube, and only 25% for (10,7) nano-tube. 

 The remainder of this paper is organized as follows.  The next section contains 

definitions related to the description of the Hamiltonian associated with the infinite 1-D 

structure.  Section III outlines the route we use to attack the problem.  Sections IV-V are 

the core part of the paper, which contains the description of the algorithm for the transfer 

matrix construction.  Section VI contains brief step-by-step summary of the algorithm.  
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Finally, in section VII we demonstrate the application of the transfer matrix technique to 

the nano-tube conductance simulation. 

 

II.  HAMILTONIAN  DESCRIPTION 
  

 In the atomic orbital representation the infinite Hamiltonian matrix H∞ associated 

with an arbitrary 1-D structure possessing screw or translational symmetry has band-

diagonal form.  For certainty in the following we consider orthogonal basis set Hamilto-

nian with 7 bands.  Equation (2) shows the portion of the infinite Hamiltonian matrix  
3 3 2 2 1 1 1 1 1 1 1 1

2 1 0 1 2 3
3 3 2 2 1 1

3 2 1 0 1 2 3
2 2 1 1 1 1 1 1 1 1 1 1

3 2 1 0 1 2 3
1 1 1 1 2 2 2 2 2 2 2 2

3 2 1 0 1 2 3
1 1 2

3 2 1

0 0 0

0 0

0 0

0 0

0 0 0

T T

T T T

T T T

T T T

T T T

R H R R H R R H R R H R R H R R H R

R H R R H R R H R H H H H

R H R R H R H R H R R H R R H R R H R

R H R H R H R R H R R H R R H R R H R

H R H R R H R

− − − − − −

− − −

− − − − − −

− − − − −

− −

−

2 3 3 3 3 3 3
0 1 2R H R R H R R H R− − −

 

(2)

In the given example the entire Hamiltonian matrix can be obtained from the four sub-

blocks H0, H1, H2, H3, and the orbital rotation matrix R (which is unity in the case of 

translational symmetry).  H0 is associated with the interaction between the atomic orbitals 

within the unit cell with index 0, and Hi (i  > 0) represent the interaction between the unit 

cells with indexes 0 and i.  Unit cell may contain more than one helical motifs, which are 

the smallest irreducible building blocks stipulated by the symmetry of the molecular 

structure.  As it will be explained in the next section, the fewer helical motifs are con-

tained in the unit cell the better is the numerical stability of the transfer matrix eigenprob-

lem.   

 Matrix R has the same size as Hi, and is defined as follows.  Let us denote the co-

ordinate system associated with the unit cell at the origin (i = 0) as CS0, and the coordi-

nate system associated with the unit cell with index 1 as CS1.  CS1 is rotated by the screw 

angle with respect to CS0.  Matrix R transforms the portion of the wave vector associated 

with unit cell 1 in CS1 to the wave vector coefficients in CS0.  R is unitary and real be-

cause we assume real atomic orbital basis set.  Therefore R-1 = RT.  The Bloch theorem 
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for 1-D systems with screw symmetry can be used as another possible way to define R.  

For any given energy and k-number the state vector for the infinite system is: 

2 (0) 2 2 ( 2)

1 (0) 1 1 ( 1)

(0) (0)

1 (0) 1 1 (1)

2 (0) 2 2 (2)

i i i

i i i

i i i

i i i

i i i

R c R c
R c R c

C c c
R c R c
R c R c

λ
λ

λ
λ

− − −

− − −

∞

⎛ ⎞ ⎛
⎜ ⎟ ⎜⋅ × ⋅⎜ ⎟ ⎜
⎜ ⎟ ⎜⋅ × ⋅
⎜ ⎟ ⎜

≡ ≡⎜ ⎟ ⎜
⎜ ⎟ ⎜⋅ × ⋅
⎜ ⎟ ⎜

⋅ × ⋅⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

−

−

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−

   , 

 

 

  

(3)

where λi = Exp[i ki].  Vectors … ci
(-2), ci

(-1), ci
(0), ci

(1), ci
(2), …  are associated with respec-

tive unit cells and have the same size as Hamiltonian sub-blocks Hi.   

 Besides the notions of unit cell and helical motif we will be using the supercell 

partition of 1-D structure, which brings Hamiltonian matrix to the tri-block-diagonal 

form.  Lines in Eq.(2) mark such tri-block-diagonal partition.  The number of the unit 

cells in the supercell always equals the number of sub-blocks Hi minus one, which is 

three in our example.  We assume the following notation for the Hamiltonian sub-blocks 

associated with the supercell 

0 1 2
1 1 1 1

1 0 1
1 1 2 2

2 1 0

T

T T
SC

H H H

H R H R R H R

H R H R R H R

H − −

− −

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

     
3

1 1 1 1
2 3

2 2 2 2 2 2
1 2 3

0 0

0SC

H

R H R R H R

R H R R H R R H R

τ − −

− −

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

  

(4)

Then, it is easy to see that the left supercell in Eq.(2) 
3 3 2 2 1 1

3 2 1
2 2 1 1

3 2
1 1

3

1 10

0 0

T T T

T T

T

T
SC SC SC

R H R R H R R H R

R H R R H R

R H R

R Rτ

− − −

− −

−

−

⎛ ⎞
⎜ ⎟ = ⋅ ⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

 , 

 

  

where RSC is the supercell rotation matrix: 

0 0
0 0
0 0

M

M
SC

M

R
R R

R

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 . 

