

Steep Sub-threshold Swing Transistors

Hesameddin Ilatikhameneh

PhD Defense School of Electrical and Computer Engineering Purdue University July, 22, 2016

Agenda

Introduction: 1) Motivation for steep transistors 2) Requirements for steep tunnel transistors

Atomistic quantum transport simulation 1) Benchmark with experiment 2) Verify and extend analytic models

Tunnel transistors

- 1) III-V materials
- 2) 2D materials
- 3) Best materials for scaling challenge

Motivation for steep transistors

Motivation for steep transistors

Power dissipation is the main challenge of electronics.

Power dissipation trend

Science 8 August 2014: Vol. 345 no. 6197 pp. 668-673

Cooling capability

en.wikipedia.org

Origin of Power consumption

Origin of Power consumption

What is the origin of power consumption?

တိုင်္လိ **ဂငဂ**

NEM@5

Ideal switch

What is the ideal transistor for low power application?

Silicon MOSFETs

- SS in MOSFETs is limited to 60mV/dec
- Fermi-Dirac distribution has 60mV/dec slope at room temperature.

Challenge of MOSFETs

Scaling transistors are becoming more challenging

Time

PURDUE

 $L_{ch} + V_{DD}$ scaling [ITRS]

Scaling consequence

Frequency

Power

2005: free lunch is over, updated 2009

PURDUE

11

Introduction: 1) Motivation for steep transistors **Reduce power consumption** 2) Requirements for steep transistors

Atomistic quantum transport simulation 1) Benchmark with experiment 2) Verify and extend analytic models

Tunnel transistors

1) III-V materials

NEM

ord nanoHUB.org

- 2) 2D materials
- 3) Best materials for scaling challenge

Agenda

'URDI

Steep transistors

How do Tunnel FETs (TFETs) work?

How do Tunnel FETs (TFETs) work?

0.8

How do Tunnel FETs (TFETs) work?

There are 3 requirements for steep device.

Steep switching requirements

Requirements for SS < 60 mV/dec

1) Effective energy filtering

Example

Schottky barrier is a tunneling device: \rightarrow No energy filtering \rightarrow SS > 60 mV/dec

Steep switching requirements

Requirements for SS < 60 mV/dec

1) Effective energy filtering

Example

Increasing degeneracy \rightarrow Redcued energy filtering \rightarrow SS ~ 60 mV/dec

Optimized source doping level is required.

Steep switching requirements

Requirements for SS < 60 mV/dec

3) High ON-current

Many devices, many materials, many variables

How to find solutions to satisfy these requirements efficiently?

Atomistic quantum transport simulations

Introduction:
1) Motivation for steep transistors
2) Requirements for steep tunnel transistors Energy filtering, High I_{ON} Tunneling distance modulation

Atomistic quantum transport simulation 1) Benchmark with experiment 2) Verify and extend analytic models

Tunnel transistors

- 1) III-V materials
- 2) 2D materials
- 3) Best materials for scaling challenge

Why Atomistic Modeling?

Atomistic simulation captures 2 important aspects of materials

1) Atomic orbital contributions

Why quantum transport?

Equilibrium

Schrodinger equation

 $\mathcal{H}\psi = E\psi$

Non-equilibrium

Contacting Schrodinger: NEGF

$$(E-H-\Sigma)G=1$$

Inject carriers from contacts
 Self energy
 Top Gate
 Oxide
 Oxide
 Oxide
 Scattering processes

NEGF can explain physics of the device out of equilibrium.

Introduction1) Motivation for steep transistors2) Requirements for steep tunnel transistors

Atomistic quantum transport simulation 1) Benchmark with experiment 2) Verify and extend analytic models

Tunnel transistors

- 1) III-V materials
- 2) 2D materials
- 3) Best materials for scaling challenge

Quantum transport: Benchmark

Benchmarking NEGF model with experiment

Quantum transport: Benchmark

Why does scattering matter in heterojunction tunneling devices?

NEGF vs Experiment

NEMØ5

Underlying physics InGaN GaN GaN **E**_c 2 Energy [eV] E_v EF EF -2 0.2 100 150 LDOS rt [nm] 0 Energy [eV] -0.6 -0.8 30 35 40 45 25 Transport [nm]

NEGF can capture physics of tunneling devices

Nitride Tunnel Diode

Benchmarking NEGF model with experiment

'Impact of scatterinfg on heterostructure tunnel junctions' to be published.

Scattering is important in heterojunction tunneling devices.

