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ABSTRACT 

 

 

Palaria, Amritanshu.  Ph.D.,  Purdue University, December 2010.  Multi-scale Predictive 

Modeling of Nano-material and Realistic Electron Devices.  Major Professor:   Gerhard 

Klimeck. 

 

Among the challenges faced in further miniaturization of electronic devices, heavy 

influence of the detailed atomic configuration of the material(s) involved, which often 

differs significantly from that of the bulk material(s), is prominent. Device design has 

therefore become highly interrelated with material engineering at the atomic level. This 

thesis aims at outlining, with examples, a multi-scale simulation procedure that allows 

one to integrate material and device aspects of nano-electronic design to predict behavior 

of novel devices with novel material. This is followed in four parts: 

1. An approach that combines a higher time scale reactive force field analysis with 

density functional theory to predict structure of new material is demonstrated for the first 

time for nanowires. Novel stable structures for very small diameter silicon nanowires are 

predicted. 

2. Density functional theory is used to show that the new nanowire structures 

derived in 1 above have properties different from diamond core wires even though the 

surface bonds in some may be similar to the surface of bulk silicon.  

3. Electronic structure of relatively large-scale germanium sections of realistically 

strained Si/strained Ge/ strained Si nanowire heterostructures is computed using 

empirical tight binding and it is shown that the average non-homogeneous strain in these 

structures drives their interesting non-conventional electronic characteristics such as hole 

effective masses which decrease as the wire cross-section is reduced.  

4. It is shown that tight binding, though empirical in nature, is not necessarily 

limited to the material and atomic structure for which the parameters have been 

empirically derived, but that simple changes may adapt the derived parameters to new 

bond environments. Si (100) surface electronic structure is obtained from bulk Si 

parameters. 
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1. INTRODUCTION 

 

1.1. Device challenges at nano-scale 

 

The transistor has undergone drastic evolution in the past seven decades. From the 

very simple germanium crystal sitting on two gold foils developed at the Bell Labs to the 

modern nanometer CMOS, it has been an amazing journey guided by the principle that 

integrated circuits should double their density every 18 months, the so-called Moore‟s 

Law. Over the years, it has become increasingly clear that manufacturability and operation 

of the device do not alone determine its success or even viability in the highly competitive 

industry. As device sizes shrink, requirements of low power, high performance and high 

reliability have become increasingly important. Today we stand at a juncture where some 

characteristic sizes in transistors are nearing atomic dimensions and the design and 

fabrication of electronic devices and circuits poses new challenges. 

 

1.1.1.  Materials and nanoelectronic devices 

Design of novel nanoelectronic devices is challenging because it requires one to 

take into account not only the device level quantum effects due to miniaturization, but also 

the changes in properties of the material itself, which can once again be explained by 

quantum mechanics. A very good example in this regard is provided by carbon, the group 

IV material just above silicon in the periodic table. Depending on its molecular structure, 

pure carbon can range from being a pure insulator (diamond) to semiconducting (some 

nanotubes), metallic (some other carbon nanotubes, graphite) and almost superconductor 

(graphene). Scientists have achieved the graphene transistor, which is only one atom thick 

and ten atoms wide.[1] While owing to challenges in fabrication and manufacture, such a 

transistor is far from production yet, its demonstration is a clear indicator of two 

characteristics of the future semiconductor devices: (a) the nature and properties of the 

material used for these devices would play a significant role in their properties and hence 

there is a constant push to find new materials with desired properties, and (b) the atomistic 

dimensions of the devices would make an atomistic analysis of their behavior inevitable. 
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Consequently, the atomic-level effects of any deviations from the ideal bonding 

environments observed in bulk material would have to be taken into consideration because 

these effects, while sometimes negligible or treated in an abstract fashion for larger 

devices, are expected to become proportionately large at small device dimensions.  

One must also note that the interplay between materials and devices is a two-way 

process: not only are the new device designs motivating the search for new materials, but 

also the development and characterization of new materials and the technology to process 

them is influencing device and architecture design. A more contemporary example of the 

effect of new structured material concepts on device, process and architecture design is 

the field programmable nanowire interconnect [2], a variation of the field programmable 

gate array, which utilizes 15nm wide crossbar nanowires with 45nm half-pitch CMOS to 

“increase the effective transistor density, reduce power dissipation and dramatically 

improve tolerance to defective devices.” [3] So we conclude that we need to carry out a 

full range analysis, right from the atomic arrangement in the material to transport 

characteristics of the full device, not only for future nano-scale devices but also to fully 

explore and understand the behavior of current and near future devices, which are 

relatively large sized, through what could be termed „bottom up‟ approach in analysis and 

design. 

 

1.1.2. Future of semiconductor devices 

There are several different technologies being currently investigated for the future 

devices of the semiconductor industry. International Technology Roadmap for 

Semiconductors (ITRS) 2007 [4] represents the current and prospective future 

technologies  at the various abstraction levels: state variable, material, device, data 

representation and architecture. While some of the technologies might require a drastic 

change in the fabrication processes and the manner in which devices and circuits are 

conceived and might therefore be a multitude of years away from large scale commercial 

production, there are other devices and technologies which require changes either already 

on-going in the industry or that are not that drastic and hence not very far from being put 

to actual commercial uses. Among these the foremost (according to the ITRS) are the 

extensions to the commercial CMOS that are currently being considered. Two such major 

extensions are: 

1. Ge and III-V compound channel FETs 
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2. 1-D nanostructures - Nanowire FETs, carbon nanotube FETs, nanowire 

heterostructures: The case studies in this thesis cater to this section of devices. 

Today, silicon nanowires can be fabricated with good precision [5] and several 

devices made of them have been demonstrated in the lab. The nanowire FET,[6, 7]  

consists of the NW channel surrounded by an insulator (SiO2 or HfO2 for Si nanowires 

and ZrO2 for Ge wire), gated by degenerate Si and metallic source/ drain electrodes 

(Au/Al or SiTi for Si nanowires and Ti for Ge nanowires). The use of B doped Si NW 

array [8] yields high mobilities and low subthreshold swing values, resulting in low off-

currents, good on-currents and hence high on/off current ratios. Leiber‟s group has also 

produced integrated interconnect/ contact Si nanowire FETs using selective 

transformation of SiNWs into NiSi NWs to yield NiSi/Si/NiSi junctions.[9]  Other device 

concepts implemented from nanowires [10] include passive diode structures consisting of 

crossed p- and n- type nanowires, active bipolar transistors consisting of heavily and 

lightly doped n- type nanowires crossing a common p-type nanowire base and 

complementary inverter structures assembled from n- and p-type nanowire structures. 

It is important to mention that while the discussion here has been focusing on 

continuing Moore‟s law, nano-scale transistors for electronics applications are not the only 

possible uses of silicon nanowires. Among other applications of silicon nanowires include 

chemical/ bio sensors,[11] photovoltaic devices, thermoelectric devices and battery 

electrodes.[12] 

Among other nano-materials which exhibit special properties not seen in bulk 

material, carbon nanotubes (CNTs) deserve a mention here, not only because they are also 

1-D materials but also because semiconducting carbon nanotubes hold the promise of 

providing high performance FETs owing to their unique electronic structure, reduced 

carrier scattering (long mean free path) and hence mobilities and transconductances that 

meet or exceed the best semiconductors.[13] Another advantage of using CNTs is that 

metallic carbon nanotubes hold the promise to play the role of a low loss interconnect. On 

the other hand, CNTs suffer from experimental challenges such as repeatable fabrication/ 

isolation of one-type CNTs and doping control. Repeatable fabrication of silicon 

nanowires with control over orientation and size has been demonstrated and there is a lot 

more knowledge about silicon than carbon in the semiconductor industry. One of the 

things theoretically explored in this thesis is the properties of 1-D silicon nanostructures as 

the diameter becomes very small (<1nm). Since such structures are only recently becoming 

possible in the lab and very little is know about them, a theoretical study can help us know 
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of novel effects if any that can show up at such small diameters and can therefore act as 

very useful indicators to experimentalists of the utility of attempts at their fabrication.  

Another design for the nanowire FET [14] uses the Ge/Si core-shell nanowire 

heterostructure to provide clean 1-D hole-gas and uses high-k dielectric (HfO2 or ZrO2) 

for enhanced gate coupling. This has been shown to possess high performance scaled 

transconductance and on-current values, which are comparable to similar length CNT 

FETs and substantially better than scaled planar MOSFETs. Yet another 1-D 

nanostructure design that can combine confinement properties of 1-D nanostructures and 

strain induced properties of heterostructures is the <100> strained Si/ strained Ge/ strained 

Ge hetero-structure nanobars or nanowires as shown in fig. 1.1.[15, 16] Some electronic 

effects of structural and strain engineering on this structure shall be investigated later in 

this thesis. 

 

 

1.2. Predictive modeling and simulations at nano-scale 

 

1.2.1. Predictive theory and simulation 

While theoretical science serves the purpose of logically explaining experimental 

observations, its most attractive attribute to mankind has been its predictive power, which 

also guides the attainment of desired attributes of engineered devices. To explain complex 

observations or phenomena, one follows the reductionist approach, where one breaks 

down the complex problem into simpler parts and uses established theory or develops new 

theory to explain each of them. Conversely, one may use established (or empirically 

verified) theory(ies) to logically build up to a far conclusion and predict phenomena. These 

predictions can then be validated through a designed experiment and if needed, the theory 

is revised to match the actual observations.  

Fig. 1.1 <100> strained Si/Ge/Si nanobars studied in chapter 5 of the thesis  
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As science and technology has grown over the centuries, 1) more complex and 

mathematically involved theories have propped into existence, and 2) the nature of the 

engineering and science problems to be dealt with has became more complicated. Both of 

these have led to an ever-increasing difficulty in handling the problems analytically as well 

as experimentally, and today the computer is heavily employed to carry out relatively 

quicker numerical calculations for theoretical problems of all sorts, by either first creating 

an appropriate computer model for the problem or directly employing the computer to 

solve the existing mathematically complex and otherwise insolvent theory equations and 

make useful predictions. In the broad area of material science and engineering, 

simulations  have become an indispensable component of research, even replacing 

experiment, partly because experimental measurements are indirect and require theoretical 

interpretation, and partly because often the technological limitations do not allow one to 

perfom the ideal experiment. Computer simulations are fast developing into the third pillar 

of science and engineering either by acting as true first-pass experiment replacement or an 

indispensable aid to rationalist deduction, theoretical model verification, and design of 

complex engineered systems. 

 

1.2.2. Simulation challenges in nano-scale materials and devices 

A strategic challenge for nanoelectronic devices is the development and wider use 

of simulation techniques and procedures that bring the material and electrical communities 

together.  

 

1.2.2.1. Multi-scale simulation for nano-electronic devices 

Nanoscience and technology is one area that has increasingly seen the need for 

computer simulations, thanks to quantum theory, which, while on the one hand, provides a 

first principles description of materials and is therefore general and applicable to any 

material, on the other, possesses such a high mathematical complexity that it makes certain 

problems, e.g. handling of the quantum description of large multi-electron system, 

analytically impossible. Paul Dirac stated, “the fundamental laws necessary for the 

mathematical treatment of a large part of physics and the whole of chemistry are thus 

completely known, and the difficulty lies only in the fact that application of these laws 

leads to equations that are too complex to be solved.” So if the problem involves a large 

and complicated material or device, which is often the case for realistic systems, the 

accurate quantum mechanical description cannot be applied with its full vigor for most 
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materials & devices of interest and there arises the need for multi-scale simulation. 

Scientists have designed empirical (and hence less general) and approximate methods such 

as tight binding and empirical force fields for large-scale molecular dynamics to tackle 

large systems or large event times for dynamics problems. 

If we take a more traditional view, the electrical engineering and material science 

communities have used two different paths of simulation methods at the various scales, as 

shown in figure 1.2. This diversion of paths has to do with the nature of the problems the 

two communities handle. Material scientists are often more concerned with the 

composition and properties of materials while electrical engineers focus on the dynamics 

of charge transport. There has always been communication between the two through 

parameters derived on one side and communicated to the other. For example, the 

electronic band-gap and effective masses used with Boltzmann transport equation are 

obtained from the bandstructure calculated using density functional theory (DFT) and GW 

approximation.  At the nano-scale however, localized changes in the electronic wave-

function become important and the incorporation of atomic-scale material variations and 

use of a quantum transport theory like NEGF becomes necessary. At this scale, therefore, 

as already described in section 1.1.1, material and device design are highly inter-related 

and one needs a well-defined procedure to explore the structure and the properties of the 

devices. 

 

One point to note here is that as the science theory or method used for simulations 

moves down the complexity axis (reducing computational time and cost) and up the 

simulation size axis (or - for dynamical problems - the simulated time axis), it also loses 

Fig. 1.2 Multi-scale simulation in electrical and material engineering communities 
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accuracy and generality/ transferability. Here good software engineering can help ease out 

the trade off. Use of parallel programming and efficient algorithms allows the use of more 

accurate and general scientific theories even for bigger systems. It must be noted that 

developing a most general program that can be applied to several problems may initially 

take high time and cost but will have greater returns in the long run. Sometimes, however, 

the programmer may, in the interest of time and effort, forgo a certain amount of 

generality when developing the program. 

Let us consider a generalized two terminal device shown in figure 1.3. If one was 

to use the NEGF approach to obtain transport characteristics of this device, one would 

need to provide an accurate description of the channel in terms of the device Hamiltonian. 

One can obtain channel material structure at the atomic level (including all bond lengths 

and bond angles) from DFT or MD or both. For bulk-like channel materials, empirical 

tight binding provides an easy way of formulating this Hamiltonian. However, if the 

channel region carries important non-bulk bonds like defects, surfaces or interfaces, the 

same bulk TB parameters can no longer be used to model the channel and one needs to 

modify them to model these atomic level changes correctly. 

 

So this work envisions the following multi-scale simulation approach (see fig. 1.4) 

to investigate transport in realistic nano-electronic devices (while the methodology 

described here is generally applicable, the focus of this work is on silicon and germanium 

materials): 

1.  The structure of the nano-material, if unknown, is deduced from an 

integrative approach using molecular dynamics and density functional theory. This is a key 

step in discovery/ design of new materials and material oriented devices. Once the atomic 

structure of the material is well-defined, one of the atomistic simulation methods can be 

applied to investigate the properties. 