 

  

(5)

The power M and the number of RM sub-blocks in Eq.(5) equals to the number of the unit 

cells in the supercell; in our example M = 3.  In the terms of the supercell sub-blocks 

Eq.(2) for the Hamiltonian matrix transforms to: 
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1 1 1 1

1 1

1 1

0
0

0 0
0

0

SC SC SC SC SC SC
T

SC SC SC SC SC
T
SC SC SC SC

R H R R R
R R HH

R H R

τ
τ

τ

− −

−
∞

−

⎛ ⎞
⎜ ⎟⋅ ⋅ ⋅ ⋅⎜ ⎟
⎜ ⎟⋅ ⋅=
⎜ ⎟⋅ ⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

τ

−

−

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

i +

  

 

  

(2-a)

 The analog of Eq.(3) for the state vector in the supercell notation is: 

2 (0) 2 2 ( 2)

1 (0) 1 1 ( 1)

(0) (0)

1 (0) 1 1 (1)

2 (0) 2 2 (2)

SC i i SC i

SC i i SC i

i i i

SC i i SC i

SC i i SC i

R C R C
R C R C

C C C
R C R C
R C R C

− − −

− − −

∞

⎛ ⎞ ⎛
⎜ ⎟ ⎜⋅ ×Λ ⋅⎜ ⎟ ⎜
⎜ ⎟ ⎜⋅ ×Λ ⋅
⎜ ⎟ ⎜

≡ ≡⎜ ⎟ ⎜
⎜ ⎟ ⎜⋅ ×Λ ⋅
⎜ ⎟ ⎜

⋅ ×Λ ⋅⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

   , 

 

 

  

(3-a)

where Λi = λi
M.  Vectors … Ci

(-2), Ci
(-1), Ci

(0), Ci
(1), Ci

(2), … are associated with respective 

supercells and have the same size as Hamiltonian supercell sub-blocks HSC and τSC.   

 The infinite Schrödinger equation H∞⋅ C∞ = ε × C∞ can be transformed to the finite 

size eigenproblem by dot-multiplication of Eqs.(2) and (3).  The multiplication of the 

sub-block row associated with the unit cell 0 in Eq.(2) by state vector from Eq.(3) results 

in Eq.(6): 
3 3 3 3 (0) 2 2 2 2 (0) 1 1 1 1 (0)

3 2 1
(0) 1 1 (0) 2 2 (0) 3 3 (0) (0)

0 1 2 3

T T T
i i i i i

i i i i i i i i

R H R R c R H R R c R H R R c

H c H R c H R c H R c c

λ λ λ

λ λ λ ε

− − − − − − − − −+ +

+ + + = ×
  

 

(6) 

The compact form of Eq.(6) is: 
(0) (0)[ ]i i iH c cλ ε⋅ = ×  , 

 

(7-a) 

which is identical to Eq.(1).  Here H[λ] is given by Eq.(1-a), and .  In the 

following {c

( )n
ih H R= ⋅ n

i
(0)} denotes the set of all possible vectors ci

(0), which are the solutions of 

Eq.(7-a) associated with the respective finite non-zero λi from the set {λi}.  For the super-

cell the equation analogous to Eq.(7) has the form: 
(0) (0)[ ]i i iH C CεΛ ⋅ = ×  , 

 

(7-b) 

where  
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( )  
1[ ] T

SC SC SC SC SCH R Hτ τ−Λ = Λ ⋅ + +Λ ⋅R  . 
 

(8) 

{Ci
(0)} denotes the set of all possible solutions of Eq.(7-b), which are associated with the 

respective finite non-zero Λi from the set {Λi}, and {Ci
(-1)} denotes the set of vectors ob-

tained from {Ci
(0)} through multiplying it by respective inverse Λi:  C(-1)

i = C(0)
i Λi

-1.  For 

the future reference we define the set of vectors {C×2}, which is composed from joined 

vectors C(-1)
i and C(0)

i.  The number of vectors in {C×2} is the same as in {C(-1)} or {C(0)}, 

but the vector length is two times larger, and equals twice the size of τSC.  

