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ABSTRACT

In equilibrium, graphene nanostrips, with hydrogens sp 2-bonded to carbons along their zigzag edges, are expected to exhibit a spin-polarized
ground state. However, in the presence of a ballistic current, we find that there exists a voltage range over which both spin-polarized and
spin-unpolarized nanostrip states are stable. These states can represent a bit in a binary memory device that could be switched through the
applied bias and read by measuring the current through the nanostrip.

Graphene has attracted much attention since it was experi-
mentally demonstrated that the material is stable at ambient
conditions.1,2 A good portion of this attention has been
focused on graphene nanostrips3 because of their potential
for device applications such as field-effect transistors4-9 and
quantum dots.10 It has also been predicted that zigzag-edge
nanostrips, such as depicted in Figure 1a, which have
hydrogen atoms sp2-bonded to carbon atoms along their
zigzag edges, become half metallic in the presence of a
transverse electric field,11 leading to possible spintronics12

applications. In addition, density functional calculations have
predicted that these zigzag-edge graphene nanostrips, in
equilibrium, exhibit spin-polarized edge states.13,14 In what
follows, we show that this spin polarization could be
eliminated by passing a ballistic current through the nano-
strip, provided the applied bias voltage exceeds a given
threshold. Removing the voltage causes the system to return
to the spin-polarized state. We find, however, that there exists
a voltage range over which both the spin-polarized and
unpolarized states are stable. These two states could represent
a bit in a binary memory device that can be switched through
the applied bias and read by measuring the current through
the nanostrip. We also find that the device should be robust
at room temperature. Bias voltage has been used as a driving
parameter in other recently described memory devices.15,16

Much of the electronic and transport properties of materials
based on graphene can be understood starting from a one-
parameter, nearest-neighbor, tight-binding model.17 Although

successful in describing closely related carbon nanotubes,18,19

this model does not incorporate the essential ingredients
necessary to reproduce the spin polarization in zigzag-edge
graphene nanostrips found in first-principles local-density
functional (LDF) calculations. We have shown, however, that
this behavior can be reproduced by adding a spin-dependent
scalar field ê to the model, whereUêm,τ describes the
potential experienced by an electron at sitem with spin τ.
The resulting one-electron Hamiltonian is given by

whereciσ
† , ciσ, andniσ ≡ ciσ

† ciσ are creation, annihilation, and
number operators, respectively,〈i,j〉 denotes the set of all
nearest neighbors,γ ≈ -2.6 eV is the effective nearest-
neighborπ-orbital hopping integral,20,21andU describes the
strength of the spin-dependent field. The quantitiesêm,τ are
not adjusted to fit the first-principles results but rather
determined by requiring that the free energy of the model is
stationary with respect to their variations which implies that

where

In eq 3,h(E) ) f(E - εF), wheref(E) is the Fermi function
with εF the Fermi level of the nanostrip, andgν

mτ(E) is the
local spin density of states. Because the latter depends on
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H ) γ ∑
〈i,j〉σ

ciσ
† cjσ + U ∑

iσ

êi,σniσ (1)

êm,-τ ) 〈nV〉m,τ (2)

〈nν〉m,τ ) ∫-∞

∞
h(E)gν

mτ(E) dE (3)
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〈nV〉m,τ through eqs 1 and 2, eq 3 must be solved self-
consistently. Although motivated differently, eqs 1-3 are
equivalent to those found from a Hartree-Fock approxima-
tion to the Hubbard model.22,23

The subscript,ν, refers to a particular solution of eq 3,
where 0 and 1 represent the unpolarized and spin-polarized
(ground state) solutions, respectively. By fitting the zero-
temperature energy gap at the zone boundary obtained from
the spin-polarized solution to the same gap obtained from
our spin-unrestricted LDF calculations (implemented via an
all-electron, linear-combination-of-atomic-orbitals method
developed to treat one-dimensional systems24,25), we getU
) 2.75 eV. Using this value ofU, which is in line with earlier
estimates,14 the two-parameter model described by eqs 1-3
reproduces the LDF results well for both the spin-polarized
and unpolarized solutions. In particular, the energy disper-
sions match, as do the self-consistent occupancies,〈n1〉m,τ,
as shown in Figure 1.