Fig. 1.3 Generic device: the channel should take structural anomalies of the material 

into account  
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2.  The electronic structure is obtained using extended orthogonal sp
3
d

5
s* 

tight binding using empirical parameters for bulk silicon. It will be shown in chapters 5 and 

6 that the bulk parameters may need to be modified to simulate realistic structures. In this 

thesis, results for Si (100) surfaces are reported and compared with the electronic 

structures obtained from density functional theory using local density approximation 

(LDA) and GW correction.  

3.  The Hamiltonian determined in step 2 can also be used in the standard non-

equilibrium Green‟s function (NEGF) approach to obtain transport characteristics of the 

nano-device. 

  

 

1.2.2.2. Modeling of excited electronic states of materials 

Among the various challenges in the field of simulations for the semiconductor 

industry, the 2007 ITRS lays down the challenge of improving ab initio modeling to 

provide better understanding of the physical mechanisms and interpretation of the 

metrology for nanoscale structures. A key problem here is that frequently for electronic 

material and device behavior investigation, the simulation of excited states is necessary but 

not possible with the state-of-the-art tools for realistic size devices, which are often much 

up scale than what the complex excited state theories (such as DFT with GW correction) 

can handle.  This thesis will propose an adaptive tight binding model to simulate 

reasonably accurate excited states for any general material. This will be described in 

chapter 6. 

 

 

 

Fig 1.4 Envisioned scheme to simulate nanoelectronics bottom up taking into 

account material structure 
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1.3. Outline of the thesis 

 

This thesis will describe the above discussed procedure for simulating a nano-scale 

electronic device.  At every step, there would be a case study to apply the method to 

investigate new materials/ devices. Chapter 3 describes the use of reactive force field 

molecular dynamics and ab-initio density functional theory to predict new nano-material. 

The material investigated is sub-nanometer 1-D silicon nanostructures.  The study 

described shows that hollow tubular silicon nanowires are energetically the best 1-D 

nanostructures for very small diameters. Chapter 4 describes the use of density functional 

theory to obtain the electrical and mechanical properties of these tubes. Since these 

structures are a more distant possibility, chapter 5 shifts to a more realistic and 

contemporary material, strained Si-strained Ge-strained Si nanobar, whose predicted 

atomic structure from reactive force field has already been verified against fabricated 

structures. A tight binding treatment studies the electronic band-structure of these 

nanostructures. Passivated, relaxed and non-reconstructed structures are strategically 

chosen in Chapter 5 because contemporary tight binding with bulk sp
3
d

5
s* parameters 

(used in this thesis) fails to capture the effects of reconstruction correctly. Chapter 6 then 

proposes the adaptive tight biding model to capture reasonably well the role of such non-

bulk bonding environments as surfaces on electronic bandstructure.
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2. REVIEW OF COMPUTATIONAL METHODS 

 

This chapter will provide a brief overview of the relevant computational science 

and engineering methods. Most of these methods are in wide use. The following chapters 

will depict how these methods have been employed in this thesis. All references to the 

method sources shall be made in the following chapters. 

The Born-Oppenheimer Approximation assumes the ions statically fixed in space 

(owing to their >2000 times the mass of electron) when dealing with electrons, thus 

allowing separation of ionic and electronic degrees of freedom when working with a solid/ 

liquid system. 

Even after separating ions out from the variable space, the problem still remains 

computationally challenging in its fundamental wavefunction representation. E.g. if we 

consider a system with 7 ions and 4 electrons per atom, we have total 28 electrons, each 

being represented by its three-dimensional position vector and a single spin coordinate, the 

electronic wavefunction lives in 28*4=112 dimensional space! This implies that even if we 

use only 10 points to grid each spatial axis, we have 1084 * 228 points in the full search 

space. 

 

2.1. Density Functional Theory 

 

The dimension problem is solved, at least for reasonably sized structures, by the 

application of density functional theory which basically states that for a many-electron 

system, electron density is unique to the system with a specified external potential and 

therefore all system observables can be obtained as functionals of this unique density. 

Hence instead of working with wavefunctions living in 4n (where n = number of electrons) 

dimensional space, one works with the system density living in only four dimensional 

space (3 spatial coordinates plus 1 spin coordinate). 
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2.1.1. Kohn-Sham Approach 

In the Kohn Sham approach, the actual many-electron system of interacting 

electrons is replaced by an equivalent non-interacting system which has the same density 

as the actual system. The interacting part of the kinetic energy and the exchange and 

correlation interactions among electrons are absorbed into the exchange-correlation 

functional of density. This allows solving for the density of the non-interacting system (the 

eigenstates of which are called the Kohn Sham states) through a self-consistent iterative 

process. Thus, the Kohn Sham approach to density functional theory provides us with the 

exact density of the interacting system but not the exact eigenstates of the actual system. 

 

 

 

2.1.2. Exchange-correlation functionals 

Two common exchange correlation functionals in use for DFT calculations are the 

local density approximation (LDA) and the generalized gradient approximation (GGA).  

The general trends are: 

1. GGA improves cohesive energies. 

2. GGA improves bond lengths and bond angles. 

3. GGA slightly improves the gap energy and the dielectric constant. 

4. LDA gives poor electronic densities of atoms in the core region where the 

electrons are quite localized. 

 

2.2. GW Approximation 

 

The Kohn-Sham approach is unable to correctly provide the excited state energies 

because the Kohn Sham orbitals are not the actual single electron states of the interacting 

Fig. 2.1 The Kohn-Sham approach to DFT 
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system (Kohn Sham theory, however, describes the filled electron states quite well). To 

handle the excited states of the system, different methods in use are: 

Time dependent density functional theory 

Many body perturbation theory (in the GW approximation) 

Non equilibrium Green's function (NEGF) for transport 

This thesis will make use of GW results as the bench mark for other electronic 

structure calculations. GW is a Green‟s function method based on the fact that the poles of 

the Green‟s function of a system represent its eigen-energies. However, for a multi-

electron system, the single state energies actually represent the difference between multi-

state energies and since the N electron eigenstates are not also the eigenstates of the N+1 

electron system, one needs an energy-dependent self-energy correction to the Hamiltonian 

(representing interaction with other particles) and this leads to a Dyson like recursive 

equation for the Green‟s function where the self-energy acts like a perturbation in the 

interaction picture. The GW approximation is characterized by the use of the product of 

the Green‟s function G and the dynamically screened Coulomb interaction W to represent 

the self-energy. The single particle states from GW are thus each the state of an electron 

with the surrounding hole region which screens it, the so-called quasiparticle. The use of 

GW approximation is obviously a self-consistent iterative process. The starting states for 

the application of GW are often the DFT-LDA or GGA single electron states. However, 

due to its complexity GW is highly demanding on the computational resources and not 

scalable to larger systems. 

 

2.3. Molecular Dynamics 

 

The SCF iterations to solve for the electronic energy in a system with fixed ions 

make the DFT simulations tedious. The relaxation of a system in DFT when the number of 

ions exceeds about 1000 becomes highly demanding of computational resources. In order 

to simulate large systems, scientists have developed interatomic potentials or force fields 

that describe the interaction between atoms without resorting to an electronic structure 

calculation. The generalized force field with atom- or bond- specific parameters models 

the interactions among the electrons and ions as a function of atomic positions and thus 

relieves dependence of the total energy on electronic variables. The use of an algebraic 

expression to get the internal forces instead of the self-consistent iterations required for 

DFT leads to considerable savings in terms of computational time and resources. This in 
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turn allows the simulation of large systems and long dynamics. Thus the method of 

molecular dynamics enjoys the advantages of low complexity, less time and higher 

scalability over ab initio methods. 

 

2.3.1. Reactive force fields 

Reactive force fields [17] are state-of-the-art force fields that allow one to simulate 

complex chemical reactions. The key concepts that distinguish ReaxFF from the non-

reactive force fields are the use of partial bond orders to describe covalent interactions as 

opposed to fixed connectivities in non-reactive force fields and the determination of 

charges by an extended charge equilibration scheme that includes both charge transfer and 

polarizability self-consistently and instantaneously. The bond order is determined by bond 

length and goes to zero when the bond is dissociated, such that bond length -> bond order 

-> bond energy. Polarizability is accounted for by allowing transfer between atoms of the 

variable valence or shell charge w.r.t. the fixed core charge through the use of self-

consistent charge equilibration model. Other concepts used in ReaxFF are Morse 

potentials for non-bonded interactions (Van der Waals and Pauli repulsion) and over and 

under coordination corrections. These aspects make ReaxFF very attractive for modeling 

processes where bonds break and form such as traversing configuration space. 

 

2.4. Tight Binding 

 

For electronic structure calculations, tight binding provides a computationally less 

complex and highly scalable alternative to ab intio methods like GW. The basic philosophy 

of tight binding is bottom up modeling where the electronic system is considered not as a 

freely extending electron gas, but as a system built atom by atom. The wave function is 

therefore represented as a Bloch sum on a set of basis functions where the same basis 

functions sit on each lattice site (linear combination of atomic orbitals or LCAO). The 

Hamiltonian entries in the matrix representation carry parameters that are obtained 

empirically. Empirical nature makes this method less transferable than an ab initio method. 

However, use of empirical parameters to construct the Hamiltonian matrix, which is then 

diagonalized to obtain the eigenenergies, makes this is a fast and scalable method.  
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2.4.1. Slater-Koster formulae 

When using tight binding, it is most convenient to define parameters such that they 

are minimized in number. The atom interaction parameters of the Hamiltonian are, 

therefore, referenced to the bond between the two atoms (for nearest neighbor tight 

binding). This allows the use of these same parameters for all atoms/ bonds that see the 

same environment (e.g. in diamond lattice) no matter how the bond is oriented. When 

constructing the Hamiltonian matrix, however, one has a universal set of axes, and so one 

needs a basis transformation (rotation of axes, using spherical harmonics) from the bond 

and orthogonal directions to the universal axes direction. Slater and Koster [18] provided 

these transformation formulae when they formulated tight binding. 

 

2.4.2. sp
3
d

5
s* orthogonal parameters and corrections 

Klimeck and colleagues [19, 20] carried out optimization of orthogonal (i.e. 

overlap matrix of basis functions is identity) sp
3
d

5
s* parameters using genetic algorithms 

to fit to band edges and effective masses to ab initio results at certain symmetry points of 

bulk material. Use of orthogonal parameters simplifies the eigenvalue problem to be dealt 

with by making the overlap matrix identity. Later, Boykin et al. [21] suggested 

modifications to the atom self entries of the Hamiltonian by introducing extra parameters 

to take into account strain in the system. This has increased the applicability and 

transferability of the bulk sp
3
d

5
s* parameters. 
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3. PREDICTING NANO-STRUCTURE 

 

The first step in device invention and design is to obtain the appropriate material. 

For futuristic nano-devices, nano-structure prediction remains a significant problem, 

especially for small structures where surface atoms play such a dominant role that they can 

drive changes in the underlying crystal configuration. To predict the structure as well as 

mechanical and electronic properties of nanostructures one can, in principle, use ab initio 

electronic structure methods, such as density functional theory (DFT), which provide an 

accurate description of the interaction between atoms from first principles. However, these 

methods are computationally so intensive that they cannot be applied to cases where the 

ground state structure is not known and an extensive exploration of configuration space is 

required. Thus, most ab initio studies have so far been limited to the characterization of 

pre-determined structure designs based on intuition or the behavior of similar materials. A 

computationally less intensive alternative is offered by inter-atomic potentials or force 

fields (where atomic interactions are described via potential energy functions designed to 

reproduce the role of electronic structure). Together with molecular dynamics (MD) or 

Monte Carlo methods, force fields can be used to explore configuration space in search of 

the ground-state structure. However, despite recent breakthroughs, interatomic potentials 

remain less accurate and predictive than ab initio methods. To address this situation, a 

combination of MD and DFT calculations is proposed here to predict the structure of 

nanoscale materials and this methodology is applied to investigate stable sub-nanometer 

diameter Si nanowires. 

 

3.1. Case study – sub-nanometer tubular silicon nanowires 

 

3.1.1. Brief history of small diameter 1-D silicon nanostructures  

Silicon nanowires have been around for more than a decade and fabricated by 

several research groups.[5, 22] These are mostly surface passivated with H or oxide. 

Diameter dependence of the orientation of the Si nanowire has also been investigated in 

the past, [5, 23] ([110] and [112] wires are more favorable as diameters become small). A 
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major excitement about small diameter Si nanowires came when Ma et. al. [22] 

successfully fabricated <2 nm diameter H passivated [110] and [112] Si NWs in the lab. 

These wires were reported to retain Si bulk geometry and had band gaps higher than 3 eV 

conforming with the general trend of confinement on bandgap. Unpassivated SiNW of 

larger diameters had also been successfully fabricated earlier by Marsen and Sattler. [24] 

They suggested non-bulk fullerene cores for these wires. Kagimura et al. [25] studied 

theoretically the diameter dependence of wire orientation and found that below 1.1 nm 

diameter, the bulk like geometries are not the most stable configurations for both Si and 

Ge nanowires. For Si NW they suggested simple hexagonal wire geometry to be the most 

stable for sub-nanometer diameters. In 2005, Bai et al. [26] showed that metastable 

pentagonal and hexagonal cross-section hollow silicon nanowires (silicon nanotubes) were 

metallic. Ponomoreva et al. [27] have simulated a Si-34 cathrate nanotube structure and 

reported its transport properties. Thus, one finds that though, owing to the promise 

offered by Si 1-D structures in various areas of application ranging from electronics to 

biological detection, research in this area abounds, there is no clear picture of the relative 

stability of the various proposed sub-nanometer structures. Moreover, the structures so far 

are all intuitive or derived from other atomic level structures of silicon. This work [28] 

shall endeavor to predict new atomic level structures of sub-nanometer silicon nanotubes 

and compare the energetics of sub-nanometer silicon nanowires.  

 

3.1.2. Questions to be answered 

This work (this and next chapter) endeavors to answer the following questions: 

• Can we predict these 1-D nanostructures as opposed to making intelligent 

guesses?  

• How does surface affect configuration of small diameter 1D silicon 

nanostructures? 

• How do silicon nanotube (hollow) structures compare with other 

nanowires at close to one nm diameters? 