NEMØ5

Quantum transport: Benchmark

Why does scattering matter in heterojunction tunneling devices?

NEGF + scattering can capture physics of tunneling devices

PURDUE

Density of states with & without scattering

With scattering: States available in the triangular well

Quantum transport: Homojunction TFET

Question: Does scattering affect the performance of homojunction TFET?

Device structure – band diagram

Output

3.35nm

InAs NW

0.2

(b)

0.4

Scattering does NOT impact the results

JOURNAL OF APPLIED PHYSICS 107, 084507 (2010)

Simulation of nanowire tunneling transistors: From the Wentzel-Kramers-Brillouin approximation to full-band phonon-assisted tunneling

Homojunction TFET

Mathieu Luisier^{a)} and Gerhard Klimeck

Introduction

Motivation for steep transistors
Requirements for steep tunnel transistors

Atomistic quantum transport simulation 1) Benchmark NEGF → match experiment 2) Verify and extend analytic models

Tunnel transistors

- 1) III-V materials
- 2) 2D materials
- 3) Best materials for scaling challenge

Agenda

Why do we care about analytic models?

Atomistic NEGF is <u>accurate</u> however ...

- 1) Small dimensions (Diameter < 5nm)
- 2) Time + resources

Analytic models are fast and intuitive however ...

1) Less accuracy

 MoS_2 TFET: I_{ON} (Analytic) > 10³ I_{ON} (NEGF)

DOI: 10.1063/1.4878515

WKB $T(E) = \exp\left[-2\int dx \kappa(x)\right]$

NEGF \rightarrow Correct and guide analytic models

Modeling approaches

NEGF \rightarrow Correction and extension of analytic modeling approaches

Analytic view of TFET

Analytic analysis of tunneling in nutshell

WKB, Kane, FN

Electrostatic

Quantum transport: 3) analytic models

How to make WKB provide results matching atomistic simulations?

Our new analytic model provides results close to NEGF.

JOURNAL OF APPLIED PHYSICS 118, 164305 (2015)

A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green's function simulations

How to make WKB provide results matching atomistic simulations?

Propose analytic potential \rightarrow WKB provides close results to NEGF.

JOURNAL OF APPLIED PHYSICS 118, 164305 (2015)

A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green's function simulations

NEMØ5

Introduction1) Motivation for steep transistors2) Requirements for steep tunnel transistors

Atomistic quantum transport simulation 1) Benchmark 2) Analytic models Simple and verified way to analyze TFETs

Tunnel transistors
1) III-V materials
2) 2D materials
3) Best materials for scaling challenge

Agenda

Most promising device structure for III-V TFET? Gate-all-around nanowire

III-V Homojunction TFETs

The upper limit of current level in III-V homojunction TFETs ~ 100 uA/

um

Even with best gate control (Gate-all-around) → limited I_{ON} Why?

IEEE ELECTRON DEVICE LETTERS, VOL. 37, NO. 1, JANUARY 2016

Can Homojunction Tunnel FETs Scale Below 10 nm?

III-V Homojunction TFETs

Why limited I_{ON}?

Depletion width (W_D)

Pros:1) High doping is feasible

Cons: 2) High ε of channel material

Experiments: W_D > 5nm

Scaling length (λ)

Cons:

1) Thick body

Simulation: Min(λ) ~ 1.5nm Experiments: λ > 5-10 nm

PURDUE UNIVERSITY Large tunneling distance

Solution: Broken gap III-V TFETs

High current levels → Broken gap III-V TFETs ~ 100-1000 uA/um

[InAs/InP] Zhou EDL 2011 [InGaAs] Nogouchi IEDM 2013

Solution: Broken gap III-V TFETs

High current levels → Broken gap III-V TFETs ~ 800 uA/um

45

Challenge of broken gap III-V TFETs

Problem of broken gap III-V TFETs ~ high SS

Challenge of broken gap III-V TFETs

Solution: Nitride Hetero-structure

ON: Tunneling through small gap InN

OFF: Tunneling through large gap GaN

Solution: Nitride Heterostructure TFETs

Why SS < 60 mV/dec can be achieved in Nitride TFETs?

Device structure

Atomistic simulation results

Why electric field in InN region is so high?

