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ABSTRACT

Stimulated by recent advances in isolating graphene and similarities to single-wall carbon nanotubes, simulations were performed to assess
the effects of static disorder on the conductance of metallic armchair- and zigzag-edge graphene nanostrips. Both strip types were found to
have outstanding ballistic transport properties in the presence of a substrate-induced disorder. However, only the zigzag-edge strips retain
these properties in the presence of irregular edges, making them better initial synthetic targets for ballistic device applications.

Novoselov, Geim, and co-workers recently succeeded in
isolating macroscopic single sheets of graphite known as
graphene, which they found were stable, highly crystalline,
and chemically inert under ambient conditions.1 This advance
was soon followed by detailed measurements showing that
these 2D sheets exhibit unusual properties such as a high-
integer quantum Hall effect.2,3 These and other experimental
developments have moved us closer to graphene-based
nanoelectronics, with components or even entire circuits
formed from a graphene sheet.4 However, before such a goal
can be met, reliable techniques will have to be developed to
selectively pattern these sheets into suitable components
(either interconnected or isolated), and much analysis will
be required to suggest possible targets and methods. For
example, high-aspect-ratio graphene strips5,6 with widths
between 5 and 10 nm and edges terminated byσ bonds to H
atoms might provide important components in carbon-based
quantum electronics because they have structures suitable
for in-plane device processing and electronic properties5,6

similar to single-wall carbon nanotubes (SWNTs). However,
in comparison to SWNTs, such strips, which can be viewed
as cut from graphene, will probably experience a higher
degree of interaction with the substrate. Also, any strips
initially made are likely to have irregular edges. Stimulated
by these observations and recent advances in isolating
graphene, simulations were performed to assess the effects
of substrate-induced and edge disorder on the conductance
of metallic armchair- and zigzag-edge graphene nanostrips
(GNSs). We find that, like the SWNTs,7-11 both strip types

have outstanding ballistic transport properties in the presence
of a substrate-induced disorder, but only the zigzag-edge
strips retain these properties in the presence of irregular
edges. Our results imply that zigzag-edge GNSs are better
initial synthetic targets for ballistic device applications.

The armchair (zigzag)-edge strips can be thought of as
series of finite length zigzag (armchair) chains oriented along
the transverse direction of the strip, terminated by hydrogen
atoms and stacked edge to edge with each zigzag (armchair)
chain containingN carbon atoms and two hydrogen atoms.
Considered this way, the primitive translational unit cell of
the armchair (zigzag)-edge strips contains two (one) such
zigzag (armchair) chains (chain) for a total of 2N (N) carbon
atoms and 4 (2) hydrogen atoms, as depicted in Figure 1 for
the caseN ) 7 (N ) 8). Note that it is the armchair (zigzag)-
edge strips that are more closely related to the zigzag
(armchair) SWNTs rather than the other way around because
the strips have been named by the bonding pattern along
their extended edges,5 while the SWNTs have been named
by the most direct continuous path of C-C bonds around
the circumference of the tube.

Even if initially perfect, once physisorbed on a surface,
GNSs experience the effects of disorder because of interac-
tions with the substrate. This disorder will ultimately cause
localization of their wave functions and hence limit their
performance in device applications. Such substrate-induced
disorder can be long ranged, arising from substrate charges
or other substrate features that produce a potential that
changes slowly on a scale of a C-C bond distance, and short
ranged, arising from residual interactions with the substrate
that cause potential fluctuations varying rapidly on the scale
of a C-C bond length. In addition, any strips initially made
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are likely to have irregular edges that could also affect their
performance.