• (In chapter 4) What are the properties of these tubes? Should the 

experimentalists try making them in the lab? 
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3.2. Approach 

 

(See figure 3.1) The approach here to predict the structure of nanoscale materials 

consists of two steps: i) starting from a simple trial structure, MD with an accurate force 

field is used to carry out an annealing procedure, which explores configuration space and 

leads to well relaxed structures, ii) the most promising structures obtained from the MD 

simulations are fully relaxed using energy minimization with DFT within the generalized 

gradient approximation (GGA). Thus, the strategy described here combines a 

computationally less intensive approach to explore configuration space with a more 

accurate and computationally intensive method to refine the results. It must be emphasized 

that this is a generally applicable approach that can be used with any material for which an 

accurate force field exists. The force field should be able to capture how environment 

affects bonding and describe configurations very different from the bulk ground state; this 

is critical since the DFT minimization (step ii) will lead to the local minimum directly 

downhill from the initial configuration. Significant progress has occurred recently in this 

area and descriptions for a wide range of materials exist today, see for example Refs. [17, 

29, 30]. The remainder of the chapter applies this procedure to predict the structural 

properties of the tubular Si NWs (Si NTs).  

 

 

Fig. 3.1 (a) The simulation approach applied in this work. (b) The potential energy 

surface showing the local and global minimum. A structure at the configuration 

shown by light blue point can get trapped in a local minimum (green point) and 

needs external force during dynamics to be pushed into the global minimum (orange 

point) 

 

 

(b)  

 

 

(a)  
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3.2.1. Step 1: Molecular Dynamics 

Pentagonal and hexagonal NTs (rows of atoms arranged in pentagons or 

hexagons) are used since they are the simplest metastable tubular structures.[26] Different 

trial geometries with 5, 6, 10, 11 and 12 rows of pentagons or hexagons allow for 

different possible periodicities of the final structure. To obtain well relaxed NTs (see fig. 

3.2(a)), the trial structures are cyclically compressed and expanded using MD at two 

temperatures (300 K and 600 K) with ReaxFF, a reactive potential that has been shown to 

accurately describe atomic interactions in Si, including the process of crack 

Fig. 3.2 (a) The relaxation process during ReaxFF-MD of the trial structures. 

Shown is a single expansion and compression cycle for a 30 atom unit cell 

pentagonal tube. The solid curves represent compression and the dotted part 

represents expansion of the tube. (b)-(c) Energy as a function of time during cyclic 

loading of an initially (b) pentagonal tube of 30 atoms strained by 0.06 A/ps using 

MD with ReaxFF at T=300 K and (c) hexagonal tube of 30 atoms strained by 0.05 

A/ps using MD with ReaxFF at T=300 K. 

 

 

(a)  

 

 

(b)  

 

 

(c)  
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propagation.[31] For each initial configuration and temperature, various cyclic mechanical 

loadings: three ranges of strain (-37.50% << -12.50%, -25.00% << -8.30%, -20.87% 

<< -4.17%) and three strain rates (0.04167 %/ps, 0.41667 %/ps, 0.83333 %/ps) are 

applied. This makes thermal and mechanical energy available to the system to overcome 

energy barriers that may separate the initial trial structure from lower-energy 

configurations and allows the NT to find its natural length. Figure 1 shows the potential 

energy as a function of time for two MD annealing simulations corresponding to 

pentagonal [Fig. 3.2(b)] and hexagonal [Fig. 3.2(c)] initial structures at T=300 K and 

strain rate of 0.4167 %/ ps. Both cases show abrupt energy drops that correspond to 

configurational changes and rather well behaved energy-length relationships between 

structural transitions. In some simulations, the lowest energy configuration is attained in 

the first compression-expansion cycle, see Fig. 3.2(b), and subsequent mechanical cycles 

do not result in additional relaxation. In other cases, exemplified in Fig. 3.2(c), several 

cycles are required before a periodic behavior is achieved. In view of the various strain 

rates and ranges, MD simulations with timescales ranging from 0.2 to 2.7 nanoseconds are 

performed. (Note that this is well beyond what is possible today with ab-initio MD.) An 

analysis of the structures resulting from the MD annealing procedure leads to the 

following general observations: i) the longer initial structures (consisting of 11 and 12 

rows of atoms along the tube axis) buckle and consequently do not lead to one-

dimensional structures for the high strain rates accessible to MD; ii) about 15% of the 

simulations starting from 5, 6 or 10 row structures lead to hollow 1-D tubes; iii) 

pentagonal trial structures lead to a larger percent of nanotubes as compared to hexagonal 

ones. 

 

3.2.2. Step 2: Density Functional Theory 

The eight most promising configurations from the MD simulations were relaxed 

and length optimized (fig. 3.3) using DFT within the GGA approximation [32] with the 

code SeqQuest.[33] SeqQuest uses local orbital basis sets of atom- and potential-

dependent contracted Gaussian functions, and non-local, norm-conserving Hamman 

pseudo-potential developed for the GGA functional. 4.9 spatial grid points per bohr, 

temperature of occupation ~158 K and maximum force limit of 0.0002 ryd/bohr for 

geometry optimization were used. 

DFT relaxation of the MD structures led to low-symmetry tubular structures with 

similar energetics (within a range of 0.05 eV/ atom with some structures separated by less 
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than 0.026 eV/ atom); the 8 structures converged into three topologically distinct NTs 

during minimization.  

 

 

3.3. Tubular structures of very small diameter clean silicon nanowires 

 

Figure 3.4 shows the atomic structure of the lowest-energy tubular structures 

known to date. The disordered nanotube (DNT) structures resulting from our MD-DFT 

approach are denoted DNT1, DNT2 and DNT3; these were obtained from 30-atom 

pentagonal, 30- atom hexagonal and 25-atom pentagonal trial structures respectively.  

Together with the DNTs we show fullerene-based structures that reduce their symmetry 

during DFT energy minimization; these distorted fullerene structures are denoted DF1 and 

DF2. Table 3.1 summarizes various properties of these structures as well as others 

proposed earlier (energies reported in Table 3.1 and in the remainder of this paper are 

given per atom and with respect to the diamond structure). Various low-energy tubular 

structures with similar stability are obtained; these structures are either DNTs obtained 

from the described MD-DFT procedure or are fullerene-like. Structures F1 and F2 in 

Table 3.1 are fullerene-based and were proposed earlier;[24] if their full symmetry 

(discussed later) is not enforced during relaxation they transform into DF1 and DF2, DF2‟ 

or DF2‟‟ with lower symmetry and energy. Ponomareva and collaborators [27] have 

reported DF2‟‟ as Si-34 clathrate structure. It is interesting to note that structure DF2‟ is 

a defective but energetically similar form of DF2‟‟ while DNT2, resulting from our 

annealing procedure, is a defective form of fullerene structure DF2 with higher energy 

than its parent structure. Table 3.1 also shows that the pentagonal and hexagonal trial 

structures (denoted Pen and Hex) are highly strained, high-energy structures and so are 

carbon nanotube-based structures. We find an energy of 0.805 eV for the armchair (4,4) 

Fig. 3.3 Relaxation and length optimization of the ReaxFF relaxed structure using 

DFT-GGA 
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CNT structure (Zhang et al. [34] found armchair configurations to be more favorable than 

Fig. 3.4 The sub nanometer diameter tubular clean silicon nanowire structures, 

arranged in order of decreasing cohesive energies (from top to bottom). The solid 

boxez in the longitudinal view mark the unit cell boundaries. The lines in the 

longitudinal and cross-sectional views represent the different axes and planes of 

symmetry described in the text. 
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zigzag (m,0) structures). Here it is concluded that the low energy unpassivated sub-

nanometer silicon nanotubes (hollow nanowires) are energetically more favorable than the 

unpassivated nanowires of similar dimensions. 

 

 

 

Structure 

 

L (Å) 

 

nSi 

 

A (Å
2
) 

 

S (eV) A (eV) 

 

DF2‟‟ 1

0.73 

3

0 

6

6.9 

0.

635 

0.

601 

DF2’’ 10.70 30 - 0.636 0.601 

DF2’ 10.70 30 74.9 0.637 0.602 

DF1 10.64 36 80.9 0.638 0.604 

DNT1 11.12 30 81.8 0.658 0.615 

DNT2 10.58 30 86.0 0.673 0.625 

DF2 10.93 30 67.6 0.697 0.668 

F1 10.86 36 72.2 0.705 0.629 

DNT3 9.79 25 69.4 0.708 0.653 

F2 10.97 30 57.9 0.714 0.689 

Pen 2.42 5 33.3 0.755 0.724 

Hex 2.40 6 40.7 0.774 0.744 

CNT (4,4) 3.89 16 324.7 0.805 - 

SHW1 2.49 13 90.2 0.663 0.702 

SHW2 2.64 7 40.7 0.751 0.822 

  

The fullerene-based structures F1 and F2 have 6- and 5-fold rotational symmetry 

around the tube axis respectively. The other rotational axes (two-fold) and reflection 

TABLE 3.1 DFT-GGA properties of silicon nanostructures. DNT1, DNT2 and 

DNT3 are disordered structures obtained from our annealing procedure; DF1 and 

DF2 are distorted fullerene structures and F1 and F2 are the corresponding parent 

structures. Simple pentagonal (Pen) hexagonal (Hex) and carbon nanotube (CNT) 

structures are also shown. We also show two simple-hexagonal wires with different 

radii; these non-hollow structures are denoted SHW1 and SHW2. For each structure, 

we report its periodic length (L), number of Si atoms in its unit cell (nSi), cross-

sectional area (A), energy (per atom and with respect to diamond structure) obtained 

from SeqQuest (S), Young‟s modulus (E, from SeqQuest) and energy obtained from 

ABINIT [35, 36] (A). Bold indicates structures reported here for the first time (as 

explained in the text, DF1 and DF2 are topologically equivalent to F1and F2 but have 

lower symmetry). 
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planes are shown by lines in the cross-sectional view of the structures in Fig. 3.4. The 

symmetry operations for F1 are {(E|t),(C12|t/2),D6h} and for F2 they are 

{(E|t),(C10|t/2),D5h}. E is the identity operation, t represents the translational periodicity of 

the simulation cell along its axis, (C12|t/2) and (C10|t/2) represent screw symmetry 

operations; finally D6h and D5h are the Schönflies representation of the point group 

symmetries. Structure DF2 exhibits a considerable loss of symmetry compared to its 

parent structure F2 with only {(E|t),(C2|t/2),(v|t/2),D1h,v’} allowed; (v|t/2) denotes 

glide-reflection on a vertical plane containing the principal axis and v’ represents 

reflection through another vertical plane. It turns out the distorted fullerene DF2 structure 

is not the ground state of that structure. Further relaxation leads to additional symmetry 

breaking; the ground state structure, denoted DF2‟ retains symmetry operations 

{(E|t),D1h}. Similarly DF1, {(E|t),D6h}, has lower symmetry than F1 and DF2‟‟, 

{(E|t),D5h}, has lower symmetry than F2. It The MD annealing procedure substantially 

reduces both the translational and rotational symmetries of the initial trial structures and 

the resulting DNT structures have less symmetry than fullerene-based ones. The 

translational symmetry of all DNTs along their axes is reduced to the minimum allowed by 

the periodic boundary conditions. All DNTs can be described as a chain of atomic cages 

interconnected by five- or six-membered rings. DNT1 consists of four cages, denoted a, b, 

a’, b’ within its unit cell, see Fig. 3.4. The cages are connected by 5-atom ring cross-

sections. Cages a‟ and b’ are reflections of cages a and b respectively through a plane v, 

parallel to the longitudinal axis of the tube and marked by lines in the two views of the 

structure in Fig. 3.4. The space symmetry operations of DNT1 are {{E|t},(v|t/2)}. 

Structure DNT2 is a defective form of the 30-atom-unit-cell fullerene structure DF2 in 

which an atom from one of the two cages moves into the other one causing significant 

geometrical distortions. The symmetry operations of DNT2 are {(E|t),C1v} (the mirror 

plane is shown in Fig. 3.4). Finally, the only symmetry operation remaining in DNT3 is 

(E|t). The structure can be described by three cages a, b and c, see fig. 3.5, interconnected 

by 5-membered atomic rings. We found two enantiomers of this structure when 

performing MD simulations. One was found when straining the 25 atom pentagonal 

structure within -37.50% << -12.50% with = 0.04167% /ps and the other when 

straining it within -25.00% << -8.30% at ten times the rate. This indicates that our 

approach is robust and the resulting structures can be generated by various pathways. It is 

also to be observed that DF2‟ and DF2‟‟, which are the most stable unpassivated 

structures, have a difference in energies smaller than kT at room temperature. Thermal 

energy may therefore lead to a dynamical coexistence between the two structures. 
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Additional insight into the various structures can be gained from radial distribution 

functions (RDFs), shown in Fig. 3.5(a), and the distribution of coordination numbers 

(number of nearest neighbors), shown in Fig. 3.5(b). Fullerene based structures exhibit a 

split first RDF peak that originates from atoms having 3 or 4 nearest neighbors leading to 

three types of bonds in order of increasing length: i) between two 3-coordinated atoms, ii) 

between a 3-coordinated and a 4-coordinated atom and, iii) between two atoms with 4 

nearest neighbors. [Only two peaks are seen in Fig. 3.5(a) due to the resolution of the 

RDF calculation.] On the other hand, the disordered nanotube structures exhibit a single 

first peak since the atomic bonding environment cannot be grouped into two well-defined 

categories. A second difference in the RDFs is that the second peak for the DNTs is 

significantly more diffuse than that for the fullerene ones. Angle distribution functions (fig. 

3.5(b)) of the DNTs are also significantly more diffuse than for fullerene nanotubes, a 

further indication of the disorder of the structures. In order to define first nearest 

 

(c)  

 Fig. 3.5 (a) The atomic density times radial distribution function plot for various Si 

nanotube structures, obtained at a resolution of 0.05 Å. (b) Bond angle distribution for 

a fullerene SiNT (F2) and the three disordered nano-tubes (DNTs). (c) Histogram 

showing the fractional number of 3, 4 and 5 coordinated atoms in the nanotube 

structures. 

 

 

(b)  

 

(

(a)  
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neighbors needed to calculate coordination number information shown in Fig. 3.5(c) we 

use a cutoff distance of 2.70 Å (15% larger than the Si-Si bond distance in diamond). 

Figure 3.5(c) shows that fullerene structures have twice as many 3 bonded atoms as 4-

bonded ones. This ratio gets modified in favor of the higher coordination for the distorted 

nanotube structures. They contain a higher proportion of 4-coordinated atoms than 3-

coordinated ones; furthermore, the histograms also show some 5-coordinated atoms. This 

last number is very sensitive to the choice of cutoff as is commonly found in disordered 

structures and apparent from the RDF plots. For instance, if the cut-off is reduced to 2.50 

Å, no “5-bonded” atoms are found. 