Summary of III-V TFETs

Broken gapTFETs

Katsuhiro Tomioka^{1,2}, Masatoshi Yoshimura¹ and Takashi Fukui¹

50

S Mo

Introduction1) Motivation for steep transistors2) Requirements for steep tunnel transistors

Atomistic quantum transport simulation

- 1) Device geometry optimization
- 2) Scattering impact
- 3) Verify and extend analytic models

Tunnel transistors 1) III-V materials

Large body thickness → Large tunneling distance

- 2) 2D materials
- 3) Best material for scaling challenge

Gate

2D materials

Shortcut to end of channel thickness scaling

Performance of TMD TFETs

- Thin channel is NOT enough for high I_{ON}
- Channel material **is** an important factor.

 $V_{dd} = 0.5V$

L_{ch} = 15nm

 $N_{\rm D} = 1e20 \ {\rm cm}^{-3}$

EOT = 0.5nm

Tunneling distance of TMD TFETs

2D materials have small tunneling distance

Depletion width (W_D)

Pros:

Low ε of channel material

Cons:

Chemical doping of 2D materials is in its infancy

N _D	W _D			
1e20 cm ⁻³	2.5 nm			
3e19 cm ⁻³	4.5 nm			

Scaling length (λ)

Advantages: 1) Thin body

λ ~ 0.5nm

W_D is limiting factor

Challenges of TMD TFETs

Main challenges of TMDs

1) Large depletion width (W_D)

Source doping $\uparrow \rightarrow W_{D} \downarrow$

2) Large bandgap (>1eV)

Electrically Doped TFET (ED-TFET)

I_{ON} challenge of electrically doped TFETs?

1) Chemical doping

2) Electrical doping Ec 1.5nm 1.5nm Ev

Is there a way to decrease tunneling distance?

Electric field amplification \rightarrow High I_{ON}

DE-TFET: High performance steep transistor

bU

Vdd = 0.2V

Structure

Atomistic simulation results

- Monolayer WTe₂ channel
- Low-k = air gap
- High-k = HfO_2
- L_{ch} = 12nm

Patent application

- I_{ON} DE-TFET >> I_{ON} of MOSFETs and SS = 10 mV/dec
- No chemical doping or heterostructure \rightarrow No dopant or interface state

Dielectric Engineered Tunnel Field-Effect Transistor

Hesameddin Ilatikhameneh, Tarek A. Ameen, Gerhard Klimeck, Joerg Appenzeller, and Rajib Rahman

DE-TFET Challenges

Challenges:

1) E-field breakdown of channel

2) E-field breakdown of dielectrics

3) Gate leakage between contacts

DE-TFET Challenges

Challenges: 1 and 2) High E-field breakdown

Breakdown field

- Max E in semiconductors ~1V/nm
- Max E in dielectrics ~4V/nm

Maximum breakdown field E_{BM} and bandgap E_G of the dielectrics (insulators) in Figure 1 (T = 300 K)

Material [Data source]	Ta ₂ O ₅ [12]	HfO ₂	ZrO ₂ [15]	AlN	Diamond	Si ₃ N ₄	SiO ₂	Al ₂ O ₃ (sapphire) [20]
$E_g ({ m eV})$	4.2-4.3	5.65 [13]	5-7	6.23 [16]	5.46-6.4 [7]	5.0 [8]	9.0 [8]	18-23
E _{BM} (MV/cm)	>10	13 [14]	20	>15 [17]	21.5 [18]	16 [19]	30 [21]	39

Insensitivity to E

DOI: 10.1109/ICMEL.2006.1651032

Insensitivity to Spacing

Why is I_{ON} insensitive to spacing in some range?

TFET Challenges

Challenges: 2) Leakage between contacts

High transmission

Small $\Lambda \rightarrow$ high transmission

$$T_{BTBT} = exp\left(-C \sqrt{m_t^* E_g} \Lambda\right)$$

Solution

Landauer formula

$$I \propto T(\mu_1 - \mu_2)$$

Similar performance Leakage Gate High-k High-k $\int_{2}^{10^{2}} \int_{2}^{10^{2}} \int_{2}^{2} \int$

10⁻² Work function engineering Gate Workfunction2 function1 0.5 0.4 0 0.1 0.2 0.3 V_{Gate} [V] High-k High-k Channel Source Channel Drain 64

Similar performance

Performance boosters of TMD TFETs

Chemically doped TFET

Summary of TMD TFETs

Tunneling distance

Dielectric engineering♪

 \rightarrow Tunneling distance \sim 1nm

Low-K Gate Source High-K High-K contact

Phosphorene

Armchair

Material properties

Introduction

- 1) Motivation for steep transistors
- 2) Requirements for steep tunnel transistors

Atomistic quantum transport simulation

- 1) Device geometry optimization
- 2) Scattering impact
- 3) Verify and extend analytic models