To study the effects of these various types of disorder on
the transport properties of GNSs, we adopt the standard tight-
binding model described by the Hamiltonian,Ĥ0, which
retains only nearest-neighborπ matrix elements between
orthonormal|pπ〉 orbitals (one per carbon atom) oriented
normal to the plane of the strip with all diagonal matrix
elements fixed at the Fermi level,εF ≡ 0 eV, and all off-
diagonal nonzero matrix elements fixed atγ ) -2.7 eV.
Local density functional (LDF) calculations have established
that this model provides a good description of the band
structure of graphene and metallic and semiconducting
SWNTs in the vicinity ofεF.12 The effects of disorder are
then incorporated by adjusting these matrix elements. This
model assumes that the strip edges are always terminated
by compensating dangling sp2 hybrids at edge C atoms with
H atoms to form strong C-H σ bonds.5,6 Nearest-neighbor
C-H matrix elements associated with these H atoms do not
appear explicitly inĤ0 because theseσ orbitals (like the sp2

orbitals used to form strong C-C σ bonds in the strip
interior) are symmetric with respect to the nodal plane of
the π orbitals and hence decouple from theπ conduction
bands described byĤ0. Also, because C forms a strong
covalent bond with H, theσ andσ/ bands associated with
these bonds (like theσ andσ/ bands associated with the C
atom in the strip interior) lie far fromεF and hence need not
be considered further. In addition, the band structure obtained
from Ĥ0 is in excellent agreement with corresponding LDF
results13 for H-terminated zigzag GNSs in the region of
interest nearεF, which shows that any residual shifts in the
on-site diagonal matrix elements ofĤ0 at the edge C atoms
bonded to H can be neglected.

The conductance,G, of a disordered GNS is calculated
using a real-space Green function method.14 In implementing
this approach, we assume ideal leads to ensure that the
calculated properties arise from the strip and not the contacts.
Thus, the left and right leads are modeled by perfect semi-
infinite GNSs, which differ only in that one extends to the

left and the other to the right. These semi-infinite leads are
then connected to one another via a disordered sample GNS
with the structure of the leads and their contacts to the sample
chosen so that the left-lead-sample-right-lead system is a
perfect extended GNS in the absence of sample disorder.

Consider first the armchair-edge GNSs. In the absence of
disorder, these strips have properties that are both similar to
as well as different from their zigzag SWNT counterparts.
First, like the zigzag SWNTs, they can be either metallic or
semiconducting, depending respectively on whether or not
N + 1 ) 3q, with q a positive integer,5,6 as illustrated by
Figure 2a-c. Also, like the metallic zigzag SWNTs, the
transverse boundary conditions cause all but a few of the
bands allowed for the metallic armchair-edge GNSs to be
removed from the immediate vicinity ofεF. However, unlike
the metallic SWNTs, where the transverse boundary condi-
tions allow two open conduction channels nearεF, the
corresponding conditions for the metallic armchair-edge
GNSs allow only one. In particular, for the zigzag SWNTs,
Born-von Karman boundary conditions allow both sine and
cosine solutions around the circumference of the tube, leading
to doubly degenerate bands nearεF. However, for the
corresponding zigzag-edge strips, Dirichlet boundary condi-
tions require a node at the edges, excluding the cos solutions
and leading to a singly degenerate band in the vicinity of
εF. As a consequence, these strips, if ideal, will have a
minimum metallic conductance of 2e2/h rather than the 4e2/h
found for the metallic zigzag SWNTs.

One might conclude that conduction through the metallic
armchair-edge GNSs at low bias would be sensitive to the
effects of substrate-induced, long-ranged potential variations
because of the small∆k involved in backscattering from the
single right-moving to the single left-moving channel near
εF in Figure 2c. This, however, is not the case, as can be
seen by using a unitary transformation to unfold the bands
shown as darkened in Figure 2c to obtain those of Figure
2d and then noting that potentials varying slowly on the scale

Figure 1. (a) Sample armchair-edge GNS withN ) 7. Three unit
cells are shown numbered at the left edge from-1 to 1. Each unit
cell is composed of two zigzag C chains terminated by hydrogen
atoms, with the two chains corresponding to the unit cell labeled 0
shown as darkened. (b) Sample zigzag-edge GNS withN ) 8. Five
primitive translational unit cells are shown numbered on the left
from -2 to 2. Each unit cell is composed of a single armchair C
chain terminated by hydrogens. The chain corresponding to the unit
cell labeled 0 is shown as darkened. For both the armchair and
zigzag-edge GNSs,N g 2 and for the zigzag-edge GNSs,N is even.