 

3.4. Structures of very small diameter hydrogen passivated silicon nanowires 

 

All the structures described in 3.3 are passivated by adding an H atom to each 

dangling bond on the surface Si atoms of each nanostructure (figure 3.6). These structures 

are then fully relaxed via energy minimization with respect to all atomic positions and 

simulation cell dimensions using DFT-GGA. The bulk-like wires shown in Fig. 3.6(d) 

were surface reconstructed by carrying out ReaxFF MD at 300K before hydrogen 

passivation and DFT relaxation.  

 

Fig. 3.6 (a) Relaxed hydrogen-passivated DF and DNT structures; upon passivation 

the DF structures undergo a transformation to undistorted fullerene core, (b) H-

passivated diamond-core wire structures simulated for comparison. 

(a) 

(b) 
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Upon passivation, the DF nanotube structures relax to the symmetric, perfect-

fullerene structures, see Fig. 3.6. This is equivalent to what happens on asymmetrically 

reconstructed Si(100) surface when passivated with one H atom per surface Si atom. As 

seen in Fig. 3.6, the more disordered DNT structures do not undergo such drastic 

structural evolution when H passivated.  

To calculate the formation energies of the H-passivated nanowires, two different 

reference systems are used:  

i) Formation of silane from atomic silicon: 

SiBulk

Si

SiAtomSilane
HSiNT

SiAtomSiNT E
n

EE
nE



























 



4

/                                        (3.1)                                       

where SiAtomSiNT /  is the total formation energy of the SiNT, SiNTE  is the total 

energy of the nanotube, 
4SiHE  is the ground state energy of an isolated silane 

molecule, SiAtomE is the energy of an isolated Si atom, SiBulkE is the ground state 

energy per atom in diamond Si and Hn  and Sin are the number of H and Si atoms, 

respectively, in the SiNT. 

ii) Formation of monohydride on Si(100) surface: 
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SurfSiSiNT )100(/  is the total formation energy of the SiNT, HSurfSiE )100( is the ground 

state energy per dimer of a Si slab with (100) surface and HSurfSiE )100( is the ground 

state energy per dimer of a Si slab with (100) surface. 

 

 

 

Structure nSi nH L (Ǻ) A (Ǻ
2
)  (eV) 

 

DNT1 30 12 11.10 129.27 0.788 

DNT3 25 12 9.90 118.48 0.870 

TABLE 3.2 Table listing the atomic population (nSi and nH), unit lengths L, the cross-

sectional areas A (see text for calculation method), energies  per silicon atom 

[calculated using equation (3.2)] of the ~1nm diameter hydrogen passivated 1-D 

silicon nanostructures shown in figure 3.7 
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F2 30 20 10.50 111.24 0.827 

F1 36 24 10.20 130.32 0.829 

110_small 32 20 7.60 166.62 0.734 

110_big 48 24 7.60 222.44 0.593 

111 76 48 18.93 155.89 0.792 

112 48 40 13.40 154.40 0.948 

 

 

Equations (3.1) and (3.2) provide the total cohesive energy of the SiNTs. Table 

3.2 summarizes the formation energies of the H-passivated SiNTs. Since the energies of 

pristine wires are known to increase with decreasing diameter, the results for the H 

passivated wires are summarized in fig. 3.7(a) and (b) as plots of energy versus cross-

sectional area. It should be noted that using either reference, considering their smaller 

cross-sectional size, the H passivated DNTs and Fs are at least energetically comparable 

to, if not better than, the passivated [110], [111] and [112] bulk wires. It should be noted 

that experimentalists have succeeded in fabricating wires of <2 nm diameter [22] which 

are believed to possess [110] and [112] diamond-like cores. The results reported here then 

indicate that the fabrication of DNTs and DFs is, from cohesive energy considerations, 

possible. 

 

3.5. Conclusions 

 

1. For very small diameters (~<1 nm), non-diamond based tubular structures 

of silicon nanowires are energetically most stable. Several new such silicon nanowires 

Fig. 3.7 Plot of formation energy calculated using (a) equation (3.1) and (b) equation 

(3.2) versus the cross-sectional area of H passivated nanowires 

(a) (b) 
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(distorted nanotubes or DNTs) are predicted using reactive force field molecular dynamics 

and density functional theory. These are energetically comparable to the low energy 

distorted fullerene nanotube structures(DFs). DF2‟ and DF2‟‟ are the best among all clean 

nanowires. 

2. The distorted fullerene tubes have reduced symmetry and bond 

environements drastically different from silicon bulk. The distorted nanotubes carry, in 

addition, high disorder.  

3. The hydrogen passivated DNTs and DFs are at least comparable to, if not 

better than, the diamond-core nanowires at such diameters. 
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4. ELECTRICAL AND MECHANICAL RESPONSE OF NANO-

MATERIALS 

 

The last chapter showed that unpassivated sub-nanometer tubular Si nanowires - 

the distorted fullerenes and the distorted nanotubes obtained from MD and DFT - are 

theoretically the most stable unpassivated and passivated 1D silicon nanostructures 

known. It was however not discussed why one would want to go to such small diameters. 

Some recent theoretical studies have shown the benefit of using small diameter silicon 

nanowires in applications such as nano-mechanics[35] and thermoelectrics.[36] Such 

benefits arise from the properties of the nanowires. For example, small diameters are 

preferable for thermoelectrics because they show an increase in the power factor[36] and a 

decrease in both the electronic[36] and phononic[37] contributions to thermal 

conductivity. However, these studies assume bulk-like geometries for the wires. In this 

regard, this chapter asks the question: What are some basic properties of the stable 

structures predicted in the last chapter? The purpose is to inform experimentalists of the 

expected properties of the nanowires, so that an intelligent decision about endeavoring to 

fabricate these in the lab can be made based on the level of incentive in the effort. Here 

only density functional theory is applied for all investigations. 

 

4.1 Case study – silicon nanotubes 

 

4.1.1 Bandstructure of 1-D Si nanostructures in literature 

Both theoretically [38] and experimentally,[22] researchers have found that bulk-

like H passivated [110] and [112] Si nanowires have each a well-defined bandgap that 

increases as the wire diameter decreases, such that this gap is about 3.1eV for ~1 nm 

[110] wire and about 3.5 eV for ~1 nm [112] wire (see figure 4.1). On the other hand, 

when the surfaces are unpassivated and reconstructed, even 3.7 nm diameter [110] 

hexagonal cross section wires are found to be metallic from density functional theory 

within generalized gradient approximation (DFT-GGA) calculations.[39] However, the 

bandgap is shape dependent and for a rectangular [110] wire (which is highly distorted due 



30 

 

to surface reconstruction) the bandgap from DFT-GGA is about 0.35eV for a wire of 

effective diameter ~1 nm.[40] (It must be noted that at this diameter, hexagonal wires are 

energetically more favorable than the [110] wire.[25]) As the diameters become smaller 

than 1 nm, unpassivated hollow wires (nanotubes) of regular cross-sectional 

configurations (square, pentagonal or hexagonal), proposed by Bai et. al,[26] are found to 

be metallic using DFT calculations. From PM3 calculations, Marsen and Sattler report 

bandgaps ranging between 0.5 to 1.5 eV for <1nm diameter F1 and F2 clusters.[24]  

 

This chapter reports that the energetically better silicon nanotube structures 

(hollow silicon nanowires) are unambiguously semiconducting unpassivated 1-D Si 

nanostructures of diameter <1 nm. The disordered nanotube DNT3 has the highest 

bandgap of all these sub-nanometer unpassivated Si nanostructures, and that this bandgap 

is about three times smaller than the bandgaps of bulk-like H-passivated nanowires of 

similar sizes. It is also shown that the semiconducting nature of these nanotubes can, at a 

more fundamental level, be coupled with the symmetry and disorder of the tubes. The 

Fig. 4.1 The bandgaps versus diameter for the various 1-D Si nanostructures studied in 

literature. The unpassivated, reconstructed wires are shown in blue and the H 

passivated wires are shown in red. The empty and filled green circles represent 

bandgaps from this work for unpassivated SiNTs. 
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band structures of these materials when they are H passivated are also investigated. It is 

observed that while H passivation leads to an increase in the bandgap for all, passivation 

affects the bandgaps of DFs and DNTs to different degrees.  

 

4.2 Electronic bandstructure of small diameter silicon nanowires from DFT 

 

All DFT calculations presented here were performed within the generalized 

gradient approximation of Perdew-Burke-Ernzerhof (GGA) using the plane-wave basis 

code, ABINIT.[41, 42]  The SCF calculations here employ 2 k points along the periodic 

direction. For the plane-wave basis in ABINIT, a cutoff energy of 12 Hartree was used. 

The potential was Pulay mixed with 7 previous iterations during SCF iterations. A 

tolerance of 0.027 µeV was set on the absolute difference of total energies which, when 

reached, causes an SCF cycle to stop. The ionic configuration was relaxed using the 

Broyden-Fletcher-Goldfarb-Shanno minimization to reduce the internal forces to less than 

2.57 eV/Ǻ.  

It should be noted that, as frequently done in literature, this thesis reports the K-S 

eigenvalues and associated eigenfunctions obtained from DFT. For semiconductors like 

silicon, the K-S bandgap is often smaller than the experimental one. While a more accurate 

description of the bandstructure could be obtained by carrying out many-electron 

perturbation (GW) corrections on the DFT bandstructure, the focus of the chapter is on 

trends obtained from the K-S eigenvalues. 

 

4.2.1 DFT bandstructures of unpassivated nanowire/ tube structures 

The K-S bandstructures from DFT-GGA of the various unpassivated wires are 

shown in Fig. 4.2 and the key features are summarized in Table 4.1. Here bandgap is 

defined as the difference between the energy ELUMO of the lowest unoccupied molecular 

orbital (LUMO) and the energy EHOMO of the highest occupied molecular orbital (HOMO). 

The results show that while the high-symmetry (and unstable) perfect fullerene NTs have 

zero bandgap, their structural relaxation to DFs opens a band gap. All relaxed DNT 

structures are also semiconducting. All DFs and DNT1 possess direct band-gaps while 

DNT2 and DNT3 are indirect band gap semiconductors. As noted earlier, the K-S 

bandgap is typically smaller than the true bandgap. Experimental results for bulk Si and H 

passivated silicon nanowires and GW calculations, that incorporate corrections to K-S 

energies from many-body perturbation theory, for unpassivated Si (100) surfaceshow that 
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the Kohn-Sham bandgap is between 1.6 and 2.6 times smaller than ELUMO-EHOMO. Using a 

multiplicative factor of 2, we estimate the bandgaps of the unpassivated SiNTs to lie in the 

range 0.4-1.0 eV.  

 

The semiconducting nature of all DFs and DNTs reported here is in contrast with 

most previous reports on small diameter, clean, one-dimensional Si structures where 

metallic behavior was observed. Zero band gaps were predicted using DFT for regular 

pentagonal and hexagonal tubes, hexagonal and rectangular [110] nanowires of 4 nm and 

1.2 nm diameters respectively, and using tight binding molecular dynamics calculations for 

[111]-oriented wires of diameter 1.44 nm. The only report of semiconducting behavior for 

this regime that the author is aware of is for some [110] rectangular wires of diameters 

between 1 and 2 nm although the same calculations predict zero bandgaps for other similar 

Fig. 4.2 (a) The calculated DFT band-structures of unpassivated nanowire structures 

of small diameters with the HOMO at 0eV (the top filled band at 0K is shown in bold 

red and the dotted line represents the zero energy axis) of (a) the low symmetry 

structures, DFs and DNTs from MD and DFT, (b) the more symmetrical structures 

including Pen and SHW1-2 
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cases. In contrast, the results reported here show unambiguously that all fully relaxed sub-

nanometer SiNTs are semiconducting. 

Table 4.1 also shows that the DFs and DNTs have, in general, high carrier 

effective masses, which are calculated considering all significant states close to HOMO 

and LUMO, and tend to strongly favor transport of one carrier, either hole or electron. 

The possible causes of such high effective masses include the hollow structure of the wires 

and the modified bond environments. This is supported here by the observation that the 

structural difference of energetically similar DF2‟ and DF2‟‟ makes their effective masses 

strikingly dissimilar. Also, elsewhere in literature, defects on nanowire surfaces have been 

shown to affect the form and curvatures of the bands, especially those near the gap. 

 

 

 

Structure 

 

ɑ (Å) 

 

nSi 

 

 (eV) K-S Eg 

from DFT-

GGA (eV) 

D/I me*/m0 mh*/m0 

D

F2‟‟ 

1

0.73 

3

0 

6

6.9 

0.6

35 

0

.601 

  DF2’’ 10.73 30 0.601 0.340 D 1.38 0.86 

DF2’ 10.76 30 0.602 0.331 D 0.52 2.10 

DF1 10.63 36 0.604 0.268 D 0.65 4.75 

DNT1 11.10 30 0.615 0.510 D 1.64 0.49 

DNT2 10.47 30 0.625 0.311 I 0.58 0.26 

F1 10.86 36 0.629 0 - - - 

DNT3 9.90 25 0.653 0.199 I 0.15 0.67 

DF2 10.93 30 0.668 0 - - - 

F2 10.97 30 0.689 0 - - - 

Pen 2.42 5 0.724 0 - - - 

Hex 2.40 6 0.744 0 - - - 

SHW1 2.45 13 0.702 0 - - - 

SHW2 2.4 7 0.822 0 - - - 

 

TABLE 4.1 Table listing the unit cell length (ɑ), number (nSi) of Si atoms in unit cell, 

energies per atom above Si bulk calculated in ABINIT (), the band energy gap (E g= 

ELUMO - EHOMO if positive) and the direct (D) or indirect (I) nature of the gap, all 

obtained from DFT-GGA, for the best silicon nanotube and nanowire structures of 

diameter ~1nm. The last two columns report the curvature electron effective mass 

me* (at LUMO) and hole electron mass mh* (at HOMO) referenced to the free 

electron rest mass m0. 
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4.2.2 Stability, bandgap and symmetry of unpassivated structures 

Figure 4.3 shows that a correlation exists between the cohesive energy of the NT 

and the K-S band gap within each structural group (DFs and DNTs). In each individual 

category, the band gap increases as the stability of the tube increases. The more disordered 

DNTs exhibit, in general, higher bandgaps than the DFs of similar cohesive energies.  