3) Best materials for scaling challenge

Channel length scaling of TFETs

Steep devices $\rightarrow V_{DD} \downarrow$ Scaled channels $\rightarrow L_{Ch} \downarrow$

Scaling challenge of TFETs

Our target: V_{dd} scaling + L_{ch} scaling

What happens in reality:

We scale V_{DD} down with L_{ch} : L_{ch}/V_{DD} =30 V/nm

Scaling $L_{ch} \rightarrow L_{ch} \sim \land \rightarrow I_{ON} / I_{OFF} \downarrow$

PURDUE

Scaling challenge of TFETs: Best material

1) Best material for ultra-scaled TFETs?

$$T_{ON} = exp\left(-C\sqrt{m_t^* E_g}\Lambda\right)$$
$$T_{OFF} = exp\left(-C\sqrt{m_t^* E_g}L_{ch}\right)$$

Material properties 10⁰ m E_g = cte[♭] m* [m₀] 10⁻¹ 10^{-2} 0.7 0.9 0.3 0.5 E_a [eV] Lower Eg, higher $m^* \rightarrow$ better performance

72

EOT: 0.5nm, N_D=1e20 cm⁻³

$$m \star E_g = cte \rightarrow I_{ON} / I_{OFF} = cte (?)^{3}$$

Why m* and Eg have different impact on performance?

Larger $E_g \rightarrow Larger tunneling distance \land \rightarrow I_{ON} \downarrow$

Best material choice for short channel TFETs

10⁰

The solution of the scaling problem:

Optimum channel material is necessary for ultra-scaled TFETs

NEMØ5

Best channel materials for <u>TFET</u> applications:
1) Low E_g ~ 1.2 V_{DD}
2) High m*

2D materials outperform III-V TFETs in sub 10nm channel lengths.

E_{q} of Bilayer Phosphorene ~ 0.8 eV = 1.3 V_{DD}

Scaling of Phosphorene TFET

Introduction 1) Motivation for steep transistors

2) Requirements for steep tunnel transistors

Atomistic quantum transport simulation

Source

Drain

- 1) Device geometry optimization
- 2) Scattering impact
- 3) Verify and extend analytic models

Tunnel transistors

- 1) III-V materials
 2) 2D materials
- 3) Best materials for scaling challenge 4) What to do for $L_{ch} < 9nm$?

Anisotropic effective mass of Phosphorene

Effective mass of phosphorene is very anisotropic $(m_x^*/m_y^* >> 1)$

Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility

Han Liu,^{†,‡} Adam T. Neal,^{†,‡} Zhen Zhu,[§] Zhe Luo,^{‡,⊥} Xianfan Xu,^{‡,⊥} David Tománek,[§] and Peide D. Ye^{†,‡,*}

Phosphorene Nanoribbon TFET

Is it possible to have benefits of both directions?

NEMØ5

45°

L-shaped phosphorene TFET

How does L-shaped TFET work?

Using a material with anisotropic m* and L-shaped gate have benefits of •High I_{ON} / I_{OFF} SCIENTIFIC REPORTS

Edge roughness challenge

Nano-ribbons suffer from edge roughness

Solution: edge-less pattern

Summary

2 patent applications: DE-TFET and L-gate design

Coauthor of 21 Journal papers:

2 Scientific reports,1 Nano letter, 1 PRB, 11 IEEE, 1 JAP, 1 Phys. B, etc.

Coauthor of 25 conference presentations

Coauthor of 13 conference proceedings

Coauthor of 3 nanohub tools

1 invited talk

. . .

Acknowledgements

Thank you for your attention

PhD Overview

Coding

Mode-space	Strain relaxation	Quantum transport	Phonon spectra & Unfolding

Research

Back up slides

NEMØ5

Mode-space approach for tight-binding Hamiltonian

INTRODUCTION

- NEGF challenge → large device dimensions
- Motivation of mode-space approach is to reduce the size of Hamiltonian → speed
- Previously, mode-space approach have been used for effective mass Hamiltonians
- But previous method does not work w/ TB.

ACHIVEMENTS

- Generic solver to reduce Hamiltonian size
- Applicable to both electrons and phonons

RESULTS

- Milnikov approach is implemented in a generic way.
- Good match between mode-space I-V and real space
- Speed up of 100-1000 were obtained in quantum calculation part.

Universal Behavior in strain in quantum dots

Device: self-assembled quantum dots

Problem:

NEM@5

- Strain distribution affects electronic properties significantly.
- Atomistic strain is too expensive to compute (~ 10M atom sim).
- Analytical strain is inaccurate and exist only for cuboid shape.

