

Ph.D Defense

Low power transistors and Quantum Physics based on

Low Dimensional Materials

Fan Chen

Network for Computational Nanotechnology, (NCN) Department of Physics and Astronomy, Purdue University, USA

Jan, 30, 2017

-		
Motivation	 Why Tunnel FETs based on 2D materials 	
Method	 Non-equilibrium, Open Boundary Simulator NEMO5 	
Bilayer Graphene	 Experimental Benchmark Electrostatically Doped Tunnel FET proposal 	
Interlayer TFETs	 Model Assumptions and Validation MoS2-WTe2 interlayer Tunnel FET Device physics &Performance 	e
Black Phosphorous	 Thickness Engineered Tunnel FET proposal 	
PURDUE Fan Che	en 2	NS

Fan Chen

Challenges for Modern Electronics: Power Consumption

More transistors, but not faster processors

NEMØ5

PURDUE

Fan Chen

Fundamental limitation of MOSFETs

Major Challenge in TFETs

High ON needs Small Eg, small m*, shorter tunnel distance λ

PURDUE

Fan Chen

Thin Channel has Smaller Tunnel Distance

Thin Channel has smaller tunnel distance $\lambda \rightarrow$ High ON

2D Material Reduces Tunnel Distance

2D Material reduces tunnel distance λ

Closed and Open systems

Closed Equilibrium

RDUE

Fan Chen

Open Boundary Non-Equilibrium

- 1. Injection S from contacts
- 2. Open Boundry
- 3. Channel is out of equilibrium

Transport in device requires non-equilibrium, open boundary Method

Non-equilibrium Open Boundary Method

Closed Equilibrium

 $E\psi = H\psi$

PURDUE

Fan Chen

Open Boundary Non-Equilibrium

 $(E - H - \Sigma \downarrow 1 - \Sigma \downarrow 2)\psi = S$

Non-equilibrium, Open boundary Method Capture the required Physics

Self Consistent calculation

self-consistent calculation is performed for electrostatics

Hamiltonian based on atoms

The material parameters need to be obtained.

Device Modeling Simulator: NEMO5

Motivation	• Power Dissipation Limit \rightarrow TFET \rightarrow Low ON \rightarrow 2D	
Method	 Open Boundary, Self-consistent and ballistic Calculation 	
Bilayer Graphene	 Experimental Benchmark Electrostatically Doped Tunnel FET proposal 	
Interlayer TFETs	 Model Assumptions and Validation MoS2-WTe2 interlayer Tunnel FET Device physics &Performanc 	е
Black Phosphorous	 Thickness Engineered Tunnel FET proposal 	
PURDUE Fan Ch	en 21	NS

Fan Chen

Choice of channel material for homojunction TFET

22

Bilayer Graphene: Tunable Eg

Bilayer Graphene TFET: Small Achievable Eg, Small effective mass

Bilayer Graphene double gate FET Simulation and Experiment

NEMØ5

IV Shifting in Bilayer Graphene Double Gate FET

NEMØ5

Fan Chen

Electrical Doped Bilayer Graphene Junction

Electrical Doping in bilayer graphene creates tunnel junction

Configurable post after fabrication between pin and nip

RDUE

Fan Chen

No dopant states within bandgap \rightarrow good OFF-state performance

NEMØ5

Bilayer Graphene TFET: ON and SS

SS<10mv/dec

10⁻²

 $I_{DS}(\mu A/\mu m)$

10⁰

 10^{2}

Received 27 October 2015; revised 29 February 2016; accepted 7 March 2016. Date of publication 8 March 2016; date of current version 22 April 2016. The review of this paper was arranged by Editor E. Sangiorgi.

