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Shrinking device dimensions call for 
atomistic level device simulations 

http://nextbigfuture.com/2011/06/intel-roadmap-from-june-2011-
with-7nm.html 

S. Lee, et al. IEEE. Trans. Elect. Dev. Lett, Vol 
35, p 621 (2014) 

Device level simulations are needed to understand 
and predict nanoscale device performance. 

Device fabrication Device design 

How to understand 
device performance? 

How to predict device 
performance? 
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 Challenges of device level simulations 

Low dimensional structures Strained materials 

Complicated systems 
Ø Complicated geometries 
Ø Multiple materials 
Ø Strain,Interfaces, disorders 

Challenging simulation domain  
Ø 10000 ~ 10 million atoms 

(active domain) 
 

interfaces 

Transferable model Computationally efficient model 

What model can we use for device level 
simulations? 
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Candidate methods for device 
simulations 

To simulate a real device 

Empirical methods, e.g. 
empirical tight binding (ETB) 

Ø  Requires fitting parameters, 

Ø  Have been applied to device 
level simulations 

 

Ab-initio methods 
 
Ø  First principle  
Ø  Use fundamental material 

information  
Ø  A few parameters 

Ø  Provide physical insights 
(Ek, wave functions) 

accuracy and 
computational 

capability are being 
improved Why are ETB models 

so efficient? 
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ETB is a computationally efficient  
atomistic model	

A few Localized basis 
functions per atom 

Ø Ylm(θ,φ)Rn,l(r) 
Ø 10~20 per atom 
Ø No explicitly Rn,l(r) 

Short range 
Interactions  

Ø Nearest neighbors 
interactions 

Empirical method 

Ø Slater Koster type 
formula with  

    fitting parameters 

Hamiltonian Matrix size:   
NatomNorbitals 

Sparse Hamiltonian 
matrix 

Fast Hamiltonian 
construction 

p orbitals 

s orbital 

( )
,

x,y

s s ss

pp pp

H V

H lm V V
σ

σ π

=

= −

How does ETB Hamiltonian look like? 
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Tight binding model 

NatomNorbitals 

Sparse 
Hamiltonian 
matrix 

How do we get the parameters 
for the ETB model? 

Ø  Materialsà parameters 

Ø  Atoms à onsite blocks 

Ø  Bonds à interatomic           
                     interactions  
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Eg Eg(L) 

Important band edges 

GaAs 

Strained 
materials 

Strained zincblende 
structure  

 

 
Traditional way of parameterizing  

ETB models has shortcomings  
	

Unstrained 
materials 

perfect zincblende 
structure  

ETB parameters: 
Fit to theoretical or experimental  

band structures 
mc* 

Important  
effective 
mass 

ETB models parameterized by traditional fitting have 
problems! 
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Outline 

Shortcomings of ETB 
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2 key problems of ETB models  
parameterized by traditional fitting	

ETB shortcomings 

Unphysical results in confined structures 

Ambiguity for heterostructures 

1 

2 
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Strained nano structures, 
heterojunctions … 

nanostructures 
 

Strained 
materials 

Strained zincblende 
structure  

 

 
More concern about ETB 

	

Unstrained 
materials 

perfect zincblende 
structure  

ETB parameters: 
Fit to theoretical and experimental 

band structures 

Ideal/Simple systems Realistic/Complicated 
systems 

Are ETB models good enough for 
nanostructures? 
Ø  Confined structures (Problem 1) 
Ø  Hetero structures (Problem 2) 

 



13 

2 key problems of ETB models  
parameterized by traditional fitting	

ETB shortcomings 

Unphysical results in confined structures 

Ambiguity for heterostructures 

1 

2 
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Confined states in H-passivated 
structures 

As 
Ga 

H 

Confined CB and VB states are expected 
in H-passivated UTBs 

Conduction band 
(CB) of GaAs 

Valence band (VB) 
of GaAs 

As-H anti-
bonding states  

As-H bonding 
states  

Quantum well for 
CB states 

Quantum well for 
VB states 

Confined 
CB states 

Confined 
VB states 

E
ne

rg
y 

position 
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Ø Confined states 
Ø Explicit passivation 

Ø  Un-confined states 
Ø  Implicit passivation 

Ab-initio wave function ETB wave function (existing model/
parameters) 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

E
TB

 

Problem 2 : unphysical results in 
confined structures. 