Figure 2. Full-zone band structure of semiconducting [(a)N )
12, (b) N ) 13] and metallic [(c)N ) 14] armchair-edge GNSs.
The bands shown as darkened in (c) have been unfolded to produce
the single band in (d), which corresponds to a “unit cell’” one-
quarter the actual unit cell.
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of a C-C bond distance will be ineffective in causing
backscattering because of the phase shift of approximately
π involved in this unfolded representation. In contrast, the
otherπ bands that are parabolic cannot be unfolded in this
fashion and hence should be sensitive to the effects of long-
range disorder. Both expectations are confirmed in Figure
3, where long-range potential fluctuations are seen to have
little if any effect on the ideal conductance within the
armchair-edge GNS single-channel window,

where the transport remains ballistic, but appreciable effect
outside this window. This behavior is similar to that found
for SWNTs.9,10

Although metallic armchair-edge GNSs largely avoid the
effects of long-range disorder within the single-channel
window, ∆Eac, the conductance of these strips will still be
susceptible to elastic backscattering caused by potential
fluctuations arising from the substrate that vary on the scale
of a C-C bond length. The effects of such residual disorder
can be incorporated into the starting model by assuming that
the diagonal and nonzero off-diagonal matrix elements are
not fixed at their values in the perfect strip but rather are
independent random variables with variancesσε

2 and σγ
2,

respectively.8 In the weak scattering limit, the mean free path,
l , for carrier backscattering within∆Eac can then be obtained
analytically from the model using Fermi’s golden rule and
is given by:

whered0 ≈ 0.142 nm is the C-C bond length andE the
energy measured with respect toεF. Motion of carriers on
the scale ofl is expected to be largely ballistic, but for
distances larger thanl , this single-channel system will
quickly enter a localized regime where the resistance
increases exponentially with increasing strip length.

The steps leading to eq 2 are lengthy and are outlined as
Supporting Information. Note, however, that for a single

channel, within the weak scattering limit,l ) ê, whereê is
one-half the amplitude localization length.15,16Also note that,
deep within the localization regime, the conductance of the
strip behaves asG(L) ) g exp(-L/ê) with increasing strip
length L (ref 16), whereg ) 2e2/h. Thus,ê-1, and hence
l -1, can be obtained from the slope of the curve-〈ln[G(L)/
g]〉avg for largeL, where〈 〉avg denotes an ensemble average
over the disorder.13 In Figure 4, we compare results forl (E)
determined in this way to those determined from eq 2. The
agreement is excellent over the single-channel window∆Eac,
providing a stringent test of eq 2.

As the transverse size of a normal metallic quantum wire
increases,l remains largely fixed for a constant amount of
disorder. However, eq 2 shows that, unlike normal wires,
metallic armchair-edge strips havel s that increase with the
width of the wire. This remarkable property arises because
the metallic strips, like the SWNTs, have an electronic
structure nearεF, which is essentially independent of their
width. This allows the single-channel states in wider-width
metallic strips to take better advantage of averaging of the
short-range potential fluctuations over the width of the strip
without having to confront additional states for backscatter-
ing. This in turn causesl to increase linearly as wider and
wider metallic strips are considered. There are practical limits
because the single-channel window,∆Eac, over which
ballistic transport occurs, closes with increasing strip width
(see eq 1). However, the relationship betweenl and strip
width together with the large C-C interaction that makes
γ2 large and the observed stability of graphene that makes
σε

2 and σγ
2 small means that metallic armchair-edge GNSs

with perfect edges can sustain ballistic transport over
micrometers in the presence of short-range disorder while
still maintaining a significant∆Eac. For example, consider a
disordered strip where the C-C bond lengths,d, vary
independently with equal probability by as much as(1%
from their ideal value. Then eq 2 yieldsl = 9 µm for a
6.40 nm (N ) 53) wide metallic armchair-edge GNS because
γ will change withd asδγ ) Rδd with R ≈ 47eV/nm (ref
8) so thatσγ ≈ 0.04 eV, while eq 1 yields∆Eac = 0.54 eV.