 

To understand the reasons why a bandgap opens when the perfect fullerene 

structures relax into lower symmetry structures (DF families) we compare the topologies 

of their Kohn-Sham HOMO and LUMO orbitals for the F1 and DF1 pair. The band-

structure of F1 shows the following degeneracies: EHOMO (k=0) = ELUMO (k=0) and EHOMO 

(k=/a) = EHOMO- (k=/a). Here a is the lattice constant and HOMO- represents the orbital 

right below the HOMO band. Figures 4.4(a), (b) and (c) show the F1 wavefunction 

isosurfaces [||=5 bohr
-3/2

] corresponding the LUMO, HOMO and HOMO- orbitals for 

k=0 and k=/a. Though orthogonal (< LUMO(k=0) | HOMO(k=0) > = 0) the LUMO and 

HOMO wavefunctions are related such that one can be obtained from the other merely by 

a screw motion (translation of a /2 and rotation of 30). But for DF1 (Fig. 4.4(d) and (e)), 

the reduction in the symmetry of the structure modifies LUMO(k=0) and HOMO(k=0) such 

that they no longer share the structural similarity and consequently exhibit different 

energies: EHOMO (k=0)  ELUMO (k=0). In a similar manner, the HOMO and the LUMO 

densities of the high disorder DNT structures possess no similarities in their structure 

(exemplified by DNT1 in Fig. 4.5(a) and (b)) and are also non-degenerate. Structural 

symmetry of the final atomic structure is thus associated with the presence of the gap. 

Fig. 4.3 The DFT energy gap versus energy/ atom measured with respect to Si bulk 

for the lowest energy unpassivated structures 
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To understand the aggregate effect of the change in symmetry over all k points, we 

look at the atomically resolved local density of states (LDOS) for F1 and DF1. First we 

note that the atoms of F1 lie on two concentric cylinders A and B of symmetrically 

equivalent atoms, as shown in Fig. 4.6(a). Each of these cylinders splits into two cylinders 

Fig. 4.4 Spatial plot of wavefunction magnitude isosurface (axis of the wire is along z; 

small red dots represent atomic positions) (a) |LUMO|=5 bohr
-3/2

 for F1, (b) |HOMO|=5 

bohr
-3/2

 for F1, (c) |HOMO-|=5 bohr
-3/2 

for F1, (d) |LUMO|=5 bohr
-3/2

 for DF1, (e) 

|HOMO|=5 bohr
-3/2

 for DF1 

Fig. 4.5 Spatial plot of wavefunction magnitude isosurface (axis of the tube is along 

z; small red circles represent atomic positions) (a) |LUMO|=5 bohr
-3/2

 for DNT1, (b) 

|HOMO|=5 bohr
-3/2

 for DNT1 



36 

 

in the lower symmetry structure DF1. So, by symmetry, we have only two distinct LDOS 

plots for F1 but four for DF1. Those for DF1 are shown in Fig. 4.6(b). The reduction in 

symmetry redistributes the HOMO states among the atoms such that these states now 

reside almost completely on the atoms of the outer cylinders A‟ and B‟ and none on the 

atoms of the inner cylinders A and B. It is clear here that the change in symmetry separates 

the atoms into groups of different contributions to the valence band. As a result the outer 

atoms (on A‟ and B‟) acquire a patial charge. If the bond environment of the central Si 

atom in the trihydride of silicon is studied (fig. 4.6(d)), it is found that as the negative 

Fig. 4.6 (a) The concentric circles of atomic positions in the cross-sectional view of 

F1 and DF1, (b) the LDOS within a radial distance of 1.3Å for atoms of DF1 lying on 

the cross-sectional circles (Fermi level at 0eV) A, A‟, B and B‟, (c) comparison of the 

surface distortion in unpassivated fullerene-like SiNW and Si (100) surface where the 

gray and brown represent the undistrorted and distorted structures respectively, (d) 

plot of bond angle versus charge on central atom showing how the bond angles 

decrease as the central atom acquires negative charge (electrons) 
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charge on Si atom is increased, the bond angle between the bonds of Si atom decreases. 

This is also why the bond angle in the trihydrides decreases as one successively goes from 

a less electronegative to a more electronegative central atom: C to Si to P. Hence the 

bond angles surrounding the outer atoms B‟ are smaller than those on the inner atoms B in 

DFs and the surface of the wires is distorted. This effect is similar to the Jahn Teller 

distortion observed on the silicon surface[43, 44] (a comparison of the change in bond 

environment of the corresponding dimers on DF1 and on reconstructed Si(100) surface is 

done in  figure 4.5(c) and table 4.2) and also explains why the low symmetry structures are 

more stable. 

 

 

 

4.2.3 Band structures of H-passivated small diameter silicon nanowires 

The K-S bandstructures of H passivated tubes from DFT-GGA reported in Fig. 4.6 

and the bandgaps specified in Table 4.3 show that in all cases, the band gap increases from 

unpassivated to the passivated structures in a manner similar to what has been observed 

for diamond core wires.[39] However, this increase is much higher for DF2‟ and DF1 than 

for DNT1. This can be attributed to the fact that DNT1 originally carries less dangling 

bonds (12) than DF2‟(20) or DF1(24) and also to the significant change in bond angles at 

the surface of DF2‟ or DF1 when H passivated. Table 4.3 also shows that the bandgaps of 

the H passivated fullerene tubes are higher than those of the bulk-like wires of similar 

diameter while that of the DNTs are lower. This could mean that the true bandgaps of the 

H-passivated DNTs lie within the visible spectrum range while those of the H-passivated 

DFs lie well outside that range. The bandgaps of the diamond like wires of similar 

 Si(100) p(2X1) surface Fullerene 1 Fullerene 2 

Atom Sym Asym F1 DF1 F2 DF2‟‟ 

Inner 

atom 

107.50 

112.40 

107.50 

122.41 

111.34 

122.41 

112.31 

112.31 

104.88 

118.82 

118.82 

121.37 

113.30 

113.28 

105.20 

120.62 

120.53 

118.13 

Outer 

atom 

107.50 

112.40 

107.50 

88.38 

106.82 

88.38 

104.87 

112.30 

112.32 

85.41 

95.68 

95.68 

105.11 

113.23 

113.21 

87.78 

95.88 

95.89 

Table 4.2 Table listing the bond-angles around Si(100) (symmetric and asymmetric) 

surface, fullerene 1 (F1 and DF1) and fullerene 2 (F2 and DF2‟‟) dimers 
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diameters lie towards the violet end of the spectrum. It is also interesting to note that on 

hydrogen passivation, both DFs and DNTs transform to indirect bandgap materials. 

 

 
Structure ɑ (Ǻ)  (eV) 

 

K-S Eg from 

DFT-GGA (eV) 

D/I me*/m0 mh*/m0 

DNT1 11.10 0.788 1.145 I 0.23 5.34 

DNT3 9.90 0.870 0.912 I 1.18 0.45 

F2 10.50 0.827 2.393 I 0.53 0.40 

F1 10.20 0.829 2.429 D 0.56 0.40 

110_small 7.60 0.734 1.846 D 0.13 0.21 

110_big 7.60 0.593 NC NC NC NC 

111 18.93 0.792 2.253 NC NC NC 

112 13.40 0.948 1.825 NC NC NC 

 

Table 4.3 also shows that the effective masses of the wires change dramatically on 

hydrogen passivation. The carrier selectivity is reduced for the fullerene wires. The 

favored carrier for all wires may now be different from the unpassivated case, but has a 

lower effective mass, even though this mass is still high compared to [110] bulk-like wire. 

 

Table 4.3 Table listing the unit lengths ɑ, formation energies  (calculated by equation 

(3.2)), the Kohn-Sham energy band gap Eg from DFT-GGA, direct(D)/ indirect(I) 

nature of gap and the electron and hole effective masses of the ~1nm diameter 

hydrogen passivated 1-D silicon nanostructures shown in figure 3.4 (NC = not 

calculated) 

Fig. 4.7 K-S bandstructures of the passivated silicon nanowires of very small 

diameter 
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4.3 Mechanical response of small diameter unpassivated silicon nanowires 

 

4.3.1 Strength 

ReaxFF dynamics of small diameter silicon nanowires as the wires are strained at a 

rate of 0.04167%/ps show that these wires have very high strengths compared to silicon 

bulk.  For example, fig. 4.8 shows the MD of the fullerene wire F1. The figure shows that 

the wire can sustain upto 6% strain. This is very high compared to only 0.04% for silicon 

bulk. 

 

 

4.3.2 Young’s moduli  

Young‟s moduli for the wires can be obtained from length optimization in DFT, as 

shown in figure 3.4. The Young‟s modulus is given by the second derivative of energy per 

unit area with respect to the length of the tube. As described earlier in section 3.3, a 

conservative (larger diameter) estimation of the area of the tube has been used. Table 4.3 

lists the Young‟s moduli of the various tubes as obtained from SeqQuest simulations. The 

results show that even though the tubes are energetically comparable, their Young‟s 

moduli can differ by as much as a factor of 2. We, therefore, have several nanotube 

structures with similar energetics but varying elastic and electronic properties. 

 

 

Structure L (Å) A (Å
2
) S (eV) E (GPa) 

DF1 10.64 80.9 0.638 118 

DNT1 11.12 81.8 0.658 72 

Table 4.4 The unit lengths L, cross-sectional areas A, energies per atom from 

SeqQuest S and the Young‟s moduli E from DFT-GGA of the unpassivated nanowires 

Fig. 4.8 Straining of F1 wire in ReaxFF shows its high strength compared to Si bulk 
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4.4 Conclusions 

 

In summary, while the previous chapter used longer time scale simulations with 

reactive force field to explore stable SiNT structures of diameter less than 1 nm, the 

current chapter used density functional theory to calculate electronic band structures and 

Young‟s moduli of these structures.  

1. The clean distorted fullerene and distorted nanotubes are perhaps the only 

SiNW structures reported at these dimensions which consistently show a small band gap. 

2. The bandgaps in the clean tubes can be associated with the symmetry loss 

and disorder in their structures and their stability, akin to asymmetrically reconstructed 

Si(100) surface. 

3.  On hydrogen passivation, the bandgaps of all nanotubes increase, but the 

increase is much larger for the DFs than the DNTs. The K-S bandgaps are smaller than 

those of the diamond-core wires, and the true bandgaps are likely to fall in the optical 

spectrum. 

4. The effective masses of the DNTs are high compared to diamond-core 

wires. 

5. The DFs possess higher Young‟s moduli compared to the DNTs. 

DNT2 10.58 86.0 0.673 86 

F1 10.86 72.2 0.705 145 

DNT3 9.79 69.4 0.708 50 

F2 10.97 57.9 0.714 179 

Pen 2.42 33.3 0.755 273 

Hex 2.40 40.7 0.774 493 

CNT (4,4) 3.89 324.7 0.805 53 

SHW1 2.49 90.2 0.663 305 

SHW2 2.64 40.7 0.751 140 
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5. SIMULATING REALISTIC NANOSTRUCTURES WITH 

DIMENSIONS OF SEVERAL NANOMETERS 

 

It was mentioned in chapter 1 that a driving force behind the use and development 

of atomistic simulations is to be able to simulate larger systems using a bottom up 

approach. To demonstrate how the methods described hitherto can be applied for the 

simulation of a realistic larger device, the thesis uses the case of strained-Si/ strained-Ge/ 

strained-Si nanowires of the form shown in figure 5.1(a). These structures with widths 

ranging from 30-300 nm have been fabricated by the Hoyt group at M.I.T.,[15]. A 

theoretical study of the structural aspects of such structures has been carried out using 

ReaxFF by Park et al.[16] They varied the height H and the width W of the Ge layer in the 

nanostructure. The other dimensional measurements depicted in Fig. 5.1(a) are the same 

as simulated by Park et al. The height of the Ge layer was large compared to the heights 

of the Si sections. Owing to the substantially large Ge section compared to the Si sections 

in the hetero-structures and also the confinement of holes in the Ge section as shown in 

fig. 5.1(c), this thesis focuses on the germanium sections (fig. 5.1(d)) of the hetero-

Fig. 5.1 (a) The studied strained-Si/ strained-Ge/ strained-Si nanobars, (b) the defined 

directions, (c) the band-edge lineup in the bars, (d) the actual simulated germanium 

section of the bars 

 (d) 

 (a) 
 (b)  (c) 
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structures and primarily studies their hole properties. So, in effect, realistically strained 

germanium <100> wires are studied here. 

 

5.1 Background 

 

5.1.1 Strain engineering in semiconductor devices 

In recent years, strain has been increasingly employed by the semiconductor 

industry to enhance carrier mobilities (eff) in the channel of the MOSFET. It is also being 

investigated for improvements in the current gain () and the maximum oscillation 

frequency (fmax) of the BJT[45] or HBT[46]. In industry, strain has been incorporated in 

MOSFETs using process-induced stressors. But strain in a material can also be introduced 

by growing it epitaxially on another relaxed material (referred to as virtual substrate) with 

the same crystalline symmetry but a different lattice parameter. For example, silicon grown 

epitaxially on top of relaxed Si1-xGex, which has larger bond length, will be strained to a 

degree that can be controlled by the composition of Ge, x in the alloy. A defect free 

interface is ensured by controlling the height of the grown layer to remain less than a 

certain thickness called the critical thickness. The critical thickness depends on the amount 

of strain introduced in the grown silicon and hence on the Ge composition of the virtual 

substrate.  

To consider how strain effects improve mobility, let us consider the example of 

strained silicon. The hydrostatic component of the strain introduces a positive 

(compressive) or negative (tensile) energy band shift, while the uniaxial component results 

in a splitting of the conduction and valence band degeneracies with the strain direction CB 

valley 2 and the heavy hole VB slipping (uniaxial compression) or rising (tension) in 

energy.[47] In the tensile biaxially strained Si, electrons preferentially occupy the lower 

energy 2 conduction band, which has smaller in-plane effective mass calculated by 

averaging over all six valleys. In addition, intervalley scattering is suppressed by the 

conduction band energy splitting. Both these effects contribute to enhanced electron 

mobility. 

Asymmetric in-plane strain configurations can lead to the largest transport 

enhancements.[48, 49] To achieve uniaxial strain configurations in Ge, which is of 

particular interest due to high hole mobility, Hashemi et al. have fabricated strained-Si/ 

strained-Ge/ strained-Si (s-Si/s-Ge/s-Si) hetero nano-bars on insulator. They study the 

interplay of the thickness, width and lateral strain relaxation of the Ge film.
 