As 
Ga 

H 

Existing ETB model/parameters  
à unphysical states in some nanostructures 

Top VB states in a As terminated GaAs UTB 
A

b-
in

iti
o 

ETB ref :  T. Boykin et al. 
PRB 66, 125207 (2002). 
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Problem 2: (example a) 
Ambiguity for heterostructures 

 
Traditional ETB parameters at interface are not 

clearly defined à ambiguous results.  
 

based on 
assumption 

without 
validation 

Interface As atoms à As in GaAs 
 

EAs(interface) = EAs(GaAs) 

InAs GaAs 

Assumption 1 

Interface As atoms à As in InAs 
 

EAs(interface) = EAs(InAs) 

InAs GaAs 

Assumption 2 

InAs GaAs 

Assumption 3 

Interface As atoms à average of GaAs 
and InAs 

 
EAs(interface) = (EAs(GaAs) + EAs(InAs))/2 

EAs(GaAs) ≠ EAs(InAs) 

 
EAs(interface)  = 

EAs(GaAs)  
E As(InAs) 
(EAs(GaAs) +E As(InAs))/2 

? 
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GaAs InSb InAs GaSb 

Problem 2: (example b) 
Ambiguity for heterostructures 

As 
In 

Ga 
Sb 

Ultra small InAs/GaSb superlattice 
Ø  Four different atoms, no common cation/anions 
Ø  Or GaAs/InSb superlattice 
Ø  Where are interfaces? (Everywhere) 

 
Traditional ETB parameters at interface are not 

clearly defined à ambiguous results.  
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Outline 

Solutions for ETB’s shortcomings  
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Problems and solutions 

1.  Unphysical wave 
functions in UTBs 

  

Ø  Parameterization algorithm from 
ab-initio calculations  

Ø  Application to unstrained bulk 
Ø  Application to ultra thin bodies 

(UTBs) 

Problems of traditional ETB 

 
2.   Ambiguities at material 

interfaces 
 

Solutions and applications 

Ø  Environment dependent strain 
model  

Ø  Transferability to interface 

Can we solve these problems 
without losing efficiency? 
Ø  Keep number of basis 

functions 
Ø  Keep interaction range (1st 

nearest neighbors) 

ETB model : sp3d5s*+SO  with 1st 
nearest neighbor interactions 
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Solutions for ETB’s shortcomings 
Overview 

Solutions and applications  

Parameterization algorithm from ab-initio calculations  

Application to unstrained bulk 

Application to ultra thin bodies (UTBs) 

1 

2 

3 

Environment dependent strain model  4 

Transferability to interface 5 
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How to improve traditional 
parameterization? 

Ambiguous ETB parameters 
 from traditional parameterization 

Ø  Different parameter sets exist 
Ø  Fitted to the same targets (band 

structures) 
Ø  Almost Identical band structure ~ 

Very different parameters 
 

Ø  Degree of freedom exist in pure 
band structure fitting.  

Ø  More fitting targets can be 
included  

GaAs 

Problematic ETB 
wave functions 

Include wave 
functions into fitting E

TB
 

TB ref :  T. Boykin et al. 
PRB 66, 125207 (2002). 
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How to get good TB parameters? 
make use of ab-initio results 

Traditional way  This work 
 

Fitting to experimental band 
structures. 

  

 
Ab-initio calculations 

+ TB parameters construction 

Problems: 
Ø Ambiguous parameter sets 
Ø Unphysical results in some 

applications 
 
 
 
 

Advantages:  

Ø  Efficiency of the ETB model 
maintained. 

 

Ø  Physical insights from 
ab-initio wave 
functions 

Ø  ETB wave functions 
match ab-initio ones 

Less 
empirical 

parameters 

Not enough physical insights 
are considered in fitting 

How to relate ETB wave functions to ab-
initio ones? 
Ø  ETB basis functions  
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What is missing in the ETB basis function? 