Unfortunately, the exceptional ballistic transport properties
of metallic armchair-edge GNSs are easily ruined by irregular
edges. Such disorder can be incorporated into the model by
eroding the outermost strip edges by randomly removing
H-C-C-H groups with a probabilityP and rebonding the
C sp2 dangling hybrids that result to H atoms. This requires

Figure 3. Conductance of aµm long, 6.40 nm (N ) 53) wide
armchair-edge GNS with (solid line) and without (dashed line)
disorder introduced10 by using 3D Gaussian potentials of the form
V(r) ) V0 exp(-r2/2σ2), with V0 ) -0.5 eV andσ ) 0.348 nm, to
shift the model diagonal matrix elements. Six such potentials were
included, centered at randomly chosen points within the strip,
corresponding to a fixed positive substrate charge density of∼1011

charges/cm2 appropriate for high-quality SiO2 substrates. The single-
channel window opens by∆Eac due to transverse confinement.

∆Eac = 2x3π
N + 1

|γ| (1)

l (E) ) 1
4

(4γ2 - E2)

(4σγ
2 + σε

2)
(N + 1)d0 (2)

Figure 4. A comparison ofl obtained from eq 2 (solid line) toê
computed from the slope-〈ln[G(L)/g]〉avg (squares) in the limit of
largeL. The average is taken over an ensemble of 1000 disordered
metallic armchair-edge GNSs withN ) 23 and diagonal and
nonzero off-diagonal matrix elements, each chosen from a rectan-
gular probability distribution of width 0.2 eV centered at their
respective ideal values. Also shown in the background isG for the
ideal N ) 23 strip (dashed line).
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removing pairs of C-C atoms such as labeled by 7’s or 1’s
in Figure 1a and their associated H atoms rather than
removing isolated C-H groups. (This constraint arises
because, if isolated C-H groups were removed, then the
dangling sp2 C hybrids at the edge cannot be healed by 1-fold
coordinated H atoms without severe steric problems.). Figure
5 shows that only a 10% concentration (P ) 0.1) of these
defects destroys the ballistic transport through a 6.4 nm wide
(N ) 53) metallic armchair-edge strip at micron distances.
This behavior is further quantified in Figure 6a, where it is
seen that even if the concentration of these defects is as low
5%, ê has been reduced to about 0.6µm over much of the
single-channel window for metallic armchair-edge strips of
this width. The dip inê around εF in Figure 6a can be
explained in terms of the band structure of the ideal strips.
In particular, the right- and left-moving bands in Figure 2c
cross because they are decoupled. If the defects are intro-
duced at low concentrations but in a periodic fashion, they
couple these bands, converting this crossing to a small
avoided crossing. Introducing the same defects randomly also
couples these bands, causing backscattering with the small
gap appearing in the periodic case now reflected as a dip in
ê. The situation greatly worsens with increasing concentra-
tions of such defects, as shown in Figure 6b. Once again,
the relatively small values ofê aroundεF can be explained
in terms of the band structure of the ideal strips. In particular,
it is understandable thatê has been limited to about 5 nm in
Figure 6b when|E| < E0=|γ|π/x3(N + 1) because the
strip is now primarily a semiconductor with a gap of 2E0

and carriers must tunnel from metallic island to metallic

island. However, it is disappointing thatê has been limited
to about 60 nm in regions of energy where the ideal
semiconducting and metallic armchair-edge strips both have
a single open right-moving channel.

Therefore, we find that, because of their narrow widths
leading to energetically isolated bands atεF, armchair-edge
GNSs exhibit robust ballistic transport in the presence of
substrate-induced disorder. Although different in detail, this
behavior is similar to that of metallic SWNTs with similar
origins. However, the existence of isolated bands in armchair-
edge GNSs over an energy region aroundεF comparable to
that enjoyed by SWNTs (refs 17-20) requires strips with
widths of the order of 10 nm; but then, small amounts of
edge disorder ruin the ballistic transport properties of these
strips in comparison to SWNTs. Taken together, these results
show that if extended armchair-edge GNSs are to have
ballistic transport properties similar to seamless metallic
SWNTs in the presence of substrate-induced disorder, then
a way must be found to make them with near-perfect edges,
which could prove a formidable task.