Digital Object Identifier 10.1109/JEDS.2016.2539919

Configurable Electrostatically Doped High Performance Bilayer Graphene Tunnel FET

FAN W. CHEN¹, HESAMEDDIN ILATIKHAMENEH², GERHARD KLIMECK² (Fellow, IEEE), ZHIHONG CHEN³, AND RAJIB RAHMAN²

BLG TFET can operate at 0.1V with 100uA/um ON current

100

80

60

40

20

10⁻⁴

SS (mV/dec)

Summary Evaluation of Bilayer Graphene TFET

Device	$\begin{array}{c c} V_1 & V_g & V_2 \\ \hline S & Bilayer Graphene & HfO2 \\ \hline V_1' & (V_g - 2) & V_2' \end{array}$	
VDD (V)	0.1	
ION (uA/um)	100	
SS (mV/dec)	8	
Energy Delay Product	Energy↓ Delay ↓	
Scalability	90nm	
Comments	Difficult Gate Alignment	
URDUE Fan Chen 3		

Motivation	• Power Dissipation Limit \rightarrow TFET \rightarrow Low ON \rightarrow 2D
Method	 Open Boundary, Self-consistent and ballistic Calculation
Bilayer Graphene	 Pro: Low Power, Low Energy, Small Dealy Con: too large to footprint, difficult gates aligning
Interlayer TFETs	 Model Assumptions and Validation MoS2-WTe2 interlayer Tunnel FET Device physics &Performance
Black Phosphorous	 Thickness Engineered Tunnel FET proposal
PURDUE Fan Che	en 31

Motivation	• Power Dissipation Limit \rightarrow TFET \rightarrow Low ON \rightarrow 2D
Method	 Open Boundary, Self-consistent and ballistic Calculation
Bilayer Graphene	 Pro: Low Power, Low Energy, Small Dealy Con: too large to footprint, difficult gates aligning
Interlayer TFETs	 Model Assumptions and Validation MoS2-WTe2 interlayer Tunnel FET Device physics & Performance
Black Phosphorous	 Thickness Engineered Tunnel FET proposal
PURDUE Fan Ch	en 32

Fan Chen

m

*

Further Reduce Tunnel Distance: Heterojunction TFET

 $I \downarrow ON \uparrow \rightarrow Trans \uparrow \rightarrow \lambda \downarrow \rightarrow t \downarrow ch \downarrow$ $Trans \propto \exp(-\lambda \cdot \sqrt{m} \uparrow \ast \cdot E \not g)$ TMD **Chemical formula: MX**₂ **Black phosphorus** MoS₂, WSe₂ н He en.wikipedia.org MX_2 M = Transition metal X = Chalcogen Li Be В С N 0 F Ne 3 12 AI Si Ρ S CI Ar Na Mg 10 11 Various materials v Κ Ca Sc Ti Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr (MoS2, WTe2, WSe2 ..) Eg: 1.0eV → 2.5eV Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Те Xe Hf Та Os Hg TI Pb Bi At Rn Cs Ba La - Lu W Re Au Po FI Fr Ra Ac - Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Uup Lv Uus Uuo Nature Chemistry 5, 263-275 (2013) en.wikipedia.org Eg Various TMD materials are available for heterojunction TFET

 \rightarrow Further reduce λ

33

2D material interlayer TFET advantages

Surface promises low density of interface defects

Tunnel distance λ , is the sub-nanometer interlayer distance

MoS2-WTe2 combination is chosen for broken band alignment

URDUE

Fan Chen

Assumption I : different layer has been strained to the same lattice constant to be registered

Assumption II : Interface VdW coupling is the average of the VdW of the two materials

Fan Chen

Tight binding compared with DFT

Fan Chen

Gr/BN/Gr vertical tunneling

Gr/BN/Gr structure is simulated in order to Validate Model

PURDUE

Fan Chen

Gr/BN/Gr: NEMO5 Current value matches experiment

Motivation	• Power Dissipation Limit \rightarrow TFET \rightarrow Low ON \rightarrow 2D
Method	 Open Boundary, Self-consistent and ballistic Calculation
Bilayer Graphene	 Pro: Low Power, Low Energy, Small Dealy Con: too large to footprint, difficult gates aligning
Interlayer TFETs	 Gr/hBN/Gr Matching Experiments → Validates Model MoS2-WTe2 interlayer Tunnel FET Device physics &Performance
Black Phosphorous	 Thickness Engineered Tunnel FET proposal
PURDUE Fan Ch	en 41

semiconductor heterojunctions

FTTER

Kai Tak Lam, Gyungseon Seol, and Jing Guo

A device switching Mechanism that is commonly believed

Applied Physics Letters

JOURNAL OF APPLIED PHYSICS 115, 074508 (2014)

Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor

Mingda (Oscar) Li,^{1,a)} David Esseni,² Gregory Snider,¹ Debdeep Jena,¹ and Huili Grace Xing^{1,b)} ¹University of Notre Dame, Notre Dame, Indiana 46556, USA ²University of Udine, Udine, Italy

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 11, NOVEMBER 2016

08 (2014)

ments p and

e and

doi:10.1038/nature15387

A subthermionic tunnel field-effect transistor with an atomically thin channel

Operating principles of vertical transistors based on mo

Deblina Sarkar¹, Xuejun Xie¹, Wei Liu¹, Wei Cao¹, Jiahao Kang¹, Yongji Gong², Stephan Kraemer³, Pulickel M. Ajayan² & Kaustav Banerjee

Jiang Cao, Student Member, IEEE, Demetrio Logoteta, Sibel Özkaya, Blanca Biel, Alessandro Cresti, Marco G. Pala, Member, IEEE, and David Esseni, Fellow, IEEE

4388

Interlayer TFET Bands Shifting Switching Mechanism: OFF

Bands Shifting Switching Mechanism

Source

Bot. Gate

Extension regions is defined as the region that has only one layer

The importance of extension region: OFF current and SS

NEMØ5

ON and SS are degraded with shorter extension region

 V_{DS}

The importance of Extension Region Position Resolved Carrier Density

Both Top and Bottom Layer stay charged at the OFF state; Long extension region blocks the leakage current.

NEM@

The importance of extension region: band diagram & current

NEM@

PURDUE

Fan Chen

MoS2-WTe2 Interlayer TFET: Decrease in top layer charge

Decrease in top layer charge is due to current fllowing

MoS2-WTe2 Interlayer TFET: Total Charge

Though Device stays highly charged, total Charge is not huge due to neutralization

MoS2-WTe2 Interlayer TFET: Energy Delay Product

MoS2-WTe2 interlayer TFETs does not show too much improvement in EDP

Evaluation of MoS2-WTe2 interlayer TFET

Device	S V_1 Bilayer Graphene V_2 HIO2 V_2 HIO2 HIO2 HIO2 HIO2	V _{TG} Top Gate WTe2 MoS2 Bot. Gate U V _{BG}
VDD (V)	0.1	0.3
ION (uA/um)	100	1000
SS (mV/dec)	8	10
Energy Delay Product	Energy↓ Delay ↓	Energy↓ Delay ↑
Scalability	90nm	15nm
Comments	Difficult Gate Alignment	Device Switching Mechanism
PURDUE Fan Chen	54	4

Motivation	 Power Dissipation Limit → TFET → Low ON → 2D 	
Method	 Open Boundary, Self-consistent and ballistic Calculation 	
Bilayer Graphene	 Pro: Low Power, Low Energy, Small Dealy Con: too large to footprint, difficult gates aligning 	
Interlayer TFETs	 Gr/hBN/Gr Matching Experiments → Validates Model MoS2-WTe2 interlayer TFET → Low Energy, Large Delay Different Switching Mechanism 	
Black Phosphorous	 Thickness Engineered Tunnel FET proposal 	

Motivation	• Power Dissipation Limit \rightarrow TFET \rightarrow Low ON \rightarrow 2D	
Method	Open Boundary, Self-consistent and ballistic Calculation	
Bilayer Graphene	 Pro: Low Power, Low Energy, Small Dealy Con: too large to footprint, difficult gates aligning 	
Interlayer TFETs	 Gr/hBN/Gr Matching Experiments → Validates Model MoS2-WTe2 interlayer TFET → Low Energy, Large Delay Different Switching Mechanism 	
Black Phosphorous	• Thickness Engineered Tunnel FET proposal	
PURDUE Fan Ch	en 56	