In view of the success of this two-parameter model in
reproducing our first-principles results (which agree well with
those of others11,13,14), we have extended it to include bias.
Consider a zigzag-edge graphene nanostrip assumed to have
a large length-to-width aspect ratio with its longitudinal axis
extending from left to right (this strip orientation is perpen-

dicular to that depicted in Figure 1a) and each strip end
connected to a large contact. Also assume that the nanostrip
supports ballistic transport26,27 with all potential drops
occurring at the nanostrip-contact interfaces oriented per-
pendicular to the hydrogen-bonded strip edges. In addition,
to good approximation, assume that carriers exit from the
narrow nanostrip into wide contacts with negligible prob-
ability of reflection at the interfaces.28 This latter assumption
ensures that right (left) moving states in the nanostrip are
only occupied by states which originate from the left (right)
contacts. Finally, suppose that the contacts provide infinite
reservoirs of electrons which establish different electro-
chemical potentials,µL andµR, within the nanostrip for left-
and right-moving electrons, respectively. The steady-state
nanostrip electron distribution is then given byh(E) )
[f(E - µL) + f(E - µR)]/2, wheref(E) is the Fermi function.
Using this expression forh(E) in eq 3 yields the self-
consistent equations to be solved in the presence of a bias
voltage,Vds, between the contacts. In solving these equations,
we suppose that the nanostrip remains charge neutral when
Vds * 0, which implies thatµL ) εF - eVds/2 andµR ) εF +
eVds/2, because of electron-hole symmetry between the
valence and conduction bands.

Figure 1. Geometry and self-consistent solutions for a 4.3 nm-wide zigzag-edge graphene nanostrip with carbon atoms sp2-bonded to
hydrogen atoms along its zigzag edges. (a) A transverse segment of the nanostrip with its longitudinal axis extending in the vertical direction.
The nanostrip contains 40 carbon and 2 hydrogen atoms per unit cell. (b) The spin-polarized ground state energy dispersion obtained from
LDF calculations (red) using an uncontracted Gaussian basis set, 7s3p and 3s for carbon and hydrogen, respectively, compared to the
two-parameter model results (blue). (c) Same energy dispersions as in (b) but for the spin-restricted case. Although stationary, the unpolarized
solution is unstable at zero temperature. In both (b) and (c) the Fermi levelεF has been chosen to be zero. (d) Spin populations at the carbon
sites from the LDF calculations (red) and the two-parameter model (blue) for the spin-polarized state. The spin directions are indicated by
the triangles pointing up and down.
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Now consider this zigzag-edge nanostrip initially in a
stable spin-polarized state. AsVds is increased, we find using
the two-parameter model that the spin-polarized state will
become unstable with respect to the unpolarized state. This
instability causes the energy dispersion to change dramati-
cally, as shown in Figure 2. The loss of stability of the spin-
polarized solution can be understood by noting that, asVds

is increased, some left-moving electrons, primarily in the
valence band, will exit the nanostrip through the left contact
without being replaced by electrons from the right contact.
Simultaneously, some right-moving electrons will enter the
nanostrip from the left contact and participate in the right-
moving current. Once the system has reached steady state,
the result can be viewed as an effective repopulation of the
electronic states in the nanostrip, where electrons are
“excited” from the valence band into the conduction band.
Each such “excitation” depopulates a state in the valence
band and populates a corresponding state with opposite spin
in the conduction band. Consequently, the spin polarization
is reduced, and the self-consistent conduction and valence
bands move closer together. Because a narrowing gap can
lead to more “excitations”, positive feedback is possible. In
fact, at a certain threshold biasVds

1f0, the spin-polarized
state becomes unstable with respect to the spin-unpolarized
state and the spin polarization is abruptly lost. Spin polariza-
tion in zigzag-edge nanostrips is an edge effect,23 as evident

from Figure 1d. The more localized edge states are those
nearer the zone boundary in the lowest conduction and
highest valence bands. At the zone boundary, the band
separation is proportional to the local moment of the edge
atoms, which are directly connected to hydrogen atoms;∆E
) |〈n1〉1,v - 〈n1〉1,V|U ≈ 0.28U. We have found that the
threshold voltage at room temperature and below can be
estimated byVds

1f0 ≈ 0.55∆E/e. Because of the edge
localization, this estimate is essentially independent of the
width of the nanostrip as long as it contains more than about
eight carbon atoms per unit cell.