	

Can not get Rn,l(r): 
Ø  No fitting parameters for Rn,l(r) 
Ø  No targets requires basis 

functions 

p orbitals 

s orbital 

Basis function: Ylm(θ,φ)Rn,l(r) 

Unstrained 
materials 

 

ETB parameters: 
Fit to theoretical or experimental  

band structures 

Radial parts of the basis functions  
in traditional ETB are missing 
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Process of TB parameteriztion  
from ab-inito calculations 

Iteratively 
optimize the 

TB basis 
functions and  
Hamiltonian	

Inputs:  ab-initio band structures and wave functions 
Outputs: TB parameters, TB basis functions 
 
In the fitting process,  
Ø  match TB band structure and wave functions with 

ab-initio results. 

1.  ab-initio calculations à E(k), φ(r), Hab-initio  
2.  initial TB basis functions � à radial part R(r) only  

 initial TB Hamiltonian H  
3.  Represent ab-initio wave functions on ETB basis 

functions 
4.  Solve TB band structures and wave functions 
5.  Compare the TB band structures and wave functions 

to ab-initio targets; 
6.  Reconstruct exact TB basis functions.   

Y Tan et al. Phys. Rev. B 92, 085301 
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Band structure of bulk GaAs: good 
agreement between ETB and ab-initio 

Bulk GaAs 

HSE06 is a kind of hybrid functional used in ab-initio calculations.  

sp3d5s* ETB model + 
nearest neighbor 
interactions. 

this work 

ETB band agree with HSE06 calculations in bulk 
case 

ETB ref :  T. Boykin et al. 
PRB 66, 125207 (2002). 
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Ga As 
 
 
 s orbitals 

 
 
 
 
 

 
 
p orbitals 

 
 
 
 
 
 
 
 

ETB Basis functions for GaAs 

x (a0) 

y (a0) 

ETB basis functions: 
Ø  Have the feature of 

sp(d) orbitals 
Ø  Highly localized 

(within 0.4a0) 

Highly localized ETB basis 
 functions are obtained 

0.4a0 
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Implicit passivation model Explicit passivation model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ETB models for passivated UTBs	

Previous work: implicit passivation model 
This work: explicit passivation model 

Surface As 
Onsite	

As 
Ga 
H 

Onsites (H)	

Coupling  
(H-As) 	

As 
Ga 
H 

Universal 
parameters Extra fitting 

parameters 
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As terminated GaAs UTB:  
Band structures  

GaAs UTBs 
E

ne
rg

y 
(e

V
) 

Ø  sp3d5s* ETB model + nearest 
neighbor interactions. 

Ø  Bulk GaAs parameters 
presented are used 

Ø  Use explicit passivation model 
 

As 
Ga 

H 

ETB band agree with HSE06 calculations  
in UTB case.  
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As terminated GaAs UTB:  
confined wave functions(top VB states) 

Without basis functions: 
Ø  Discrete  
Ø  Cations and anions form 

different envelope 

With basis functions: 
Ø  Continuous  
Ø  Subatomic resolution can be 

achieved 

E
TB

 

As 
Ga 

H 

Realspace ETB wave function match HSE06 wave 
functions well.  
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What’s the problem of previous results?	

Implicit passivation	 Explicit  passivation	

 
 

Previous  
parameters	
 

 
 
 
 
 
 

 
 
 

 
 

parameters	
by this work 

 
 
 
 
 
 

 
 
 

More confined states   

M
or

e 
co

nf
in

ed
  s

ta
te

s 

Explicit passivation model and better ETB 
parameters à more physical VB states	

What property does the 
new parameters 

improve? 

ETB ref :  T. Boykin et al. 
PRB 66, 125207 (2002). 
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UTB wave functions	 Bulk wave functions	

 
 
 

Previous 
parameters	

 
 

 
 
 

Parameters 
In this work	
	

E
TB

 

Problem of the previous parameters:  
d-orbitals contribute too much	

Fitting of ETB 
wave functions 
constraint the d 
contribution  

E
TB

 

E
TB

 

New parameters have better quality 
à Wave function is properly controled	

d-orbital 
contribute too 

much. 

E
TB
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Summary 

Ø  Tight binding parameter obtained from ab-
initio calculations has better transferability; 

Ø  TB model with nearest neighbor interactions 
can work for unstrained bulk and UTBs. 

Ø  Unphysical TB states in GaAs UTBs are 
eliminated. 