 

III.  SOLUTION OUTLINE 
 

 The construction of the transfer matrix T is performed in two steps.  First we 

show how to construct the minimal size transfer matrix TSC for the supercell, such that 

TSC does not have non-physical eigenvalues.  Theoretically TSC can be used to solve the 

eigenproblem, and its eigenvectors {C×2} and eigenvalues {Λi} can be utilized for the 

construction of the Green’s function.  In practice, however, TSC is often ill-conditioned, 

and is not suitable for numeric eigenproblem solution.  That usually happens when the 

number of the unit cells M in the supercell is too large.  Since |Λmin|  = |λmin|M, the condi-

tion number κSC of TSC equals |Λmin|-2 = |λmin|-2 M = κ M, i.e. TSC is substantially more ill-

conditioned than T.  Therefore it is more practical to work with matrix T rather than TSC.  

The role of TSC is to show how to build the “contracted” vector space {D×2
i}, which is 

reversibly mapped on {C×2
i}: {C×2

i} ↔ {D×2
i}.  The number of vectors in {D×2

i} equals 

the length of the vectors D×2
i and equals the number of vectors in {C×2

i}.  The eigenval-

ues of matrix TSC constructed in {D×2
i} space are the same as all possible finite non-zero 

solutions of Eq.(7-b).  After the transformation matrix X for {C×2
i} X←⎯→  {D×2

i} map-

ping is obtained it is used to build the transfer matrix T in {D×2
i} space.  The eigenvalues 

{λi} of the transfer matrix T are all possible finite non-zero solutions of Eq.(7-a). 

 

IV.  CONSTRUCTION OF TSC

 

 Equations (7-b) and (8) can be combined as: 
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( ) ( ) ( )( 1) (0) (1) 0T
SC SC i SC i SC SC iR C H I C R Cτ ε τ−⋅ ⋅ + − × ⋅ + ⋅ ⋅ = , 

 

(9) 

where I is identity matrix.  We use singular value decomposition to represent (τSC⋅RSC)T 

and (τSC⋅RSC): 

( )
( )

0
0 0

T
SC SC

T T
SC SC

D

R U W V

R V W U

W
W

τ

τ

⋅ = ⋅ ⋅

⋅ = ⋅ ⋅

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

 

  

(10) 

Here U and V are real unitary matrixes, and WD is nonsingular diagonal matrix, which 

size equals the size of τSC minus the size of null-space of τSC.  Taking into account that 

Ci
(1) = Λi Ci

(0) Eqs.(9-10) can be combined as: 

( )( 1) (0) (0)T T T T T
i SC i iU V W U C U H I V V C W V Cε−⋅ ⋅ ⋅ ⋅ + ⋅ − × ⋅ ⋅ ⋅ = −Λ × ⋅ ⋅ i . 

 

(11) 

Defining  

Di
(-1) = UT⋅Ci

(-1),    Di
(0) = VT⋅Ci

(0), 

F = UT⋅V,    Y = UT⋅(HSC - ε × I)⋅V,     

  

(12) 

we rewrite Ci
(0) = Λi Ci

(-1) as: 
(0) ( 1)
i i iF D D −⋅ = Λ ×  . (13) 

Using definitions (12) Eq. (11) can be rewritten as: 
( 1) (0) (0)
i i i iF W D Y D W D−⋅ ⋅ + ⋅ = −Λ × ⋅ . 

 

(14) 

Next we partition all matrixes in four sub-locks in such way that the upper-left corner 

sub-matrix is of the same size as WD, which means that the size of the low-right corner 

sub-matrix equals to the size of the null-space of τSC.  Vectors Di
(-1) and Di

(0) are parti-

tioned in the similar way: the upper portion of the vector is of the same size as WD. 
( 1) (0) (0)

11 12 11 12
( 1) (0) (0)

21 22 21 22

0 01 1
0 0 0 02 2

D Di i
i

i i

F F Y YW WD D
F F Y YD D

−

−

⎛ ⎞ ⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⋅ ⋅ + ⋅ = −Λ × ⋅⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1
2

i

i

D
D

⎞
⎟

1

 
 

(14-a) 

We will show that only D1i
(-1) and D1i

(0) portions of vectors Di
(-1) and Di

(0) are independ-

ent variables: D2i
(-1) and D2i

(0) can be expressed through D1i
(-1) and D1i

(0).  Equation 

(14-a) can be split in two: 
( 1) (0) (0) (0)

11 11 121 1 2D i i i i D iF W D Y D Y D W D−⋅ ⋅ + ⋅ + ⋅ = −Λ × ⋅  
 

(14-b) 
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( 1) (0) (0)
21 21 221 1 2D i i iF W D Y D Y D−⋅ ⋅ + ⋅ + ⋅ = 0

1i

 
 

(14-c) 