[15] 
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5.2 Case study – strained Si/ strained Ge/ strained Si on insulator hetero nanobars 

 

5.2.1 Study of strain in fabricated s-Si/ s-Ge/ s-Si heterostructure (Hashemi et al.) 

Hashemi et al. [15] grow relaxed s-Si/s-Ge/s-Si heterostructure on a relaxed SiGe 

virtual substrate such that the starting material has symmetrically biaxial strain in both Si 

(~2% tension) and Ge (~2% compression). The thin-body heterostructure is bonded to the 

SiO2 substrate, the back SiGe is removed and the exposed s-Si cap layer is thinned. The 

heterostructure-on-insulator (HOI) substrates are then patterned into stripes with widths 

ranging from 30-300 nm. As the stripes become narrower and the s-Si cap layer thicker, 

the authors observe enhanced tensile strain in the cap layer. The transverse compressive 

stress in Ge is reduced by narrowing the bar width. 

 

5.2.2 Structural simulations with ReaxFF MD (Park et al.) 

To obtain the realistic hetero-structure wires computationally, Park et al. carried 

out molecular dynamics of the heterowires shown in fig 5.1(a) [16] using the reactive 

force field ReaxFF also used earlier in this thesis, in chapter 3, to explore SiNT structures. 

The bottom Si layer was fixed at ~2% biaxial tension and the Ge layer was ~2% biaxially 

compressed.  Dynamics of the heterowires at 10K led to relaxed structures while dynamics 

at 300K provided reconstructed structures. The authors observed that the average 

compressive transverse strain in the Ge layer is relaxed as the bar width is reduced or the 

Ge height is increased. Structures with square Ge cross-sections exhibited approximately 

uniaxial strain in the Ge layer. An important observation of Park et al. is the enhancement 

of transverse strain relaxation due to surface reconstruction for Ge layers with larger 

heights. Their results show 44.5 % relaxation for the geometry for which Hashemi et al. 

estimated 45% transverse stain from Raman spectroscopy, thus establishing validity of the 

structures obtained from ReaxFF. 

 

5.2.3 Energy band lineup in s-Si/ s-Ge/ s-Si hetero- nanobars 

The heterostructure is often conceived within macroscopic models, such as the 

electron affinity rule, as being built by joining bulk strained silicon and germanium layers. 

Then the band lineup such as the one shown in Fig. 5.1(c) can be obtained by calculating 

the band edges and thereby EC and EV for strained germanium and silicon bulk using 

sp
3
d

5
s* tight binding and the strain model by Boykin et al.[21] The conduction band valley 

for Ge occurs at L point, while the conduction band valley for Si occurs along the <100> 
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() k-path. The VB edge is defined by the light hole band maximum. Considering the 

cases of biaxial and uniaxial strains:  

1. Biaxial case: the strains considered are x = 0.021, y = 0.021, z = 0.01633 for 

Si and x = -0.0201, y = -0.0201, z = 0.014124 for Ge. EC = 0.4285 eV, EV = 0.64036 

eV. 

2. Uniaxial case: the strains considered are x = 0.005434, y = -0.0201, z = 

0.005434 for Ge and x = 0.04745, y = 0.020016, z = -0.026237 for Si. EC = 0.45274 

eV , EV =  0.5384 eV. 

However, for unstrained bulk, the method used here (tight binding) over-estimates 

both EC and EC by 0.26 eV compared to those obtained by the Anderson (electron 

affinity) rule, which are also the experimentally observed values. Hence, it is possible that 

the values obtained here are also over-estimated.  

  

5.3 Tight binding simulations of strained hetero-nanobars 

 

The study reported here starts with the realistically relaxed 1-D s-Si/s-Ge/s-Si 

{100} hetero-structures (fig. 5.1(a)) with Si-cap (top) layer of 8 monolayers (~2.1nm) 

obtained from ReaxFF.[16] Two heights (H) of the germanium layer are studied: 48 

monolayers (~7nm) and 72 monolayers (~10nm). The widths (W) of the hetero-structures 

range from 56 monolayers (~8nm) to 296 monolayers (~41.5nm). The unit length (L0) of 

all the wires is 24 monolayers (~3.3nm) in the longitudinal (periodic) direction. As 

discussed earlier, in the periodic longitudinal direction the nanobar is constrained to have 

2% average compression in germanium and 2% average expansion in silicon. These strain 

constraints are introduced to mimic the experimentally fabricated structures. In the other 

two directions, there are no constraints during MD and the atoms are allowed to relax 

their positions. To avoid the effects of surface reconstruction, this thesis studies relaxed 

rather than reconstructed hetero-structures.  

Owing to the substantially large size of the Ge section compared to (>2.4 times) 

the Si sections in the hetero-structures and to the confinement of holes in the Ge section, 

this study focuses on the germanium section of the hetero-structures and their hole 

properties (to be discussed further in section 5.3.1). In effect, therefore, this thesis studies 

realistically strained germanium <100> wires. These wires shall henceforth be identified by 

(H,W) where H and W are the height and width dimensions respectively in nm. The strains 

in these realistic wires are not uniform and vary from bond to bond within the wire. The 



45 

 

transverse strain variation is shown in figure 5.2(a) for wire of height ~7nm and width 

8.2nm. The average longitudinal strain in these wires is fixed at ~2.08% compression, but 

the average compressive transverse strain increases as the wire becomes wider as 

discussed in ref. [16]. It should be noted here that if the wires were homogeneous 

(uniform strain), the plot of the kind shown in fig. 5.2(a) would collapse to a single point 

at the average transverse strain. Fig. 5.2(b) summarizes the transverse strain data for the 

five studied MD relaxed wires of height ~7nm. This study compares the realistic MD 

relaxed non-homogeneously strained wires with homogeneous <100> germanium wires of 

same dimensions (in terms of monolayers of atoms). The comparison is performed against 

unstrained, uniaxially compressively strained and biaxially compressively strained wires. 

Even when the four kinds of wires carry the same number of monolayers in every 

direction, they have slightly disparate dimensions owing to the different strains. The H and 

W used to indetify the wires would therefore be the approximate rounded dimensions. 

Because the wires are made up of an integer number of 8-atom cubic unit cells of 

germanium in each directon, it is straightforward to know the exact dimensions from these 

approximate dimensions if the strains are known. 

 

The electronic structures are calculated using sp
3
d

5
s* tight-binding with bulk Ge 

parameters obtained from genetic algorithm fits.[20] Strain corrections suggested by 

Fig. 5.2 (a) Variation of the number of bonds with a particular transverse strain in the 

7nm high, 8.2nm wide wire showing the full-width at half-maximum (FWHM) strain 

range. (b) Data of all the MD relaxed wires identified by the widths shown on the plot, 

against the average transverse strain showing the full-width at half-maximum (FWHM) 

strain range for the number of bonds and the strain exhibited by the peak number of 

bonds. The dotted line represents the average strain. 

 (a)   (b)  
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Boykin et al. [21] are applied for all strained bonds. The surface atom dangling bonds are 

“passivated” by modifying the atom parameters as suggested by Lee et al.[50] The 

eigenvalues of the tight binding Hamiltonian were evaluated using Lanczos solver. To 

obtain the degeneracies, Block Lanczos algorithm with block size of 6 was used. The code 

used for this study is a modified version of the basic NEMO-3D.[51] The code was 

modified to enable calculations for arbitrary atomic geometry, such that the structures 

obtained from ReaxFF could be simulated.  

Since the wire unit cells are six times longer (6 times replicated) in the longitudinal 

direction than the 8-atom bulk Si cubic unit cell, the Brillouin zone of the wires is /(6a) 

where a represents the bulk Si cubic unit cell constant. Energy eigenvalues are calculated 

at 26 equispaced k points from 0 to /(6a). It must be noted that because these wire bands 

are 6 times folded versions of those of a non-replicated wire with unit length equal to that 

of 8-atom cubic unit cell, the conduction band minima that appear to exist at k=0 in the 6 

time replicated wires actually occur at k=/a for a non-replicated wire. 

To calculate the electron or hole conductivity (or curvature) effective masses of 

the wires, we average over the electronic states assuming occupancy of the conduction or 

valence bands, respectively, according to Boltzmann statistics for non-degenerate 

semiconductor: 
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where mc* is the curvature (conductivity) effective mass, ij represents the jth k point in the 

ith conduction or valence band, E is the energy eigenvalue, k is the wavenumber, T is the 

temperature (300K) and ħ and kB are the universal Planck and Boltzmann constants 

respectively. It should be noted that the degeneracies are taken into account when 

summing over the bands i, and that the discrete summation over E values calculated at 

regular k intervals takes care of the density of states (DOS) in equation (5.1). The mc* 

thus defined is the effective mass that yields the low-bias steady-state mobility assuming an 

energy-independent scattering relaxation time.  

The DOS hole effective masses can also be calculated. It has been suggested 

earlier [52] that instead of including the Boltzmann statistics over all energies for non-

degenerate semiconductor as done in (5.1), one could alternatively calculate the DOS 

effective mass for ith band only at E=Eij such that (EV0i- Eij)=Eth (the thermal energy), 
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where EV0i is the maximum energy of the ith subband, and obtain the DOS effective mass 

with a very small error (<1%). Using this approximation, the DOS effective mass for the 

ith subband is given by: 
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where mdi* is the DOS effective mass for subband i and kj, indexed by j, represents the k 

points.  

 

5.3.1 Rationale of studying only germanium sections of the wires 

 

It has been mentioned earlier that the rationale for studying only germanium 

sections here is based on two arguments: the higher valence band edge and lower 

conduction band edge in germanium as compared to silicon and the the larger number 

(>2.4 times) of germanium atoms compared to silicon atoms. However, as was discussed 

earlier in section 5.2.3, the band lineup obtained from applying tight binding to bulk 

material is not necessarily accurate. So this argument should be verified true. A simple 

way to take into account both the above mentioned factors in a single check is to 

investigate the atomically-resolved density of states (DOS) in the wires and compare the 

contribution of all silicon and all germanium atoms. As an example, figure 5.3 does this for 

a homogeneous (7,21) wire with average strains in all directions the same as in the 

corresponding MD relaxed wire. The plots in the figure show that the total and per atom 

contribution from silicon atoms to valence band states within the first 0.1eV from the 

valence band edge of the wire is negligible compared to the contribution from the 

germanium atoms. This is however not true for the conduction band (for unstrained bulk, 

Fig. 5.3 Total density of states (DOS) and DOS per atom contributions from 

germanium (blue dotted) and silicon (red solid) atoms in (a)valence band and 

(b)conduction band of a homogeneous (7,21) wire with average strains equal to that of 

corresponding MD relaxed wire; all energies are referenced to VB maximum in the 

wire 

(a)  (b)  
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EC is known to be only about 0.05eV and strain causes splitting of the conduction 

bands). These results lead us to the conclusions that because the holes are confined in the 

thick germanium layer, this structure can be used to construct a p-type device and that the 

valence band and hole properties can be safely studied by considering only the germanium 

section. 

 

5.3.2 Confinement effect in unstrained germanium 

By assuming the longitudinal periodic direction of a hypothetical unstrained 

germanium [001] wire (see fig. 5.1(b)) to be the k̂ z  direction,  the effect of confinement 

on the band properties (band edges and band curvatures) along this k direction (k̂ z) can be 

studied. Germanium bulk has CB minimum at L symmetry point (kx, ky, kz) = (/ɑ, /ɑ, 

/ɑ) in the Brillouin zone, where ɑ is the lattice constant of the 8-atom cubic unit cell. The 

next conduction band valley for Ge bulk occurs at  point. The VB maximum is at  point 

(0,0,0) where the light hole band and the heavy hole band are degenerate. The k-path of 

interest for electron effective mass here would be (/ɑ, /ɑ, 0) to (/ɑ, /ɑ, /ɑ) and for 

hole effective mass would be (0, 0, 0) to (0, 0, /ɑ). As one limits the x-dimension (say) to 

give a (100) slab of thickness Lx, the E values get sampled at intervals of 2/Lx along the 

k̂ x direction of the bulk and all these sampled values get projected on to the k̂ y -k̂ z plane 

as subbands. For the slab, the k-path of interest for investigating the electron effective 

mass would then be (/ɑ, /ɑ, 0) to (/ɑ, /ɑ, /ɑ) and for investigating the hole effective 

mass m would be (0, 0, 0) to (0, 0, /ɑ). Finally, for the wire the y-dimension is also 

limited. As a result, for the wire, the E values in the slab get sampled at intervals of 2/Ly 

along the k̂ y direction and all these sampled values get projected on to the k̂ z direction, 

which is the only k-path left to study the dispersion along in the wire. 

In figure 5.4, the cases of a germanium slab with Lx = 7nm and a germanium wire 

with Lx = 7nm, Ly = 8nm are considered and compared with germanium bulk. The shifts in 

the conduction and valence band edges, the corresponding increase in the bandgap and the 

degradation in the curvature effective masses are clearly evident in figures 5.4(a) and (b) 

as one goes from bulk to slab and then slab to wire. The results for the band edges are 

summed up in figure 5.4(c) and for the effective masses in figure 5.4(d). If the discussion 

here is extended to wires, one would expect the bandgaps to increase and the effective 

masses to increase as one reduces the coss-section of the wires. Such results have been 

reported in [53] and [54]. 
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5.3.3 Tight binding calculations of germanium wires 

 

Figure 5.5 compares the effect of different strain conditions (hypothetical 

uniformly uniaxial strain, uniformly biaxial strain and realistic strain obtained from MD 

relaxation) on (7,8) wire. The conduction and valence bands of the homogeneous 

uniaxially, homogeneous biaxially and the non-homogeneous MD relaxed wires differ in 

both band edge locations and the band curvatures (effective masses). The valence band 

radius of curvatures appear to be substantially enhanced for the homogeneously uniaxially 

Fig. 5.5 (a) Conduction bands and (b) valence bands for homogneoeusly strained and 

MD relaxed (7,8) wire. 

 (a)   (b)  

Fig. 5.4 (a) Valence bands at the lowest valley, (b) conduction bands at  along k̂ z of 

germanium bulk, a germanium slab limited to 7nm in the x-direction and a germanium 

wire limited to 7nm in the x-direction and 8nm in the y-direction. (c) The valence band 

and the two lowest conduction band edges for germanium bulk, slab and wire. (d) The 

hole and electron (elec) curvature effective masses for germanium bulk, slab and wire. 

 (a)   (b)   (c)   (d)  
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strained and the MD relaxed wire compared to the unstrained and the homogeneously 

biaxially strained wires. 

 

5.3.4 Band edges and bandgaps 

As discussed in 5.3.2, an increase in the bandgap is expected as the wire cross-

section is reduced. Evidence for this in experimental and theoretical literature for silicon 

nanowires was discussed earlier in 3.1.1. 

 

 

Figures 5.6(a) and (b) show respectively the shifts in the conduction and valence 

band edges as W is increased for (7,W) [solid markers] and (10,W) [open markers] wires. 