40 

Solutions for ETB’s shortcomings 
Overview 

Solutions and applications  

Parameterization algorithm from ab-initio calculations  

Application to unstrained bulk 

Application to ultra thin bodies (UTBs) 

1 

2 

3 

Environment dependent strain model  4 

Transferability to interface 5 



41 

Solutions for ETB’s shortcomings 
Overview 

Solutions and applications  

Parameterization algorithm from ab-initio calculations  

Application to unstrained bulk 

Application to ultra thin bodies (UTBs) 

1 

2 

3 

Environment dependent strain model  4 

Transferability to interface 5 



42 

Environment dependent ETB model 

Ga-As bond 
in GaAs 
material 

Ga and As  
atom in GaAs  

material 

Ga atom and  
its environment 

Ga-As bond and  
its environment 

Traditional ETB 
model 

Environment dependent ETB 
model (this work) 

 
Onsite blocks 

 
Atom + material 

 
Atom + environment 

 
Interatomic 
interaction 

blocks 

 
Bond + material 

 

 
Bond + environment 
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Environments:  
(the status of neighbors) 

Atom types of neighbors Bond lengths Bond angles 

 
 
 
 
 
 
 
 
 

What is the environment?  

Hydrostatic 
strain	 strains 	

2

ε
ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

ETB model in this work 
à Environment dependent Hamiltonian 
Ø  strains 
Ø  Interfaces 
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Si under hydrostatic strain 

The TB model in this work can be applied to hydrostatic 
strain cases 

With hydrostatic strain: 
Ø  Band gaps will change; 
Ø  Indirect gap à direct 

gap. 
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Strained effect to valence bands 

111 ß Γ à 001 

unstrained  

strained 

111 ß Γ à 001 

ETB model in this work reproduce 
the strain valence bands.	

Valence band splitting 

2

ε
ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

ETB ref :  T. Boykin et al. 
PRB 66, 125207 (2002). 
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Strained effect to  
conduction bands (X valleys) 

Band edge of X valleys 
 
 
 
 
 
 
 
 
 
 
 
 

ETB model in this work reproduce the strain 
behavior of CB(X valleys). 	

2

ε
ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

ε
ε
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦Unstrained  

Strained  

ETB model by this work show better 
result than existing TB model for 

conduction bands 

diagonal 
strain 

Off-diagonal 
strain 

ETB ref :  T. Boykin et al. 
PRB 66, 125207 (2002). 
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Strained GaAs/AlAs superlattices 

 

As 
Ga 
Al 

Existing ETB model shows 
significant differences in a GaAs/

AlAs superlattice 

Existing ETB 

010 011 G 010 011 

ETB This work   

ETB ref :  T. Boykin et al. PRB 66,    
125207 (2002). 
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Strained GaAs/AlAs superlattices 

010 011 

010 G

011 
BZ 

ETB calculations in this work :  
Ø  sp3d5s* +SO 
Ø  1st nearest neighbor interaction 
Ø  Negligible built-in potential  

010 011 

As 
Ga 
Al 

ETB in this work can accurately calculate 
band structure of GaAs/AlAs superlattices 
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Strained InAs/GaSb superlattices: 

 

Existing ETB model 
shows significant differences in a 

InAs/GaSb superlattice 

010 011 

ETB This work   

As 
In 
Ga 
Sb 

Existing ETB 

010 011 G 

InAs GaSb 

ETB ref : J. Jancu, et al. PRB, 
57, 6393 (1998). 
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Strained InAs/GaSb superlattices 

010 G

011 
BZ 

ETB calculations in this work:  
Ø  sp3d5s* +SO 
Ø  1st nearest neighbor interaction 
Ø  Negligible built-in potential  

ETB in this work can accurately calculate 
band structure of InAs/GaSb superlattices 

010 011 010 011 

As 
In 
Ga 
Sb 

Bonds involved: 
In-As, 

Ga-Sb, 
In-Sb, 
Ga-As 
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4 layers 8 layers 12 layers 
 
 
 

More superlattices:  
superlattices with common anions 

Superlattices with common anions 

Band gaps of different superlattices by 
ETB agree with HSE06 calculations. 
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Outline 

Summary & Outlook 
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Summary 

Ø  Traditional tight binding parameterization has problems; 

Ø  Tight binding parameterization from ab-initio calculations is 
developed in this work; 

Ø ETB parameters with better transferability and explicit ETB basis 
functions are obtained; 

Ø Application to unstrained and strained materials à good 
agreement with ab-initio bands is achieved; 

Ø Application to nanostructures (UTBs and superlattice) à good 
transferability can be achieved with 1st nearest neighbor ETB 
models. 
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Room temperature ETB parameters 	

Motivation: 
Ø Ab-initio calculations usually assume zero 

temperature. 
Ø But device simulations require room 

temperature tight binding parameters. 
 