Matrix (HSC - ε×I) is non-singular, and hence Y is non-singular as well.  That, however, 

does not guarantee that its diagonal sub-block Y22 is non-singular.  Singular Y22 is the 

pathological case mentioned earlier, when both Tomfohr-Sankey’s and ours algorithms 

fail.  Non-singularity of Y22 is the only requirement imposed by our algorithm on the 

Hamiltonian.  In the following we assume Y22 to be non-singular.  Thus, Eq.(14-c) can be 

used to express D2i
(0): 

(0) 1 ( 1) 1 (0)
22 21 22 212 1i D iD Y F W D Y Y D− − −= − ⋅ ⋅ ⋅ − ⋅ ⋅  

 

(14-d) 

Substituting Eq.(14-d) in Eq.(14-b) we obtain the first part of the eigenproblem for TSC: 

( ) ( )1 1 ( 1) 1 1 (0)
12 22 21 11 12 22 21 111 1D D i D iW Y Y F F W D W Y Y Y Y D D− − − − −⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ = Λ × (0)1i i

⎞
⎟
⎠

1i

 
 

(15) 

To obtain the second part we rewrite Eq.(13) in the sub-block form: 
(0) ( 1)

11 12
(0) ( 1)

21 22

1 1
2 2

i i
i

i i

F F D D
F F D D

−

−

⎛ ⎞ ⎛⎛ ⎞
⋅ = Λ ×⎜ ⎟ ⎜⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝
 . 

(13-a) 

The upper portion of Eq.(13-a) is 
(0) (0) ( 1)

11 121 2i i iF D F D D −⋅ + ⋅ = Λ ×  . (13-b) 

After substitution of Eq.(14-c) we exclude D2i
(0) and obtain the second part of the eigen-

problem: 

( )1 ( 1) 1 (0)
12 22 21 11 12 22 211 1D i i i iF Y F W D F F Y Y D D− − −− ⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅ = Λ × ( 1)1 −  . (16) 

Combining Eqs.(15) and (16) we can write the entire eigenproblem in the sub-block 

form: 

( ) ( )

2

1 1 ( 1) ( 1)12 22 21 11 12 22 21

1 1 1 1 (0) (0)
12 22 21 11 12 22 21 11

1 1
,

1 1

i

D i i
i

D D D i i

D

F Y F W F F Y Y D D
W Y Y F F W W Y Y Y Y D D

×

− − − −

− − − −

⋅ ≡

⎛ ⎞− ⋅ ⋅ ⋅ − ⋅ ⋅ ⎛ ⎞ ⎛⎜ ⎟ ⋅ = Λ ×⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ −⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

SCT

⎞  
  

(17) 

where we defined D×2
i similarly to C×2

i.  It is easy to prove that TSC has only non-zero 

eigenvalues.  If we suppose the opposite, i.e. that Λi = 0, then, from Eq.(13) it follows 

that Di
(0) = 0, because matrix F, which is the product of two unitary matrixes, is non-

singular.  Then Eq.(14) becomes:  
( 1) 0  ,iF W D −⋅ ⋅ =  (18)

 10



i.e. vector W⋅D1i
(0) = 0, which is possible only if D1i

(0) = 0.  This means that only trivial 

solution D×2 = 0 exists for Λi = 0. 

Next let us show that the vector space spanned on {C×2
i} is reversibly mapped on 

{D×2
i}.  Equations (12) set up the mapping {C×2

i} → {D×2
i}.  From Eq.(12) it follows that  

( 1)
( 1) ( 1)

( 1)

(0)
(0) (0)

(0)

1
,

2

1
     .

2

i
i i

i

i
i i

i

D
C U D U

D

D
C V D V

D

−
− −

−

⎛ ⎞
= ⋅ ≡ ⋅ ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⋅ ≡ ⋅ ⎜ ⎟
⎝ ⎠

 
  

(19) 

Using Eq.(14-d) we can eliminate D2i
(0) from the second Eq.(19) and hence express Ci

(0) 

as the function of D×2
i: 

( 1)
(0)

1 1 (0)
22 21 22 21

0 1
.

1
i

i
D i

I D
C V Y F W Y Y D

−

− −

⎛ ⎞ ⎛ ⎞
= ⋅ ⋅⎜ ⎟ ⎜ ⎟− ⋅ ⋅ − ⋅ ⎝ ⎠⎝ ⎠

 
 

(20) 

To express the first equation (19) as the function of D×2
i we need to obtain the analog of 

Eq.(14-d) for D2i
(-1).  We start by dividing Schrödinger equation (9) over Λi: 

( ) ( ) ( )( 2) ( 1) (0) 0T
SC SC i SC i SC SC iR C H I C R Cτ ε τ− −⋅ ⋅ + − × ⋅ + ⋅ ⋅ =  (21) 