Objective:

• Significantly reduce computations.

Results / Impact:

- Atomistic strain depends on aspect ratio and materials and not on individual dimensions.
- Fitted compact expressions that provide atomistic strain.
- Compact model (EM) that sacrifices 5% accuracy but cost 20K less computations.

Prior analytic model vs atomistic

The bandgap of bilayer graphene can be tuned by vertical field.

Electrical field determines both bandgap and doping in BLG.

Direct observation of a widely tunable bandgap in bilayer graphene

Yuanbo Zhang¹*, Tsung-Ta Tang¹*†, Caglar Girit¹, Zhao Hao^{2,4}, Michael C. Martin², Alex Zettl^{1,3}, Michael F. Crommie^{1,3}, Y. Ron Shen^{1,3} & Feng Wang^{1,3}

Bilayer Graphene Tunnel Field-Effect Transistor

NEM@5

Phosphorene Tunnel Field-Effect Transistor

E-K Equilibrium-NonEQuilibrium Model (EK-EQNEQ)

Devices: Nitride Tunnel Hetero-structures **Problem:**

- Barrier is too long to transport ballistic
- Quasi-bound states are not filled ballistic

Approach:

NEMØ5

- Divide device into two Equilibrium and one Noneequilibrium regions.
- Region boundaries depend on E-K band diagrams

Results / Impact:

New EQ-NEQ model matches well with measurements of Nitride diodes (Succeeded where ballistic have failed).

1) Conventional NEGF

2) Old EQ-NEQ model

3) New EQ-NEQ model

TMD Tunnel Field-Effect Transistor

Required high doping levels is experimentally challenging

NEM 5

Dielectric Engineered Tunnel Field-Effect Transistor

Advantage of DE-TFET over ED-TFET:

Much less sensitivity on oxide thickness

Is it possible to reconfigure btw N-TFET and P-TFET by changing biasing?

NEMØ5

Scaling challenge of TFETs

Multilayer phosphorene:

- E_q ranges from 1.4eV (1L) to 0.4eV (bulk)
- Smaller E_q and m* compared with TMDs
- Direct bandgap even in multilayer case

Some materials (gray) can perform with ultra-scaled L_{ch} and V_{DD}

- 1) Motivation for steep transistors
- 2) Requirements for steep tunnel transistors

2) Scattering impact

NEMØ5

Introduction

Homojunction TFET (Small), Heterojunction TFET (Significant)

3) Verify and extend analytic models

a) Fowler-Nordhem, b) WKB

Tunnel transistors

- 1) III-V materials
- 2) 2D materials
- 3) Best materials for scaling challenge

Quantum transport: 3) analytic models

How good are analytic models?
 Extending these models for fast & accurate prediction.

A) Fowler-Nordheim

Tunneling from metal due to high electric field

B) WKB

Semiclassical treatment of tunneling

 $T(E) = \exp\left| -2 \right| \, \mathrm{d}x \,\kappa(x)$

Quantum transport: 3) analytic models

Question: What is the proper definition of tunneling mass m_t ?

How to make WKB provide results matching atomistic simulations?

Propose analytic potential \rightarrow WKB provides close results to NEGF.

JOURNAL OF APPLIED PHYSICS 118, 164305 (2015)

A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green's function simulations

NEMØ5

How to make WKB provide results matching atomistic simulations?

Depletion width is significant part of tunneling distance

108

Tunnelfet tool on nanoHUB

Free online TFET simulation tool

https://nanohub.org/tools/tunnelfet/

Device geometry

Channel material

🗙 Tunnel-FET Com	pact Model	in - Die
<u>F</u> ile		
1 Device Setup +	Advanced Options 🔸 🕄 Simulate	Ξ
Device stucture M	laterial properties	
Material		
Technology: 2	D	
III-V material: Ir	As	
2D material: P	hosphorene	•
Number of Layers: 2		+ -
Properties of the mat	reial	
Eg:	0.94eV	
Dielectric Constant:	5.02	
me_x:	0.18	
me_Y:	1.13	
mh_×:	0.15	
mh_y:	1.81	
	Ac	Ivanced Options >
	הסרובי ויסמאויו אסטור יואסוור	

Outputs

🗙 Tunn	el-FET Compact Model	- 🗆 🗙
<u>F</u> ile		
O Devic	e Setup 🔸 🙆 Advanced Options 🔸 🔞 Simulate	Ξ
Result: Id	I-Vg	• 💀
(un/ym) sp_1 10-05 -	I='ug (c_Ev_ON_State ic_Ev_Off_State iomplex Bands 	
1 result		Clear
	< Advanced Options	

Prof. Chen Prof. Appenzeller

Can we use dynamic band gap to make device steeper?