Approach: 
Ø Effect of room temperature is approximated 

by hydrostatic strain. 
   E(k, T) ≈ E(k, δa0)  

Ø Environment dependent strain ETB model 
Ø Ab-initio mapping algorithm to extract ETB 

parameters. 

Results: 
Ø  Ab-initio band structures matching room 

temperature experimental results are 
obtained. 

Ø  introduce of strain only change wave function 
slightly 

Ø  ETB parameters for room temperature are 
obtained.  

Impact:  
TB parameters for room temperature 
materials are available. Devices under 
room temperature is enabled. 

(b) 

InAs bands structure under 
room temperature 
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Parameterization of 2D materials	

Motivation: 
Ø  2D materials like MoS2 are interested in 

recent device design, but TB parameters for 
device level simulation is required.  

Ø Extract TB parameters from DFT results 
(DFT energy bands & eigenfunctions)  

 
Approach: 
Ø  Basis transformation: 

Plane waves à localized orbitals 
Ø  TB model: orthogonal TB model with 1st NNs 

Interactions; 
Ø  optimize TB orbitals and parameters to 

match ab-initio results. 
   targets: ab-initio  bands & wave functions. 
 
Results: 
Ø Reasonable parameters and band structure 

is obtained;  

Impact:  
TB parameters for TMDs are obtained, 
device level calculations of TMD 
transistors are enabled. 

Single layer MoS2 band structure	

EF	



Objective:
• Existing four-band tight binding model 
underestimates band splitting à might 
affect charge distribution especially if 
scattering exists.  

Method:
• Ten-band ETB model considering 2NN 
interactions. 

• Harrison’s scaling law for bond length 
dependence of parameters. 

• One parameter set for in-plane, one 
parameter set for inter-layer. 

• Optimize parameters by fitting to DFT, 
for monolayer, bilayer, and bulk. 

Results:
• Tight binding parameters for black 
Phosphorus. 

• TB bandstructure well reproduce DFT 
results 

monolayer 

Band structure 

Tight binding model for black 
phosphorus 

Impact:
• Atomistic modeling for black Phosphorus 
transistors are enabled. 



Objective:
• Investigate the Si UTB/SiO2 interface 
and evaluate the normally used 
hydrogen atom passivation treatment. 
Method:
• Passivation for three relevant oxidation 
configurations are parameterized. 

• Parameters are optimized by fitting TB 
dispersions to DFT-HSE06 calculations.   
Impact:
• UTB band structures of TB match well 
with DFT calculations. 

• HGM gives higher DOS compared to 
hydrogen atom passivation. 

• Oxidation configurations involved more 
oxygen atoms contribute higher DOS. 

• DBM and BOM configurations are not 
well confined, which are suggested to 
be avoided in experiment. 

oxidation configurations and dispersions 

DOS for the oxidation configurations 

Passivation applied to Si/SiO2 interface 
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Fitting 
DFT Target 

InAs Parameterization 
 
•  Transferable parameters for 

semiconductors are needed to model 
disordered systems and interfaces 

•  Extended Hückel model gives natural 
treatment of these systems 

Parameterization Technique 
 
•  InAs fit to E(k) and wavefunction 

targets from HSE06 calculations 
•  Work underway to produce bulk 

parameterizations with more 
accurate strain behavior than 
published parameterizations 

Complex 
semiconduct
or-dielectric 
interface 

Extended Hückel Fitting Based on  
ab-initio mapping 

HfO2, InAs interface.  Strain, rearrangement requires high 
transferability 
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Mapping of ab-initio to Tight Binding 
for MgO	

Motivation: 
Ø Extract TB parameters from DFT results 

(DFT energy bands & eigenfunctions)  
Ø  MgO is interested in spintronic devices, 

but no TB parameters for device level 
simulation.  