After transforming Eq.(21) as 

( ) ( ) ( )( 1) (0) 1 ( 1)   ,T
SC i SC SC i i SC SC iH I C R C R Cε τ τ− −− × ⋅ + ⋅ ⋅ = −Λ × ⋅ ⋅ −

1
2

i

i

D
D ⎟

 (22) 

we perform the substitutions given by Eq.(12) and write Eq.(22) in sub-block form analo-

gously to Eq.(14-a): 
( 1) (0) ( 1)

111 21 11 21
( 1) (0) ( 1)

12 22 12 22

0 01 1
0 0 0 02 2

T T T T
D Di i

iT T T T
i i

W WD DY Y F F
D DY Y F F

− −
−

− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⋅ + ⋅ ⋅ = −Λ × ⋅⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 

(23) 

The second line of the system (23) allows us to express D2i
(0) through D1i

(-1) and D1i
(0), 

i.e. through D×2
i: 

( ) ( )1 1( 1) ( 1) (0)
22 12 22 122 1   T T T T

i iD Y Y D Y F W D
− −− −= − ⋅ ⋅ − ⋅ ⋅ ⋅ 1 .D i  

  

(24) 

Now, combining Eqs.(19) and (24) we can express Ci
(-1) through D×2

i: 

( ) ( )
( 1)

( 1)
1 1 (0)

22 12 22 12

0 1
.

1
i

i T T T T
D i

I D
C U

Y Y Y F W D

−
−

− −

⎛ ⎞ ⎛ ⎞⎜= ⋅ ⋅ ⎜ ⎟− ⋅ − ⋅ ⋅⎜ ⎟ ⎝ ⎠⎝ ⎠

⎟  

  

(25) 

Combining Eqs.(20) and (25) we define the mapping {D×2
i} → {C×2

i}: 
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( ) ( )1 1( 1) ( 1)
2 222 12 22 12

(0) (0)

1 1
22 21 22 21

0

0 1
  .

0 10

T T T T
i iD

i i
i i

D

I

UC DY Y Y F W
C X

VC DI
Y F W Y Y

− −− −
× ×

− −

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎛ ⎞− ⋅ − ⋅ ⋅⎛ ⎞ ⎜ ⎟≡ = ⋅ ⋅ ≡ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟
⎜ ⎟− ⋅ ⋅ − ⋅⎝ ⎠

D  

 
  

(26) 

Since the mapping {C×2
i} ↔ {D×2

i} is reversible, none of the physical solutions Λi is lost 

due to the transformation {C×2
i} → {D×2

i}.  Therefore transfer matrix TSC in {D×2
i} space 

(Eq.(17)) contains all required eigenvalues.  In the next section we will use mapping 

{C×2
i}  {DX←⎯→ ×2

i} given by Eq.(26) to build the transfer matrix T associated with the 

band-diagonal Hamiltonian structure. 

 Our construction of TSC differs from Tomfohr-Sankey’s construction in definition 

of Di
(-1) = UT⋅Ci

(-1) (Eq.(12)), which allows us to combine range sub-spaces of matrixes 

τSC⋅RSC and (τSC⋅RSC)T.  Tomfohr and Sankey define Di
(0), as given by Eq.(12), but Di

(-1) = 

VT⋅Ci
(-1).  According to their definition of vector Di

(-1) it contains both range and null-

spaces of matrix (τSC⋅RSC)T, which results in larger transfer matrix and additional zero ei-

genvalues. 

 

V.  CONSTRUCTION OF T 
 

 To make explanation more visual we show T matrix construction for the seven 

band Hamiltonian given by Eq.(2); derivation of the general case is straightforward.  

Equations (6) and (3) can be combined in the following form: 

( ) ( ) ( )
( ) ( ) ( ) ( )

3 ( 3) 2 ( 2) 1 ( 1)
3 2 1

(0) 1 (1) 2 (2) 3 (2)
0 1 2 3

T T T

i i i

i i i i

H R c H R c H R c

H I c H R c H R c H R cε λ

− − −+ + +

− × + + = − i

  

 

(6-a) 

Further, combination of Eqs.(3) and (6-a) can be written in the familiar matrix form: 

( ) ( ) ( ) ( )3 2 1 1 2 3
3 2 1 0 1 2 3

( 3)( 3)

( 2)( 2)

( 1)( 1)

(0)(0)

(1)(1)

(2) (2)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
T T T

ii

ii

ii
i

ii

ii

i i

I

I

I

I

I

H R H R H R H I H R H R H R

cc
cc
cc
cc
cc

c cε

λ

−−

−−

−−

×

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⋅ =⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠

  

 

 

 

 

 

(27) 
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We define {c×6
i} similar to {C×2

i} as the set of all possible vectors in the left-hand side of 

Eq.(27), which have the form of the Bloch functions (3) and satisfy Schrödinger equation 

(2).  It is convenient to denote the matrix in the left-hand side of Eq.(27) as Q, and re-

write it in the compact form: 
6 6

i iQ c P cλ i
× ×⋅ = × ⋅  , (27-a) 

where 

( )3
3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 H R

I
I

I
P I

I

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

≡ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

 . 