As expected, it is observed that owing to confinement, for a given wire height, band gap 

(fig. 5.6(c)) increases as the wire width decreases for the realistic MD relaxed wires as 

well as the homogeneously strained biaxial or uniaxial wires. It should be noted that strain 

causes all bandgaps to decrease, the decrease is higher for the homogeneous uniaxially 

Fig. 5.6 (a) Conduction band edges, (b) Valence band edges and (c) Bandgaps in the 

simulated germanium wires of height ~7nm (filled markers) and ~10nm (open markers) 

 (a)   (b)  

 (c)  
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strained than for the homogeneous biaxially strained wire. However, the bandgap for the 

non-homogeneously strained MD relaxed wires is the smallest (smaller by about 0.1eV 

from hypothetical unstrained wire) for all sizes. A key point to note here is that conduction 

band of the germanium wires is weakly dependent on the strain conditions compared to 

the valence band. 

 

5.3.5 Curvature electron effective masses 

The curvature of the lowest conduction band is shown in figure 5.7 (a) for all the 

wires. It should be noted that owing to switch in the order of the bands near the edge as 

the size of the wire is changed, we fail to see the pattern of increasing effective mass with 

decreasing wire cross-section expected from the simple bulkslabwire discussion. The 

average curvature effective mass (fig. 5.7 (b)) for the MD relaxed wire is higher than the 

uniform wires and shows a behavior mixed of the behaviors exhibited by the uniform 

uniaxially and biaxially strained wires. The average electron effective mass of the MD 

relaxed wire remains close to the uniaxially strained wire masses for the sizes simulated. 

 

 

5.3.6 Curvature hole effective masses 

Figs. 5.8(a) and 5.8(b) show the valence band edge curvature hole effective mass 

and the average hole effective mass calculated by using equation (5.1). The hole effective 

mass is well-behaved with a regular trend with the cross-sectional size of the wire. For the 

uniform uniaxially or biaxially strained wires, this trend is what would be expected from 

Fig. 5.7 (a) The curvature electron effective masses of the lowest conduction band at 

the conduction band edge and (b) the average curvature electron effective masses of 

the ~7nm (filled markers) and ~10nm (open markers) germanium wires  

 (a)   (b)  
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the discussion in section 5.3.2. However, for the MD relaxed wires, the trend obtained is 

opposite, i.e., the hole effective mass decreases with decreasing wire cross-sectional area. 

 

Fig 5.8(b) shows that for small widths, the MD relaxed wire behaves as a 

uniformly uniaxially strained wire with regard to its average hole effective mass. The 

average hole effective mass increases (deteriorates) as the width is increased. The 

bandstructures in figure 5.9(a) for the MD relaxed wire (7,W) show that though there is 

little change in the curvature of the valence band edge (which are close to those of the 

uniformly uniaxial wires as seen in figure 5.8 (a)) as W is increased, the valence subbands 

cave in faster to become concave upwards than do the subbands in the uniaxial wires 

(shown for (7,31) wire in figure 5.9(c)). This leads: (a) the slope |dE/dk| to reduce as the 

bands bend upwards resulting in an increased density of states and hence a measurable 

influence on the average effective mass even when the states are far from the band edge, 

(b) the curvature of the band to change its direction, thereby contributing a negative hole 

effective mass. These two factors together deteriorate the average hole effective mass in 

the MD relaxed wires for higher widths. Thus, as shown in figure 5.9(a), for the (7,13) 

wire, the valence bands of MD relaxed wire are similar to the valence bands of the 

uniformly uniaxially strained wire, while for the (7,31) wire, the valence bands of the  MD 

relaxed wire possess likeness to the valence bands of the uniformly biaxially strained wire 

(fig. 5.9(c)).  

 It should be noted here that the similarity of the MD relaxed small width wires to 

uniaxially strained wires while that of the larger width MD relaxed wires to biaxially 

strained wires of equivalent dimensions in terms of their bandstructure and effective mass 

Fig. 5.8 (a) The curvature hole effective masses of the highest valence band at the 

conduction band edge and (b) the average curvature electron effective masses of the 

~7nm (filled markers) and ~10nm (open markers) germanium wires 

 (a)   (b)  
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is reminiscent of the fact that the smaller width wires have an average strain that is almost 

uniaxial while the larger width wires have an average strain that is biaxial as discussed in 

section 5.2.2.  Two natural questions arise at this point: Are the electronic bandstructure 

properties of the MD relaxed wires driven by the nature of their average strain? Is the non-

uniformity of strain in the MD relaxed wires important? 

 

Fig. 5.9 Calculated valence bands, referenced to the band top edge as 0eV, of (a) the 

simulated MD relaxed wires with height ~7nm (the widths are represented above the 

plots), (b) the ~13nm wide wire of all strains and (c) the ~31nm wide wire of all 

strains. 

 (a)  

 (b)  

 (c)  
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5.3.7 Sub-bands and electronic states 

The various subbands owing to the confinement (sampling of the E values in the 

confined directions in k space) are clearly visible in the bandstructures shown in figure 5.8. 

The states at a given energy may come from one or more subbands. The broader net 

spatial nature (without atomic-level details) of the wavefunctions in the various sub-bands 

at a given energy is reflected by the atomically-resolved density of states. 

The atomically-resolved density of states from the TB single-particle 

eigenfunctions is obtained as: 
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where ADOSɑ(E) represents the atomically-resolved density of states at discrete energy E 

and atom ɑ, i indexes the various eigenstates, E is the energy bin size, bɑ represents the 

atomic orbital basis functions centered on atom ɑ, ψi represents the ith eigenstate and ψiba 

represents the component of ψi along bɑ and H is the Heaviside unit step function. It 

should be noted that in equation (5.3), the eigenstates (represented by the single index i) 

have not been identified by the band and k-point as was done earlier in equation (5.1). 

Also, the degeneracies are taken into account when summing over i. The DOS at each 

bond can be obtained as: 
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where DOSij(E) represents the density of states at the bond ij between atoms i and j, and 

ni and nj represent the coordination number (number of bonds) of atoms i and j 

respectively. 

This section studies spatial distribution of the electronic states along the height and 

width of the wire. So the DOSij(E) are averaged over all bonds along the longitudinal 

direction which lie at the same height and width position in the wire. Fig. 5.10 shows the 

resulting state distributions in different valence band energy ranges (referenced to VB 

edge) for the (7,13) wire. For the MD relaxed wire, the strain averaged along the 

longitudinal direction is also shown.  

New subbands show up as one ventures away from the VB edge into the valence 

band. Each consecutive subband adds states that have multi-modal spatial distribution 

along the width (transverse modes), with one higher mode than the previous subband. 

Thus, for the (7,13) wires shown in fig. 5.10, owing to the location of subbands, the MD 

relaxed wire has DOS whose spatial distributions are similar in form to those of the 
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uniaxial wire. On the other hand, for the (7,31) wire, the MD relaxed wire has spatial 

distributions that are similar to the biaxial wire. However, in either case, the distributions 

of the MD relaxed wires are not the same as the homogeneous uniaxial or biaxial cases, 

rather there is a significant difference in the magnitudes. In other words, the distribution of 

the states in the wires is dependent on the nature of strain in the wire but appears to be 

dependent on factors other than just the nature of strain. 

 

The discussion in sub-sections 5.3.3 to 5.3.6 indicates that the non-uniformity in 

strain in the wires causes the valence band edge to shift such that the bandgap decreases 

and the radius of curvature of the valence band at the edge remains small. But the overall 

valence bandstructure and the average hole effective mass appear to be influenced largely 

by the nature of strain in the wires. It also appears from the discussion in this section that 

because the electronic state distribution in the MD relaxed structures, while being similar 

to that in either the uniaxial or the biaxial case, does not appear to lie in between those of 

Fig. 5.10 Spatial distribution of (a) the average (over longitudinal direction) transverse 

strain in the MD relaxed (7,13) Ge wire, (b) the electronic states in the valence band 

range 0 to -0.02 eV (referenced to VB edge) of the three kinds of (7,13) wire, (c) the 

the electronic states in the valence band range -0.02 to -0.04 eV, (d) the electronic 

states in the valence band range -0.04 to -0.06 eV 

 (b)  

 (c)  

 (d)  

 (a)  

 MD relaxed Homogeneous 

Uniaxial 

Homogeneous 

Biaxial 
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the homogeneous uniaxial and biaxial wires, the non-homogenity in the strain could also 

be having an effect on the observations for the MD relaxed wire. However, it is not very 

clear at this point whether, besides the average nature of strain, the non-uniformity of 

strain also has any role to play in the bandstructure properties of the MD relaxed wires.  

 

5.3.8 TB calculations of wires homogeneously strained by average strain in MD 

relaxed wires 

 

The easiest way to check whether the strain non-uniformity makes any difference is 

to compare the MD relaxed wires with homogeneously strained wires equivalent to the 

MD strained wires in their dimensions and average strain. The average strains for the 

wires being cases in between the extreme cases of purely uniaxial case (to which the small 

width wires are close) and the biaxial case (to which the higher width wires are close), one 

would expect the homogeneous wires to exhibit behavior in between these two extreme 

Fig. 5.11 Comparison of the MD relaxed wire with similarly strained homogeneous 

wire showing (a) the conduction band edge, (b) the valence band edge and (c) the 

average hole effective mass. (d) The valence bandstructures in the ~7nm high 

homogeneous wires with strains equal to the average of the corresponding MD relaxed 

wire 

 (c)   (d)  

 (a)   (b)  
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cases, and as seen in figure 5.8, this is indeed the case. The homogeneous wires show 

neither the upward shift in the valence band edge (figure 5.11(b)), nor a monotonous 

increase in the average hole effective mass with increase in the width of the wire (figure 

5.11(c)). The difference between the MD relaxed and the homogeneous wire with similar 

average strain is also evident from the valence bandstructures shown in fig. 5.11(d). The 

subbands of the homogeneous 41.3nm wide with average strains similar to the equivalent 

MD relaxed wire share far more similarity with the subbands of the homogeneous biaxially 

strained wire than do the subbands of the corresponding MD relaxed wire. In other words, 

the bandgap reduction, the low hole effective mass (even smaller than the purely 

homogeneously uniaxial case) for smaller widths or the high effective mass (higher than 

the purely homogeneously biaxial case) in the MD relaxed wires arise from the non-

homogenity of the strain. These results lead to the conclusion that the non-uniformity 

of the strain matters in determining the bandstructure properties. The next two 

sections study how this dependence on non-homogenity can be understood in terms of the 

band and effective mass distributions over the bonds strained to different degrees in the 

MD relaxed wires. 

 

5.3.9 Transverse strain and valence bands in MD relaxed wires 

All the wires are compressively strained by about 2% in the longitudinal direction. 

This means only one of the strains in the other two directions can be considered 

independent. So, unless otherwise stated, the strain in this and the next section would refer 

to the transverse strain. Also, all the analysis in this and the next section is dependent on 

the atomic-level resolution of the tight-binding eigenfunction corresponding to each 

eigenstate.  

Plots, of the kind shown in Fig. 5.12(a) for (7,13) wire, of the electronic states 

over a given energy range E at the various bonds ij against the strain of bond ij can be 

obtained for various energy ranges E. From this one could obtain an average electronic 

state/bond distribution over various strains, as shown by the yellow curve in Fig. 5.12(a) 

or a total electronic states vs strain distribution for E. Such state distributions indicate 

the extent to which the states in a given energy range are present at variously strained 

bonds. The peak, the asymmetry and the steepness of the distributions in such plots can be 

summed up in peak and FWHM plots. Representatives of such plots are shown in Figs. 

5.12(b) and 5.12(c) for various energy ranges (E=0.01eV) of the valence band of (7,13) 

wire. As can be seen in Figs. 5.12(b), the state per bond distributions are relatively flat 
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while the total state distributions are relatively sharp, meaning that the states are not 

selective towards bonds with any particular strains (though the peak is close to the 

average), and the total state distribution is primarily influenced by the bond distribution 

over strains shown in figure 5.2. This indicates that even the highly strained bonds in the 

MD relaxed wire contribute significantly to the states, and as a result, the equivalently 

sized homogeneous wire with only a single strain would have a different bandstructure, as 

seen in section 5.3.8. Figure 5.12(d) shows the average strains over the valence bands. It 

is also interesting to note that on average, the valence band states are shifted to more 

tensile than average transverse strains for the smaller cross-section and to more 

compressive than average transverse strains for the larger cross-section wires. All this 

implies that the non-homogenity of the strain in the realistic wires cannot be ignored. 

 

5.3.10 Transverse strain and hole effective masses in MD relaxed wires 

The importance of non-homogeneous strains can also be seen for the effective 

mass. The individual hole effective mass contributions from the electrons at various atoms 

can be obtained as:   

Fig. 5.12 (a) The states contributed by various bonds (black pluses) to the first 0.01 

eV of valence bands at the VB edge in the (7,13) MD relaxed wire; the yellow curve 

shows the average contribution per bond, (b) the peak and the FWHM of the average 

electronic states per bond versus strain curves similar to the one shown in fig. (a) for 

the 12.7nm wide wire (the VB edge is at 0.841 eV), (c) the peak and the FWHM of 

the total electronic states versus strain curves for the 12.7nm wide wire and (d) the 

average transverse strain at the VB energy states in the MD relaxed (7,W) wires 

 

 (a)   (b)   (c)  

 (d)  
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where m*ɑ
-1

 is the inverse effective mass contribution from the states at atom ɑ, m*i
-1

 is 

the total inverse effective mass contribution from the state i given by: 
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and the other symbols are as defined earlier in sections 5.3 and 5.3.7, such that the average 

hole effective mass in the wire is given by m* as: 
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Finally, in a manner similar to DOS, the inverse effective mass contribution from the states 

at bond ij is given by: 
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The essential features for the wires are then summed up by peak and FWHM plot. 

Both the total contribution and the per atom contribution are considered. Once again the 

total contribution from a particular strain appears to be heavily influenced by the number 

of bonds such that maximum overall contribution to the effective mass come from strains 

close to the average. A decrease in selectivity of the strains that contribute the most to the 

average inverse effective mass is observed as the width of the wires is increased. This 

means is that for smaller wires the effective mass is heavily contributed by states at the 

Fig. 5.13 (a) The normalized plot of m*
-1

 contribution per bond at various strains in 

(7,8) MD relaxed wire, (b) the peak and the FWHM of the m*
-1

 contribution per bond 

distributions similar to the one shown in fig. a for all MD relaxed wires plotted against 

their average transverse strain, (c) the peak and the FWHM of the total mh*
-1

 

contribution distributions of the wires 

 

 (c)   (b)   (a)  
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bonds that are close to average strained but for larger wires, this influence is less selective. 