Further Reduce Tunnel Distance: Heterojunction TFET

Eg

2D Material Reduces tunnel distance $\boldsymbol{\lambda}$

One Common Problem of Heterojunction Tunnel FET

Heterojunction from Thickness Dependent Materials

 $I \downarrow ON \uparrow \rightarrow Trans \uparrow \rightarrow \lambda \downarrow \rightarrow t \downarrow ch \downarrow$

 $Trans \propto \exp(-\lambda \cdot \sqrt{m} \uparrow \ast \cdot E / g)$

Using thickness dependent Eg to create an heterojunction TFET

PURDUE

Fan Chen

Thickness Engineered TFET Performance

TE-TFET has a better ON, SS compared to homo-junction

TE-TFET Working Principle

Thickness Engineered TFET → TE-TFET

1.5 1.5 Phosphorene TFET ON ON 1 Band Edges [eV] 0.5 [0 0.5 -0.5 -0.5 -1 0.5 TE-TFET 11 0 Efs -0.5 Efd -1 -1.5 -1.5 Phosphorene TFET $10^{-6} 10^{-4} 10^{-2} 10^{0} 10^{2} 10^{4}$ 20 15 10 5 0 Current [μ A/ μ m] Transport [nm] 0.5 0.5 Phosphorene TFET OFF OFF 0 0-0.5 -0.5 -1 Efs Efd 3L -3L TE-TFET TE-TFET -1.5 -1.5 Phosphorene TFET $20 \ 10^{-6} \ 10^{-4} \ 10^{-2} \ 10^{0} \ 10^{2} \ 10^{4}$ 5 10 15 0 Current [μ A/ μ m] Transport [nm]

61

- ON: small tunnel distance
- OFF: Large tunnel Barrier

Fan Chen

PURDUE

Fan Chen

TE-TFET device scaling

A scalability to 9nm channel length with constant field scaling

TE-TFET: Energy-Delay Product

Thickness Engineered TFET → TE-TFET

Energy-Delay not much improvement compared to homo-junction BP TFET

Fan Chen

PURDUE

Evaluation of TE-TFET based on phosphorene & Summary

Device	S V_1 Bilayer Graphene V_2 Hf02 V_2 Hf02 V_2 $V_$	V _{TG} Top Gate WTe2 UG343434333333333333333333333333333333 MoS2 Bot. Gate UVBG	P Top Oxide N V _{DS} Source Bot. Oxide Drain
VDD (V)	0.1	0.3	0.4
ION (uA/um)	100	1000	1000
SS (mV/dec)	8	10	15
Energy Delay Product	Energy↓ Delay ↓	Energy↓ Delay ↑	Energy↓ Delay ↓
Scalability	90nm	15nm	9nm
Comments	Difficult Gate Alignment	Device Switching Mechanism	Not much improved than homo BP, Difficult to fabricate
URDUE Fan Chen 64			

Agenda (Finished)

Motivation	• Power Dissipation Limit \rightarrow TFET \rightarrow Low ON \rightarrow 2D	
Method	Open Boundary, Self-consistent and ballistic Calculation	
Bilayer Graphene	 Pro: Low Power, Low Energy, Small Dealy Con: too large to footprint, difficult gates aligning 	
Interlayer TFETs	 Gr/hBN/Gr Matching Experiments → Validates Model MoS2-WTe2 interlayer TFET → Low Energy, Large Delay Different Switching Mechanism 	
Black Phosphorous	 Pro: Scale down to 9nm, Low Energy, Small Delay Con: Not much improvement compared to homo BP TFET, but more difficult to fabricate 	
PURDUE Fan Che	en 65	SIS

Acknowledgements

PhD Committee

Gerhard Klimeck

Michael Manfra

Zhihong Chen

Supriyo Datta

Yong Chen

John Peterson

Rajib

Rahman

Tillmann Kubis

Hesameddin Ilatikhameneh

Archana Tankasala

Tan

Luis Jauregui

Thank you for your attention

Thank you!