  

(28) 

If matrix H3 is singular, some of the components of ci
(2) in the right hand side of Eq.(27) 

are “lost”.  Therefore the number of the components in the right-hand side is less than the 

size of the matrix, and the linear system (27) cannot be considered an eigenproblem in 

{c×6
i}.  This issue is resolved by expressing {c×6

i} through {D×2
i}.  Combining Eqs.(3) 

and (3-a) we relate {c×6
i} to {C×2

i}: 
3 ( 3)

2 ( 2)

1 ( 1) 1 ( 1)

(0) (0)

1 (1)

2 (2)

i

i

SC i i

i i

i

i

R c
R c

R C R c
C c

R c
R c

− −

− −

− − − −

⎛ ⎞⋅
⎜ ⎟⋅⎜ ⎟
⎜ ⎟⎛ ⎞⋅ ⋅

= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎜ ⎟⋅
⎜ ⎟⎜ ⎟⋅⎝ ⎠

   , 

 

 

(29)

which is convenient to present in the matrix form: 
( 3)3

( 2)2

( 1) ( 1) ( 1)1 1

(0) (0) (0)

(1)1

(2)2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

i

i

i i iSC

i i i

i

i

cR
cR

C CR R
A

C CI I
cR
cR

−

−

− − −−

−

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞⎛ ⎞

⋅ ≡ ⋅ ⋅ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

c
c

   . 

 

 

(30)

Thus c×6
i = A⋅X⋅D×2

i, and Eq.(27-a) can be rewritten in {D×2
i} space: 
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2 2
i i iLHS D RHS Dλ× ×⋅ = × ⋅   , where 

 .
LHS Q A X
RHS P A X

≡ ⋅ ⋅
≡ ⋅ ⋅

 

  

 

(27-b)

Matrixes LHS and RHS are rectangular: the number of rows equals the length of c×6
i, 

which is larger than the number of columns equal to the length of D×2
i.  We add zero col-

umns to RHS to convert it to the square matrix ( )0RHS .  D×2
i is appended zeros to fit 

the size of ( 0RHS ) .  We apply singular value decomposition to ( )0RHS  

( ) †0RHS u w v= ⋅ ⋅ . 
  

(31)

The energy ε, for which matrix T is constructed can be complex.  In this case matrixes Y 

(Eq.(12)), X (Eq.(26)), RHS, u, and v are complex as well.  That is the reason why we use 

Hermitian conjugation instead of transposition in Eq.(31).  Equation (27-b) can be ex-

pressed in the sub-block form as 
† † 2

† 2 11 21
† †
12 22

0
0 0 0

d i
i i

w v v D
u LHS D

v v
λ

×
× ⎛ ⎞ ⎛ ⎞⎛ ⎞

⋅ ⋅ = × ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 . 
  

(27-c)

Here the size of the square sub-block v11
† is the same as the size of diagonal matrix wd 

and equals the length of vector D×2
i.  Hence the size of the square sub-block v22

† is the 

difference between the length of c×6
i and D×2

i, i.e. twice the null-space of τSC.  If we rep-

resent u†⋅LHS as 

( )
( )

†

†

†

Top

Btm

u LHS
u LHS

u LHS

⎛ ⎞⋅
⎜ ⎟⋅ =
⎜ ⎟⋅⎝ ⎠

 , 
  

where (u†⋅LHS)Top is square matrix of the same size as D×2
i, Eq.(27-c) can be rewritten in 

the form of the two separate equations: 

( ) ( )
( )

1† † 2
11

† 2 0

d iTop

iBtm

w v u LHS D D

u LHS D

λ
− 2

i i
× ×

×

⋅ ⋅ ⋅ ⋅ = ×

⋅ ⋅ =
 . 

  

(27-d)

From the previous section we know that all {λi}, which satisfy the first Eq.(27-d) are non-

zero because all vectors {D×2
i} correspond to non-zero {Λi}, and M

iλ i= Λ .  Hence ma-

trix (wd⋅v11
†)-1⋅(u†⋅LHS)Top is non-singular and the first equation completely determines 
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{D×2
i} and {λi} sets.  The second equation does not contain any additional information 

and shall be disregarded.  Therefore the final expression for the transfer matrix T is: 

( ) ( )1† †
11d Top

T w v u LHS
−

= ⋅ ⋅ ⋅   
  

(32)

It is interesting to note that since Λi = λi
M, and both T and TSC have the same set of ei-

genvectors {D×2
i}, TSC = TM.  That is indeed confirmed by numerical tests. 