The stability of these self-consistent solutions can be
studied further by starting from a grand canonical poten-
tial29,30 Ω, from which these solutions can be derived by
requiring thatδΩ/δêm,τ ) 0 for everym andτ. Treating the
nanostrip as an open system,Ω is given by

whereΩê ) -(U/2)∑iσ êi,σ êi,-σ accounts for double counting
of the interaction through the fieldê andR ∈ {L, R} is the
subsystem at temperatureT with energy

Figure 2. Loss of the spin-polarized state with increasing bias
within the two-parameter model. (a) Energy dispersion of a spin-
polarized graphene nanostrip with 40 carbon atoms per unit cell
subject to a bias voltage 0.15|γ|/e at room temperature (T ) 293
K). The application of bias voltage changes the electron occupancy
in left-moving (red) and right-moving (blue) states. (b) The energy
dispersion when the bias voltage has been increased to 0.16|γ|/e.
This dispersion describes the unpolarized state.

Figure 3. Stability of the spin-polarized and unpolarized states at
room temperature. (a) Grand canonical potential per carbon atom,
Ω̃, of a zigzag-edge graphene nanostrip with 40 carbon atoms per
unit cell, plotted against bias voltage,Vds, andλ, whereλ ) (1
andλ ) 0 represent the spin-polarized and spin-unpolarized states,
respectively. At zero bias, the unpolarized state is unstable (local
maximum). When the bias voltage lies within the range
0.04 - 0.15 |γ|/e, both states are stable. Above (Below)
0.15 |γ|/e (0.04|γ|/e), the spin-polarized (spin-unpolarized) state
is no longer stable and the system becomes spin unpolarized (spin
polarized). (b) As bias is swept, the system follows either the spin-
polarized (red) or spin-unpolarized (blue) state, depending on its
starting point. Because of the instabilities at the two threshold
voltages (magenta), there is a hysteresis between the spin-polarized
and spin-unpolarized states.

Ω ) Ωê + ∑
R

(ER - TSR - µRNR) (4)
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electronic entropy

and number of particles

containing all left- or right-moving states. In eqs 5-7, g(E)
is the model total density of states of the nanostrip, kB is
Boltzmann’s constant,fR(E) ) f(E - µR), and f(E) is the
Fermi function. Note that, in writing eqs 5-7, we have used
the fact that the total density of states for either left- or right-
moving states is given by (1/2)g(E).

In Figure 3a,Ω, normalized per carbon atom, is plotted
againstVds, andλ. The latter is given by

With this choice ofλ, the field êm,-τ ) (1 - λ)〈n0〉m,τ +
λ〈n1〉m,τ follows the shortest path between the two self-
consistent solutions. Note that,〈nV〉m,τ + 〈nV〉m,-τ ) 1, because
the strip is neutral, the lattice bipartite, and the dispersion
relations have particle-hole symmetry. Thus,λ ) -1 yields
the same spin-polarized solution asλ ) 1 but with all spins
reversed. As can be seen in Figure 3b, the loss of the spin-
polarized state atVds

1f0 results in a decrease ofΩ, which
makes the process irreversible. The figure also shows the
spontaneous spin polarization of the unpolarized nanostrip
as the bias is reduced below a second threshold,Vds

0f1.
Between the two voltages both states are stable as illustrated
by Figure 3a.

The spin-polarized and unpolarized states are suitable for
use in a volatile digital memory device. The device would
operate at a bias voltage betweenVds

1f0 and Vds
0f1. Letting

Vds lie outside this range would either set or clear the device.
As both states are macroscopic, they are expected to be
robust, even at room temperature. Any small fluctuation in
the system should be quenched by the field. Consequently,
we expect the memory device to be static. The hysteresis
that is present in Figure 3b should also be observable in the
I-V characteristics, as the spin-polarized and unpolarized
states have much different low-energy transport properties.
The memory information can then be read by passing a
current through the device. Rather than performing a direct
measurement, one could also probe a current change as
voltage is swept from its operational value past one of the
thresholds.

The memory device could also be implemented starting
from a Peierls-distorted31 rather than a spin-polarized system.

Indeed, the hysteresis present in the I-V characteristics of
some quasi-one-dimensional organic charge-transfer salts32,33

could indicate that the necessary behavior has already been
observed.
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ER ) 1
2∫-∞

∞
EfR(E)g(E) dE (5)

SR ) - 1
2
kB ∫-∞

∞
{fR(E) ln fR(E) +

[1 - fR(E)] ln [1 - fR(E)]} g(E) dE (6)

NR ) 1
2∫-∞

∞
fR(E)g(E) dE (7)

λ )
êm,-τ - 〈n0〉m,τ

〈n1〉m,τ - 〈n0〉m,τ
(8)
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