- Only if the rate of change in band gap is high enough.
- This condition is not satisfied in BLG and TMDs

Energy conservation \rightarrow Impossible Slope > S₀

Hesameddin llatikhameneh

Expectations from electrically doped TFETs

Electrically Doped TFET (ED-TFET)

Hesameddin Ilatikhameneh

Electrically doped TFETs ε_{ox} versus thickness of oxide

Oxide thickness is the major factor

Electrically doped TFETs Scaling theory

ED-TFET: Analytic modeling

Scaling theory

Analytic model confirms: oxide thickness is major factor

IEEE ELECTRON DEVICE LETTERS, VOL. 36, NO. 7, JULY 2015

Scaling Theory of Electrically Doped 2D Transistors

Hesameddin Ilatikhameneh, Gerhard Klimeck, Joerg Appenzeller, and Rajib Rahman

17

Challenges and solutions of steep devices 1) III-V materials 2) 2D materials **Electrically tuned bandgap TFETs** 3) Scaling challenge

Tunable bandgaps in 2D materials

Vertical field changes the bandgap of 2D materials

Direct observation of a widely tunable bandgap in bilayer graphene

Bilayer Graphene TFET

Vertical field changes the bandgap of 2D materials

$$log(T_{\rm OFF}) \propto L_{ch} \sqrt{m_r^* E_g} \xrightarrow{0.2 \ 0.3 \ 0.4 \ 0.5} \frac{10^2}{10^1}$$

Scaling transistors

Sub 10nm MOSFETs

Why did III-V MOSFETs fail? Low effective mass

Scaling down $L_{ch} \rightarrow$ Transparent channel barrier

Sub 10nm MOSFETs

Introduction: 3) Wentzel-Kramers-Brillouin

Hesameddin Ilatikhameneh

Hesameddin Ilatikhameneh

Develop a tool to simulate any conventional homojunction TFET in few minutes

Hesameddin llatikhameneh

1st Patent: Dielectric Engineered TFET (DE-TFET)

DE-TFET

Optics: Quantum dots and quantum wells

OCC nanoHUB.org

Can we electrically tune the optical response of a device?

Bilayer MoS₂ with vertical electric field.

Connection to the previous works

Introduction:1) Complex bandstructure

Previous work

Appropriate methods for complex EK

- Full band methods → accurate complex EK
- Captures ellipticity
- Numerical calculation burden

Analytic equation for complex EK

- Recently Guan et al. provide an analytic equation
- Error less than 1.4% compared to TB

1296 IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 9, SEPTEMEBR 2011 Complex Band Structures: From Parabolic to Elliptic Approximation

Ximeng Guan, Member, IEEE, Donghyun Kim, Krishna C. Saraswat, Fellow, IEEE, and H.-S. Philip Wong, Fellow, IEEE

Analytic vs numerical complex EK

Analytic equation for complex bandstructure

Introduction: 2) Scaling length

Hard to solve 3D Poisson equation analytically \rightarrow Is there a way to approximate?

Introduction: 3) Wentzel–Kramers–Brillouin

Hesameddin Ilatikhameneh

Steep SS device ideas 2D TFETs

Thinner the channel \rightarrow shorter the tunneling distance

Thick channel

UN

Analytic modeling: Modified Fowler-Nordheim

R. Salazar

Achievement: a modified FN equation which considers both conduction and valence bands

Steep SS device ideas

Hesameddin llatikhameneh

Can we use dynamic band gap to make device steeper?

• Only if the rate of change in band gap is high enough.

This condition is not satisfied in BLG and TMDs

Steep SS device ideas

Hesameddin Ilatikhameneh

Steep SS device ideas: Prior art: BLG FET

Working Principle

Electrically reconfigurable to N-TFET (p-i-n) and P-TFET (n-i-p)

Ideas:

 1) How to increase ON-current of TFETs? Increase electric field by

 a) Internal polarization
 b) 2D channel material
 c) dielectric engineering

 Or use dynamic band gap

Channel material: Transition metal dichalcogenide

Methods to create tunnel junction

Methods to create tunnel junction

Tunnel junction is between

- a) Highly doped source
- b) Channel

Tunnel junction is between

- a) Gate1
- b) Gate2 (fixed potential)

Previous works on TMD TFETs

Key messages

- Thin channel is enough for high performance.
- Channel material is NOT an important factor. .
- I_{ON} > 150 uA/um for almost all TMDs. ۲

Method

- Non-self-consistent WKB simulation
- Source junction is neglected in the modeling.