We now turn to the zigzag-edge strips, which we find are
not only able to support robust ballistic transport in the
presence of substrate-induced disorder but also edge disorder.
The unitary transformation used to diagonalize the armchair-
edge GNS Hamiltonian does not help for the zigzag-edge
GNSs (preventing, e.g., derivation of an expression corre-
sponding to eq 2), so we proceed numerically. In the absence
of any disorder, these strips all have similar, although not
identical, band structures within a single-channel window,
which opens aroundεF by ∆Ezz ≈ 5.3 eV‚nm/W, due to the
narrow strip width,W. As before, it is within this single-
channel window that robust ballistic transport can occur. The
flat band region seen in Figure 7 is known to arise from
states localized near the strip edges.5,6 If the strip were
infinitely wide, this flat band region would extend exactly
from 2π/3 to π, but becauseW is finite, states on opposite
edges interact weakly, making these bands truly degenerate
only at the zone boundary. For|k| < 2π/3, the bands within
∆Ezzare closely related to those21 of corresponding armchair
SWNTs.

In the ideal zigzag-edge GNSs, the relatively flat bands
seen in Figure 7 will produce a peak in the density of states
over a narrow energy range∆Ep, with carriers at these
energies primarily confined to the strip edges. However, if
carriers are injected into states outside this narrow range but
still within the single-channel window,∆Ezz, then they avoid

Figure 5. Conductance,G, of a perfect (dashed line) and
corresponding edge-disordered (solid line) 1µm long, 6.40 nm wide
(N ) 53), metallic armchair-edge strip. Theonly form of disorder
present in the imperfect armchair-edge strip is a 10% concentration
of edge defects described in the text and illustrated for a short
segment in the insert.

Figure 6. ê calculated from the slope of-〈ln[G(L)/g]〉avg at large
L for a metallic armchair-edge strip withN ) 53 for (a) 5% and
(b) 50% concentrations of the edge defects described in the text.
The ensemble contains 250 realizations of the disorder. Also shown
is G for the corresponding ideal metallic (thin solid line)N ) 53
and semiconducting (dashed line)N ) 52 strips.

Figure 7. Half-zone modelπ-band structure nearεF of zigzag
GNSs with (a)N ) 20 and (b)N ) 64.
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the edges, leading to the possibility that for such energies,
these strips could resist the effects of edge disorder. This is
confirmed in Figure 8a. The results of Figure 8a are in
marked contrast to those of Figure 5, where less irregular
edges are found to ruin ballistic transport atµm distances
throughout the single-channel window for a similar width
armchair-edged strip. Although visually the strip edges in
the insert of Figure 8a are a good deal more irregular than
those shown in the insert of Figure 5, these differences can
be further specified by noting that in Figure 5, only the
outermost layer has been eroded at each edge with a
concentration of C atoms removed of only 10%. On the other
hand, in Figure 8a, up to four layers have been eroded from
each edge with a concentration of C atoms removed (ratio
of number of carbon atoms removed from an edge to the
total number of C atoms in the outermost four layers) of
about 50%. In Figure 8a, the edges are eroded randomly up
to four layers deep so that each edge varies up to about 6%
of the strip width. For zigzag-edge GNSs of this width with
this degree of edge erosion, we find thatê is too long to for
us to compute. However, for a greater degree of edge erosion,
ê shortens to the point that we have found that if up to eight
layers are randomly eroded from each edge, thenê calculated
for several points within∆Ezz but outside∆Ep using an
ensemble of 250 strips is around 7µm. We have not
attempted to continue the process of zigzag-edge erosion
beyond eight layers because the algorithm we have used
becomes more complex the deeper the erosion (this algorithm
is included as Supporting Information). However, wider
width zigzag-edge GNSs should be able to tolerate even a
greater degree of edge disorder but at the expense of
narrowing the single-channel window.