 
Approach: 
Ø  Low rank approximation: 

HDFT à HTB  
Ø  constraint:  

•  2st NNs Interactions,  
•  unity overlap matrix; 

Ø  optimize the TB basis functions to get 
reasonable TB parameters. 

   targets: HSE06 bands. 
 
Results: 
Ø Reasonable parameters and band 

structure is obtained by mapped TB 
Hamiltonian;  

Impact:  
TB parameters for complicated material 
MgO are obtained, device level 
calculations of MgO based 
spintronics Transistor  are enabled. 

EF	
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Mapping of ab-initio to Tight Binding 
for SmSe	

Motivation: 
Ø Extract TB parameters from DFT results 

(DFT energy bands & eigenfunctions)  
Ø  Complicated exotic material SmSe is 

interested in Piezoelectronic Transistor 
design, but no TB parameters for device 
level simulation.  

 
Approach: 
Ø  Low rank approximation: 

HDFT à HTB  
Ø  constraint:  

•  1st NNs Interactions,  
•  unity overlap matrix; 

Ø  optimize the TB basis functions to get 
reasonable TB parameters. 

   targets: LDA+U bands. 
 
Results: 
Ø Reasonable parameters and band structure 

is obtained by mapped TB Hamiltonian;  

Impact:  
TB parameters for complicated material 
SmSe are obtained, device level 
calculations of SmSe based 
piezoelectronic Transistor  are enabled. 

EF	
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Design principles for HgTe based  
Topological Insulator Devices 

63 

Motivation: 
Topological insulators like (CdTe/
HgTe/CdTe QW) are new group of 
materials.  
The behavior of topological insulator 
in device environment is not clear. 
 

B
an

d 
ga

p 	

Critical width	

2D TI	

Approach: 
Ø  8 band strained k.p model for CdTe and 

HgTe 
Ø  Finite differential method for CdTe/HgTe/

CdTe quantum wells. 

Results: 
Ø  Topological states in CdTe/HgTe/CdTe can 

be modulated by strain/crystal orientation/
vertical electric field. 
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Backup slides 
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UTB wave functions	 Bulk wave functions	

 
 
 

Previous 
parameters	

 
 

 
 
 

Modified 
Parameters 
	

E
TB

 

Problem of the previous parameters	

Smaller d 
contribution 
due to modified 
parameters 

E
TB

 

E
TB

 

Smaller d-contribution due to modified parameters 
also eliminate unphysical states	

d-orbital 
contribute too 

much. 

E
TB
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strain ETB model: 
Strain targets	

Hydrostatic 
strain	

two bond 
lengths 
change	

Off-diagonal 
strains 	

ε
ε
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Diagonal 
strains 	

2

ε
ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

Special distorted systems considered in fitting: 
Ø  Four kinds of atom displacements 
Ø  Assume no missing nearest neighbor	
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Environment ETB model 

Environment dependent terms: 
Sum over nearest neighbors 

Onsite element: 
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Si under hydrostatic strain 

With hydrostatic strain: 
Ø  Band gaps will change; 
Ø  Gap of X, L and Γ points change at different 

ratio; 
Ø  Transition from indirect gap to direct gap 

happens; 

Lattice const = 5.4 Angstrom Lattice const = 5.8 Angstrom 

The TB model in this work can be applied to hydrostatic 
strain cases 
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Observation: Ab-initio potential at IIIV interface 
varies over the range of first nearest neighbor	

 
 
 
 
 
 
 
 
 
 
 
 
 

Challenge: Application to 
heterostructures 
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What is proper interaction radius of TB model? 

ab-initio local potential of GaAs/InAs superlattice  

Is 1st nearest 
neighbor interaction 

enough for IIIV 
hetero structures?	
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Superlattice band structure of Xas/YAs 
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More on AlAs/InAs superlattices 
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KG

X

010 011 

010 

011 

Folded bands 
originate from X 

valleys	

Lowest few conduction bands originate from Γ and 
X valleys in the fcc BZ 
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4 layers 8 layers 12 layers 
 
 
 

More superlattices:  
superlattices with common cations 

75 
Band gaps of different superlattices by TB agree 

with HSE06 calculations. 

Superlattices with common cations 
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InAs/GaSb Superlattice  

Type III superlattice? à 
confinement opens the band gap 

A B 