Monolayer Transition Metal Dichalcogenide Channel-Based Tunnel Transistor Ram Krishna Ghosh and Santanu Mahapatra, Senior Member, IEEE

Abstract-We investigate the gate controlled direct band-toband tunneling (BTBT) current in monolayer transition-metal dichalcogenide (MX₂) channel-based tunnel field effect transistor (TFET). Five MX₂ materials (MoS₂, MoSe₂, MoTe₂, WS₂, WSe₂) in their 2-D sheet forms are considered for this purpose. We first study the real and imaginary band structure of those MX_2 materials by density-functional theory (DFT), which is then used to evaluate the gate-controlled current under the Wentzel-Kramers-Brillouin (WKB) approximation. It is shown that all five MX₂ support direct BTBT in their monolayer sheet forms and offer an average ON current and subthreshold slope of 150 $\mu A/\mu m$ (at $V_d = 0.1V$) and 4 mV/dec, respectively. Furthermore, we also demonstrate the strain effect on the complex band tures and the performances of MX₂ based TFETs. It is

 $V_{dd} = 0.1V$

Atomistic simulation of chemically doped TMD TFETs

Atomistic simulation

Key messages

- Thin channel is **NOT** enough for high performance.
- Channel material **is** an important factor.
- I_{ON} < 150 uA/um for almost all TMDs.

Simulation method

- Self-consistent Poisson-NEGF simulation
- Full band sp³d⁵ 2nd nearest neighbor tight binding

Tunnel Field-Effect Transistors in 2-D Transition Metal Dichalcogenide Materials

HESAMEDDIN ILATIKHAMENEH¹, YAOHUA TAN¹, BOZIDAR NOVAKOVIC¹, GERHARD KLIMECK¹, RAJIB RAHMAN¹, AND JOERG APPENZELLER²

 I_d - V_q of different TMDs

Results

 $V_{dd} = 0.5V$

Old vs. new analytic potentials

What was wrong in the previous analytic WKB models?

Correct potential + WKB \rightarrow NEGF results **Old analytic profile** New analytic profile Gate Gate Gate Chemically Oxide Oxide Oxide doped Source Channel Source Source Channel Channel Band diagrams λ λ λ Illustration Ē W_ Ec E, Ev Both depletion width of Bending distance in tunnel source (W_D) and λ are **Comments** junction is due to λ important. Underestimation of tunneling distance A 151 .atikhameneh

R. Salazar

Old vs. new analytic potentials Comparison with NEGF + 3D Poisson

WKB + <u>old</u> potential vs. SCF NEGF

WKB + <u>new</u> potential vs. SCF NEGF

New analytic model Comparison with NEGF + 3D Poisson

Performance boosters for TMD TFETs

Chemically doped TFETs Non-idealities

Future work proposal:

Systematic study of non-idealities such as atomistic dopants:

Hesameddin llatikhameneh

Chemically doped TFETs Non-idealities

Future work proposal

Previous works: roughness in graphene nano-ribbons

Edge roughness creates local states inside the band gap

Appl. Phys. Lett. 104, 243113 (2014)

Hesameddin llatikhameneh

Methods to create tunnel junction

- a) Highly doped source
- b) Channel

Advantage:

No dopant states within the bandgap \rightarrow Good OFF-state performance

Expectations from electrically doped TFETs

Electrically Doped TFET (ED-TFET)

Hesameddin Ilatikhameneh

Electrically doped TFETs ε_{ox} versus thickness of oxide

Oxide thickness is the major factor

Electrically doped TFETs Scaling theory

ED-TFET: Analytic modeling

Scaling theory

Analytic model confirms: oxide thickness is major factor

IEEE ELECTRON DEVICE LETTERS, VOL. 36, NO. 7, JULY 2015

Scaling Theory of Electrically Doped 2D Transistors

Hesameddin Ilatikhameneh, Gerhard Klimeck, Joerg Appenzeller, and Rajib Rahman

62

οφο nanoHUB.org

Electrically Doped TFETs

A low-k dielectric should be used for thick back oxides

163

Future work

Future work proposal:

Simulation and analysis of device structures closer to the experimental setups (experiments by A. Prakash and T. Shen)
1) Contacts on top (not side) of 2D material
2) Strained channels

Simulation: side contacts

Experiment: contacts on top of channel

Electrically Doped TFETs:

- Advantages: No chemical doping → Less dopant states
- Main challenge:

 $\lambda = f(t_{ox}) \rightarrow Higher \epsilon_{OX}$ doesn't help.