The zigzag-edge GNSs should also resist the effects of
substrate-induced disorder outside∆Ep but inside∆Ezz. First,
potentials that fluctuate slowly on a scale ofd0 should have
little effect on the conductance at these energies because of
the large∆k (see Figure 7) required for backscattering. This
is confirmed by Figure 8b. Note that the deep dips in the
conductance a bit below zero in Figure 8b indicate that the
edge states tend to become localized down the strip in the
presence of fixed positive substrate charges modeled fol-
lowing ref 10. These dips occur belowεF because the
potentials are attractive. Also, the zigzag-edge strips, for the
same reasons as armchair-edge GNSs, will havel s that
increase with increasingW in the presence of short-range
disorder, leading to values ofl comparable to those obtained
from eq 2 for similar width armchair-edge GNSs consistent
with Figure 8c. In addition, note that the results are not
changed significantly within∆Ezz when all three types of
disorder are simultaneously present in the strip. Therefore,
these zigzag-edge strips can exhibit robust ballistic conduc-
tance at micron distances not only in the presence of edge
disorder but also in the presence of both long- and short-
range substrate-induced disorder.

The striking differences between Figures 5 and 8a can be
understood qualitatively in terms of the ideal strips. In
particular, ideal armchair-edge GNSs have states within∆Eac

extending to the strip edges that are sensitive to small changes
in the edge boundary conditions; e.g., these strips are either
metallic or semiconducting depending respectively on whether
or notN + 1 ) 3q, with q a positive integer (see Figure 2).
Therefore, disordering their edges introduces a random
mixture of transverse boundary conditions that destroys their
ballistic conductance within∆Eac at micron distances. On
the other hand, ideal zigzag-edge GNSs all have similar band
structures (see Figure 7), with wavefunctions corresponding
to states within∆Ezz but outside∆Ep that are not much
affected by similar changes in the strip width. This allows
the strip edges to be varied without drastic changes to these
wavefunctions because of the existence of protective, es-
sentially orthogonal edge states. Therefore, states within∆Ezz

but outside∆Ep are a lot less sensitive to the effects of edge
disorder, leading to a more robust conductance. The edge
states are more affected by edge disorder, but this turns out
to be less than might be anticipated, as can be seen by
examiningG close toεF in Figure 8a.

Therefore, we have shown that both zigzag and metallic
armchair-edge GNSs with ideal hydrogen-terminated edges
exhibit outstanding ballistic transport properties in the
presence of substrate-induced disorder because of transverse
confinement, leading to energetically isolated bands in the
neighborhood ofεF. Although different in detail, this behavior
is similar to that of SWNTs and has similar origins. However,
GNSs differ fundamentally from seamless SWNTs because
of the existence of edges, and weakly disordering these edges
ruins the ballistic transport properties of armchair-edge GNSs
in comparison to SWNTs. On the other hand, states localized
along the edges of zigzag-edge GNSs (absent in the armchair-
edge strips) protect the remaining states within the single-
channel window, leading to ballistic transport properties that

Figure 8. Conductance of a zigzag-edge GNS 1µm long and
6.7 nm (N ) 64) wide in the presence of (a) edge disorder modeled
by randomly removing edge C atoms up to four layers deep on
both sides and rebonding the new edges to hydrogens, as depicted
for a short segment in the insert; as with the armchair-edge strips,
C atoms are always removed in such a way that any dangling sp2

hybrids that result can be compensated by H atoms without steric
problems. (b) Long-range disorder modeled by introducing the same
six Gaussian potentials as used in Figure 3 arranged randomly
within the strip, and (c) short-range disorder modeled by adding to
each nearest-neighbor matrix element,γ, a random component
which allows the C-C bond lengths to vary independently with
equal probability by as much as(1% from their ideal values
assuming an electron-phonon coupling constant of 47 eV/nm.

208 Nano Lett., Vol. 7, No. 1, 2007



can be comparable to SWNTs in the presence of edge
disorder. We do not expect these conclusions to be signifi-
cantly altered in more refined treatments. For example, the
ideal metallic armchair-edge strips will exhibit a small gap
if longer range interactions are taken into account, but this
gap will diminish with increasing strip width. Also, for the
zigzag-edge strips, if electron-electron interactions are
included in the model, then the edges could become
ferromagnetic, but in this instance, a portion of the ballistic
window should remain.