 

VI.  ALGORITHM SUMMARY 
 

 We have designed the algorithm for the construction of the transfer matrix T.  For 

any given real or complex energy ε the eigenvalues of the transfer matrix λi ≡ Exp[i ki] 

determine all possible {ki} and {Ci}, which satisfy the Schrödinger equation in k-

representation for 1-D structure with either translational or screw symmetry:  

[ ]

[ ] ( ) [ ] [ ]( )      
(0) ( ) ( )

1

i i i

M Tn n

n

H k C C

H k h h Exp i k n h Exp i k n

ε

=

⋅ = ×

= + − +∑
  

  

The input data for the transfer matrix construction are the unit cell Hamiltonian 

sub-blocks and the unit cell orbital rotation matrix.  From these matrixes we generate the 

tri-block-diagonal supercell structure as given by Eq.(2).  Then, we perform the singular 

value decomposition of τSC⋅R (Eq.(10)).  From the matrixes resulting from the singular 

value decomposition we construct matrix X, which maps {D×2
i} to {C×2

i}.  After that we 

construct matrixes Q and P from the unit cell Hamiltonian sub-blocks (Eqs.(27-28)), and 

matrix A from the orbital rotational matrix (Eq.(30)).  Finally we build T matrix (Eqs.(27-

b,c,d), (31) and (32)).  The solution of T eigenproblem gives us {D×2
i} and {λi} sets.  The 

state vectors in atomic orbital representation are obtained as c×6
i = A⋅X⋅D×2

i.  The eigen-

vectors c(0)
i of Hamiltonian (1-a) are extracted as the appropriate portions of c×6

i. 

 

VII.  NANO-TUBE CONDUCTANCE vs. BENDING ANGLE 
 

 We used the Landauer’s approach to study small voltage conductance of (10,7) 

and (8,8) nano-tubes with respect to the bending angle.  The number of atoms in the bent 

portions of (10,7) and (8,8) nano-tubes was 1428 and 1344 respectively.  Bending angle 
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ranges from 0° to 120° with the angle increment 0.833°.  Structure relaxation was per-

formed using analytic potential6, and the environment-dependent tight-binding3 with its 

self-consistent extension4,5 were used to construct the Hamiltonian.  Self-consistent elec-

tron density was computed for (10,7) nano-tube for the three values of the bending angle 

(Figs.1-3): (1) right before the conductance drop, (2) immediately after the conductance 

drop, and (3) for the maximum bending angle.  Since both self-energy and transfer matrix 

algorithms are equally applicable to real and complex energies, the electron density was 

obtained by the contour integration in the upper complex energy half-plane.7  Taking ad-

vantage of the system’s linear structure we subdivided it into super-cells, which interact 

only with their nearest neighbors.  The self-energy propagation described in the previous 

paper was applied to compute the Green’s function diagonal sub-blocks corresponding to 

each super-cell.  This leads to the linear scaling of computational expenses with the 

length of the bent portion of the nano-tube.  The variant of Broyden’s method8 was used 

to accelerate self-consistency convergence. 

 Because the open boundary conditions assume that the Fermi level equals the 

Fermi level of the infinitely long nano-tube, the total charge of the bent portion of the 

nano-tube can differ from zero.  For configurations (1), (2), (3) we found that the bent 

region has the small positive total charge equal respectively to 0.114, 0.108, 0.079 of 

electron fraction. 

We compute the Landauer’s conductance C[ε] exactly the same way as it is de-

scribed in the previous paper.  Although the conductance vs. energy dependence for the 

self-consistent computation is substantially different from the non-self-consistent case, 

the difference for the total current 

[ ] [ ] [ ] [ ]( )2 20

0 02 20
 ( 2) ( 2)  

V kT

V kT
I V C f V f V dε ε µ ε µ

+ +

− −
= − + − − −∫ ε  , 

[ ] [ ]( ) 1
1 /f x Exp x kT

−
= +  

 
(33)

between self-consistent and non-self-consistent cases is reasonably small (Fig. 3).  Based 

on that finding we perform all other computations by using non-self-consistent model.3  

For applied bias less than 0.4 V and room temperature Eq.(33) gives almost linear I-V 

dependence (cf. insert in Fig. 4) for the entire range of bending angles.   
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 To better understand the abrupt decrease of the conductance (Fig. 4) and the asso-

ciated current (Fig. 3) caused by a small angle increment it is convenient to monitor the 

evolution of the local density of states at the kink region.  Since most of the state density 

near the Fermi level is contributed by π-orbitals, which are aligned in x-z plane at the 

kink area (cf. Figs. 1,2), one needs to monitor the change of Im[Gx,x], Im[Gz,z], and 

Im[Gx,z] for the atoms at the kink region.  To obtain the π-density from these three quanti-

ties one needs to rotate the coordinate system in such way that only one diagonal compo-

nent, e.g. Im[Gx,x], remains non-zero.  In practice, however, it appears that for the prob-

lem in hand Im[Gx,z] has little effect on the local π-density, and it can be approximated by 