- Solution:
 - **DE-TFET**

Dielectric Engineered TFET (DE-TFET)

166

DE-TFET vs ED-TFET

Dielectric Engineered TFET (DE-TFET) Idea

Dielectric Engineered TFET (DE-TFET) Idea

Hesameddin Ilatikhameneh

DE-TFET: High performance steep transistor

• High-k = HfO_2

PURDUE UNIVERSITY

DE-TFET: Less sensitivity to the device dimensions

DE-TFET Analytical model

DE-TFET Analytic modeling

Numerical vs Analytic potential

Good match

Electrically doped TFETs Performance boosters

λ

•
$$\lambda = function(t_{ox}, S, \varepsilon_S)$$

Design Rules for High Performance Tunnel Transistors from 2D Materials

DE-TFETs Future work

Mehdi Salmani

Future work proposal for DE-TFET:

1) Optimize the device:

- For low V_{dd} applications
- Find the best channel material and geometry (e.g. nanowires)
- 2) Provide a road-map:
- Make a generation of optimized DE-TFETs ($L_{ch} = 15$ nm to $L_{ch} = 5$ nm)

Summary

Backup Slides

TABLE I MAXIMUM BREAKDOWN FILED E_{BM} and Bandgap E_G of the semiconductors in Figure 1 (T = 300 K)

Material	InSb	InAs	GaSb	Ge	Si	GaAs	InP	AlAs	GaP	:	SiC[7]	_	CdS	GaN
[Data source]	[7]	[7]	[7]	[7]	[7]	[11]	[7]	[9]	[7]	3C	6H	4H		[7]
E_g (eV)	0.17	0.354	0.726	0.67	1.11	1.43	1.34	2.17	2.26	2.36	3.0	3.23	2.42 [8]	3.37
E_{BM} (MV/cm)	0.001	0.04	0.05	0.1	0.3	0.6	0.5	0.6	1.0	1.0	5	5	1.8 [10]	5

Parameter	Symbol	Constant Field Scaling	Constant Voltage Scaling	Constant Voltage Scaling with velocity saturation
Gate length	L	1/α	1/α	1/α
Gate width	W	1/α	1/α	1/α
Field	ε	1	α	α
Oxide thickness	t _{ox}	1/α	1/α	1/α
Substrate doping	N_{a}	α^2	α^2	α ²
Gate capacitance	C _G	1/α	1/α	1/α
Oxide capacitance	C ox	α	α	α
Transit time	t,	$1/\alpha^2$	$1/\alpha^2$	1/α
Transit frequency	fr	α	α^2	α
Voltage	V	$1/\alpha$	1	1
Current	Ι	1/α	α	1
Power	Р	$1/\alpha^2$	α	1
Power-delay	$P \ \ d t$	$1/\alpha^3$	1/α	1/α

http://www.leb.eei.uni-erlangen.de/winterakademie/2006/result/content/course03/pdf/0306.pdf

Materials **2014**, *7*(4), 2913-2944; doi:<u>10.3390/ma7042913</u> *Review* **Emerging Applications for High K Materials in VLSI Technology Robert D. Clark** TEL Technology Center, America, LLC, NanoFab South 3

Hesameddin llatikhameneh

Quantum transport: 1) device optimization

Simulation of III-V HEMTs → Match with experiment → Fast optimization

Agenda

Introduction1) Motivation for steep transistors2) Requirements for steep tunnel transistors

Atomistic quantum transport simulation1) Device geometry optimization2) Scattering impact

3) Verify and extend analytic models

Tunnel transistors

- 1) III-V materials
- 2) 2D materials
- 3) Best materials for scaling challenge

Challenge of broken gap III-V TFETs Solution: Nitride Hetero-structure

ON: Tunneling through small gap InN

OFF: Tunneling through large gap GaN

Solution: Nitride Heterostructure TFETs

Why SS < 60 mV/dec can be achieved in Nitride TFETs?

Quantum transport: 2) Important physics

Question: Does scattering affect the performance of TFET?

Scattering has <u>NO</u> impact on homojunction TFETs w/ direct gap materials.

Simulation of nanowire tunneling transistors: From the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling Mathieu Luisier^{a)} and Genard Klimeck

JOURNAL OF APPLIED PHYSICS 107, 084507 (2010)