At low bias, transport in graphene will be isotropic.
However, the results reported in Figures 5 and 8a show that
metallic armchair- and zigzag-edge GNSs with widths around
6.5 nm and lengths of 1µm cut from graphene have much
different transport properties due to disordered edges. One
might expect that significant differences in the conductance
between the two strip types will be largely confined to the
single-channel window, which is roughly equal for both the
armchair- and zigzag-edge strips and is inversely proportional
to the strip width. However, the results shown in Figures 5
and 8a show that, for these samples, this is not the case. In
particular, these results show that, not only is the conductance
within the single-channel windows of the armchair- and
zigzag-edge strips affected much differently by edge disorder,
but also these differences extend into the multichannel
diffusive regime outside these windows. Indeed, we have
found that, for these strips, these differences extend an eV
or so into this multichannel region, with the conductance of
the zigzag-edge strip generally more resistant to edge
disorder. We have also found for armchair-edge strips of
this width that this is true regardless of whether we start
with a semiconducting or metallic armchair-edge strip. Thus,
we suggest that for armchair- and zigzag-edge strips (with
similar widths, lengths, and edge disorder) the conductance
of zigzag-edge strips will more rapidly approach that of the
corresponding ideal strip outside the single-channel window
with increasing strip width. We further conjecture that
differences in the conductance between these two strip types
could be observable for strips an order of magnitude wider
than we have treated if they are long enough because the
conductance of the predominately armchair-edge strips
should more rapidly degrade within the multichannel regime
with increasing length due to edge disorder.

If the strip axis is oriented with respect to the graphene
sheet along a direction intermediate between armchair and
zigzag directions, then its edges will exhibit a mixture of
armchair and zigzag edges.6 If we define these strips
following ref 6, then their edges will be periodic but can
exhibit long repeat distances, leading to large translational
unit cells. These long unit cells make the conductance of
such strips difficult to calculate assuming perfect contacts.
However, the results we have obtained in the limiting zigzag-
and armchair-edge cases allow us to conjecture somewhat
about the behavior of these intermediate cases. If the angle
θ between the strip axis and the zigzag direction is small,
the ideal strip will have predominately zigzag edges with
only occasional armchair-edge steps. These steps, however,
will be similar to ones we have already included in

disordering the zigzag-edge strip edges and should be largely
masked by similar edge disorder. Thus, we expect that the
conductance of this edge-disordered off-axis strip, although
perhaps not quite as good, will remain close to an edge-
disordered zigzag-edge strip of the same width and length.
If θ is close toπ/6, the ideal strip should divide into relatively
long metallic and semiconducting segments. However, we
expect each segment to be sensitive to edge disorder, as in
the case of perfect armchair-edge GNSs. Thus, we expect
that the conductance of this edge-disordered off-axis strip,
although perhaps not quite as good, will remain close to an
edge-disordered armchair-edge strip of the same width and
length. For an arbitraryθ, we can only conjecture that the
conductance will degrade as the ratio of armchair to zigzag-
edge sites increases, with this ratio affected both byθ and
the edge disorder.

We have focused herein on sources of disorder that are
going to be difficult to remove even with high-quality
samples on high-quality substrates. Thus, we have concen-
trated on the effects of substrate-induced and edge disorder.
In analogy with SWNTs,22 other types of disorder could
prove important in tailoring the properties of these strips for
specific transport applications, e.g., high concentrations of
N or B impurities introduced by doping23 or vacancies or
divacancies introduced by ion bombardment.24 We have also
assumed that the strip edges are hydrogen-terminated, but
using different chemical species or groups could provide an
additional avenue for tailoring the strip properties. The
existence of edges makes it difficult to pin down the transport
properties of these strips in comparison to SWNTs, but these
edges also provide an opportunity to adjust the strip
properties for particular applications. For example, our results
imply that hydrogen-terminated zigzag-edge GNSs are better
initial synthetic targets for ballistic device applications. On
the other hand, the sensitivity of hydrogen-terminated
armchair-edge strips to edge disorder might ultimately make
them useful as sensors.
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