π-1(Im[Gx,x]2 + Im[Gz,z]2)1/2.  From Fig. 5 one can see that as the opposite nano-tube walls 

at the kink region approach each other, the abrupt rearrangement of local electron con-

figuration takes place.  The transition from configuration (1) to configuration (2) corre-

sponds to the severe alteration of the local π-density, which becomes strongly dissimilar 

to the π-density in the perfect nanotube.  That manifests the appearance of the local 

states, which is consistent with the earlier findings.9-10  The localized states cause the 

strong scattering and lower the conductance.  At the same time the local π-density near 

the Fermi level in the left column of Fig. 5 is represented by smooth functions, which are 

analogous to the π-density of the ideal tube.  Hence no well defined localized states exist 

in configuration (1), and only little scattering occurs. 

 The diameters of (10,7) and (8,8) nano-tubes are almost the same, and if one dis-

regards the tiny band gap of the (10,7) tube, which is smaller than kT, both tubes can be 

considered metallic with two conducting channels in the vicinity of the Fermi level.  Pro-

vided these similarities, the difference in the current vs. angle plots (Fig. 3) can originate 

only from the different mutual orientation of the kink and the nano-tube’s roll vectors.  

Because the Lippmann-Schwinger equation for 1-D systems can be solved exactly, one 

can investigate the effect of the kink symmetry on the intra- and inter-channel scattering 

amplitudes.  We reserve the examination of this topic for the future publication.  

 

VIII.  SUMMARY 
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 We presented the fast and numerically robust algorithm for the construction of the 

transfer matrix associated with the arbitrary one-dimensional structure possessing transla-

tional or screw symmetry.  The algorithm is capable of handling an arbitrary type of sin-

gularities in the Hamiltonian matrix.  The transfer matrix algorithm is the essential part of 

the algorithm used for the computation of Green’s functions and self-energies.  The algo-

rithm was applied to simulate the self-consistent electron densities and conductances for 

the (10,7) and (8,8) infinite bent nano-tubes.  The conductances of both nano-tubes ap-

pear to be very insensitive to bending until the bending angle reaches 60°.  At that point 

the interaction of the π-electrons from the opposite walls of the nano-tube in the kink re-

gion causes the abrupt decrease of the nano-tube conductance.  Further bending up to 

120° does not have a substantial effect on the conductance, which constitutes about 25% 

from the ideal conductance for the (10,7) nano-tube and about 70% for the (8,8) nano-

tube.   
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FIGURES 

 

 

 

 

 

 

 

 
Figure 1 

 

Top and side views of the (10,7) nano-tube for the bending angle ϕ = 60°, which corre-

sponds to point (1) in Fig.3.  The increase of ϕ by 0.83° brings the system to the low-

conducting state denoted as point (2) in Fig.3.  There is no visually noticeable difference 

between the configurations with ϕ = 60° and ϕ = 60.83° so we do not show the latter. 
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Figure 2 

Top and side views of the (10,7) nano-tube for the maximum bending angle ϕ = 121.7°, 

which corresponds to point (3) in Fig.3.  Color-coded plot represents the self-consistent 

Coulomb potential in the bending plane passing through the center of mass.  For clarity 

only the part of the system lying above the plane is shown.  The Coulomb potential is 

produced by the electron density associated with the finite bent portion of the nanotube 

and the semi-infinite periodic portions of the nano-tube (not shown in the figure). 
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Figure 3 

 

The relative change of the current as the function of the bending angle at 0.2 V bias volt-

age.  Squares in pane (a) denote current values computed using self-consistent environ-

ment-dependent tight-binding Hamiltonian. 
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Figure 4 

 

Energy dependence of the (10,7) nano-tube conductance.  Curves 1 and 2 correspond re-

spectively to the bending angles ϕ = 60° and ϕ = 60.83° denoted by points (1) and (2) in 

Fig. 3.  Energy dependence for the conductance of the perfect nano-tube is plotted for 

reference.  The insert shows the I-V plots for ϕ = 60° and ϕ = 60.83°; the top line is the I-

V dependence for the perfect nano-tube. 
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Figure 5 

 

Local DOS associated with π-orbitals: LDOSπ = π-1(Im[Gx,x]2 + Im[Gz,z]2)1/2 plotted for 

six atoms at the kink region of (10,7) nano-tube right before (ϕ = 60°, left column) and 

immediately after (ϕ = 60.83°, right column) the onset of the critical angle.  Vertical 

mark indicates the Fermi level.  Dashed line denotes LDOSπ for the perfect (10,7) nano-

tube.  The spikes at the Fermi level appearing in the right column indicate the emergence 

of the localized state. 
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