This would, as the wire width is increased, diminish the ability to obtain correct effective 

mass from simulating a homogeneous wire with the same average strain as the MD relaxed 

wire. 

 

5.4 Device (p-type) with strained-Si/strained-Ge/strained-Si nanowire as channel 

 

 

This section studies the implications of the results obtained in the previous sections 

for a p-type transistor. The MOSFET shown in figure 5.14 is considered. In case 1, a 

single (7,36) heterowire serves as the channel. In case 2, three parallel (7,8) wires replace 

the single channel in case 1. Both channels (i.e., cases 1 and 2) occupy the same area. The 

effective mass for the single wire in case 1 is m*1=0.33m0, while for case 2 , the effective 

mass of each thin wire is given by m*2=0.11m0. Assuming an energy-independent 

relaxation time  for scattered (diffusive) transport through the wires and a constant value 

for , the transconductances gm for the ballistic and the scattered transport cases are 

proportional to half and unity powers of m*
-1

 respectively, as shown below: 

gm    WCgvT     for ballistic         gm     W(m*)
-0.5

                                                   (5.9) 

gm    WCgeff   for scattered       gm      W(m*)
-1

 for given length                      (5.10) 

where W is the width of the channel, Cg is the gate capacitance, vT is the thermal velocity 

for ballistic transport and eff is the effective mobility for scattered transport. So, in the 

MOSFET shown in fig. 5.14, for the same area of channel we have the transconductance 

ratio: 
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where =0.5 for ballistic and =1 for scattered and n1 and n2 are the number of wires 

constituting the channel of a transistor in cases 1 and 2 respectively. It must be noted that 

the factor 
1

2

1

2

W

W

n

n
 , called here the packing factor, is 1 when the wires in case 2 are lined 

Fig. 5.14 The two cases (1 and 2) of p-type MOSFET device considered in section 5.4. 

S and D represent source and drain respectively. 
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up side by side. So in reality, the packing factor is always less than 1. The higher the 

packing factor, the higher the transconductance improvement by using the parallel wire 

channel. So to get better transconductances, one would want to pack the wires in the 

channel as closely as possible. For the dimensions shown in figure, the transconductance 

ratio turns out to be 1.155 for the ballistic case and 2 for the scattered case (assuming 

constant relaxation time). 

 

5.5 Conclusions 

 

1. All wires – unstrained as well as strained with compressive 2% strain in 

longitudinal direction, whether homogeneously uniaxially strained, homogeneously 

biaxially strained or MD relaxed – show a rising valence band edge and a decreasing 

bandgap as the wire width is decreased.  

2. From bulkslabwire, the hole effective mass increases. Similar trend is 

expected as wire widths of an unstrained or a particular strained wire are reduced and this 

is indeed the case. 

3. For MD relaxed realistic wires with a fixed 2% compressive strain in the 

longitudinal periodic direction, an opposite trend is obtained in the hole effective mass 

with change in width. Hole effective mass is seen to improve (decrease) on reduction in 

wire width. 

4. Valence bands in the MD relaxed wires of higher widths become concave 

upwards faster leading to a degradation in the average hole effective mass even when the 

VB edge effective mass is close to uniaxial. 

5. It is found that the non-homogenity of strain in MD relaxed wires has a role to 

play in their bandstructure properties, in particular, the valence band edge, the bandgap 

and the hole effective mass. The non-homogenity is found to make the hole effective mass 

smaller for small widths and larger for large widths. 

6. The influence of non-homogenity can be understood in terms of the large per 

bond contribution of bonds with strains different from average strains to the valence bands 

and the effective masses. The net contribution is however concentrated around the average 

strains of the wires owing to the high population of bonds around the average strain. 

7. Several small width s-Si/s-Ge/s-Si nanowires can be tightly packed to provide 

the channel of a p-type device that possesses high transconductances under ballistic and 

scattered (with a constant energy-independent relaxation time) transport conditions. 
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6. TOWARDS ADAPTIVE TIGHT BINDING FOR NON-BULK 

BONDS 

 

6.1 Why tight binding? 

 

In the last three chapters it was seen that while one could use DFT calculations to 

investigate the structures and properties of silicon nanotubes, the large size of some 

realistic structures such as Si-Ge hetero- nanobars makes the use of ab initio calculations 

for such structures impractical owing to the inability of using periodic boundary conditions 

to model non-periodic structural characteristics such as non-uniform strain or defects. 

Moreover, as was mentioned in chapter 3, DFT is well known to under-estimate band 

gaps. The GW correction provides realistic band gaps but is computationally even more 

expensive. An alternative to these ab initio electronic structure methods is provided by the 

empirical tight binding (TB) method, which can calculate electronic structure for several 

million atoms. It is for this reason that the size scalable method of tight-binding was used 

to investigate the electronic properties of the nanobars. However, it is found that this 

method, in its original form, is unable to simulate arbitrary geometry structures (unless the 

parameters are re-optimized for the specific geometry). This chapter will investigate 

adapting tight binding for non-bulk bonding environment in materials and lay the 

groundwork for future work in fully developing an adaptive tight binding method. While in 

the long run, this technique is expected to be made most general, the current description 

will focus on getting reasonably accurate band-structure for non-bulk bonding 

environments in pure silicon, such as Si surfaces. 

One can summarize the merits and demerits of using adaptive tight binding under 

the following headings: 

1. Generality: An adaptive tight binding would expected to be more general and 

transferable than alternative methods like extended Huckel theory. However, not being an 

ab initio method, it would certainly be less general than an ab initio method like DFT with 

GW. 
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2. Computational Complexity: Tight binding is computationally much less involved 

than an ab initio method like GW.  

3. Scalablity: The computational complexity of ab initio methods like GW 

prohibits their use for larger systems with more than about a 100 atoms. Since most 

materials and devices have random structural irregularities, use of an ab initio method to 

simulate a periodic model of ~100 atoms such structures does not model the problem 

realistically. Tight binding allows one to simulate such large systems without any 

structural approximations. 

4. Compatibility with other methods (e.g. NEGF for transport, molecular 

dynamics): Tight binding model can be used to describe systems for treatment with other 

techniques for specific characterizations. For example, as described in chapter 1, when 

simulating transport properties using the NEGF approach, one can use the Hamiltonian 

from the TB to describe the channel in a nano-scale electronic device in a very simple 

fashion such that a large device can be simulated with computational ease. 

 

6.2 Case study – Si (100) surface 

 

The transferability of the sp
3
d

5
s* orthogonal TB parameters [20, 21, 50] fitted for 

bulk Si  to non bulk-like bonds has to be investigated first if TB is to be used for strongly 

deformed nano-scale structures. The easiest test bed for this investigation is the 

reconstructed Si (100) surface, which is also of practical utility. 

 

6.2.1 Surfaces/ interfaces and electronic devices 

In the last three chapters, it was seen that in 1-D nanostructures, surfaces become 

so important that they can drive changes in the underlying material geometry, either by, as 

in the case of silicon nanotubes, making it highly non-bulk, thereby leading to novel 

properties or, as in case of Si-Ge nanobars, causing significant strain changes in the 

underlying bulk geometry.  

That surfaces, interfaces and other non-bulk or non-ideal bonding environments 

like defects in the material play an important role in the behavior of semiconductor 

electronic devices was recognized during the early stages of microelectronics industry. 

Change in the threshold voltage of MOS and Fermi level pinning at metal-semiconductor 

interface are two among well-known effects of interfacial geometries and conditions on 

device behavior. The effect of interface properties on device behavior has also been 
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observed in SiNW FETs in a fashion similar to the conventional MOSFET. Detrimental 

effects of particles or chemical contamination sitting on surfaces or interfaces on device 

performance and reliability is one of the reasons for wafer cleaning processes constituting 

30-40% of the steps in the total manufacturing process. Just like for the devices, as the 

interconnect size scales down, the impact of interconnect sidewalls and surface roughness 

on signal propagation increases.  While the front-end engineering endeavors to control the 

surface and interfacial structure of devices during fabrication, non-ideal environments are 

unavoidable. Simulations not only help in understanding the detrimental effects of the non-

bulk bond environments on device behavior but also in designing devices where such non-

bulk bonds can be put to use to achieve desirable properties. For example, open surface 

leads to gap states which affect transport characteristics of 1-D nano structures by 

providing extra “stepping stones” for electrons in the band gap. 

 

6.2.2 DFT-GGA simulations of silicon (100) slab 

Of the several possible reconstructions of the Si (100) surface, the symmetrical 

p(2X1)s and the asymmetrical p(2X1)a (fig 6.1(a)) are among the most likely.[55, 56] We 

carried out the DFT-GGA relaxation of Si slab in SeqQuest,[33] reconstructed on both 

surfaces, first symmetrically then asymmetrically. Three thicknesses of the slab were 

simulated as shown in fig 6.1(c). For example, 32 monolayers is equivalent to eight bulk 

(110) unit cells and for this thickness the surface energies w.r.t. Si bulk were: 

Symmetric: 2.66711 eV/ dimer,    Asymmetric: 2.51076 eV/ dimer 

As already known, the p(2X1)a surface is found to be energetically more favorable 

than the p(2X1)s surface by about 0.16 eV per dimer. The 9 monolayer thick slab in which 

the dimer bonds on the two opposite surfaces lie perpendicular to each other was also 

simulated. It is found that the mutual orientation of the surface bonds on the two opposite 

surfaces affects the energy of the slab very little.  

The energetics of the 32 monolayer slab using DFT-GGA when Hydrogen 

passivated were also studied. One point to note here is that the H atoms arrange 

themselves symmetrically w.r.t. to the two atoms of the surface dimer and as a result, the 

surface dimer loses its asymmetric character when H passivated. Fig 6.2 shows the energy 

of the H passivated structure when the passivation is carried out with 2 H atoms per Si 

surface dimer, 3 H atoms per dimer and 4 H atoms per dimer. The results are shown in 

figure 6.2 and indicate that the reconstructed+ passivated surface (2 H atoms per Si 

surface dimer) is energetically the most stable of the three. 
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Fig 6.1 (a) The unrelaxed, symmetrically reconstructed p(2X1)s and asymmetrically 

reconstructed p(2X1)a Si(100) surface. (b) A unit each of 32 monolayer symmetric and 

asymmetric Si (100) slab simulated (c) Surface energy per dimer for the various 

thicknesses of the symmetric and asymmetric slabs. The green diamond represents the 

energy of 9 monolayer p(2X1)a slab which has bonds in mutually orthogonal directions 

on the two surfaces. 

 (c)  

 (a)  

 (b)  

Fig 6.2 Hydrogen passivation of Si (100) surface, showing configurations with two H 

atoms per Si dimer, three H atoms per Si dimer and 4 Si atoms per Si dimer. 
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6.3 Simulating Si (100) slab using orthogonal sp
3
d

5
s* tight binding 

 

To carry out tight binding electronic structure calculations, the NanoElectronics 

Modeling-3D (NEMO-3D) program [51] is used. 

 

 

6.3.1 Simulating bulk geometry slab without connectivity modification 

The original version of NEMO-3D has the capability to simulate several different 

bulk geometries and needs modification to be able to simulate any arbitrary geometry. As 

seen in figure 6.3, if the connectivity of the bulk is retained and the dangling bonds left on 

the surface, the bandstructure obtained from NEMO3D with sp
3
d

5
s* bulk parameters has 

no similarity with the DFT-LDA and GW results for p(2X1)a surface. 

 

6.3.2 Simulation with proper connectivity 

Modifying the code to include proper geometry and connectivity results in a band 

structure for the p(2X1)a surface where the gap states (surface states) are close to the GW 

result qualitatively and in terms of curvatures but shifted in energy by about 0.5 eV. We 

obtain a band gap of 0.304 eV from the bulk TB parameters while the GW band gap is 

0.65 eV.[57] The TB band gap is still better than the LDA band gap of 0.25 eV. We also 

Fig 6.3 (a) The real space unit cell and k-space Brillouin zone of Si (100) surface (b) 

Band structure (black squares) from sp
3
d

5
s* tight binding (NEMO-3D) of 32 

monolayer thick Si (100) slab when the geometry and connectivity of unrelaxed bulk 

surface is retained. The red curves constitute the surface states of p(2X1)a surface 

obtained in ref. 43 from GW and the blue dots are the DFT-LDA results. 

 

 J 

K J’ 

(a) 

(b) 
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note that the p(2X1)s surface is metallic, which is a well-known result for symmetrically 

dimerized Si (100) surface. 

 

 

6.3.3 Modifying orbital self parameters for surface atoms 

To match the TB results to the GW results, the self-orbital parameters (figs 6.4 

(a)-(c) for change of -1eV) were modified and the effects on the energies at the ends of 

each section of the traced k-path were observed. The dotted lines represent the GW 

bands. It is seen that changing the outer atom self parameters mostly affects the valence 

band. Shifting the orbital self parameters for both the surface atoms by -1 eV brings the 

band-structure close to the GW result (figure 6.5) and is a substantial improvement over 

the LDA result. Thus the parameter modification to adjust to new bond environments is 

found to be promising. 

 

Fig 6.4 Self-orbital parameter shifts for surface dimer atoms versus the energy of 

valence band (VB) and conduction band (CB) edges at symmetry points [kx is scaled 

by 2 and ky by 4 in the points reported in the figures] when (a) the inner atom 

parameters are shifted, (b) the outer atom parameters are shifted, (c) both inner and 

outer dimer atom parameters are shifted by the same  amount 

(a) (b) 

(c) 
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6.3.4 Simulating local density of surface states 

 

Using the parameter shifts that led to the bandstructure shown in fig. 6.5, the local 

density of states for the two dimer atoms on the Si (100) slab surface and corresponding 

bulk atoms were obtained for two ranges of k points (see figure 6.6). The following are 

the important points from this figure:  

The bulk atoms (those that are far away from the surface) do not contribute to the 

states in the gap (the so-called  and * states).  

 (a)   (b)  

 (c)  

Fig 6.6 (a) Surface atoms (blue) and bulk atoms (red) for which LDOS are calculated, 

(b) the LDOS for the inner and outer surface atoms over two different k paths (c) the 

LDOS are explained by the transfer of e- from the inner atom to the outer atom 

Fig 6.5 Band structure (black squares) from sp
3
d

5
s* tight binding (NEMO-3D) of 32 

monolayer thick Si (100) slab when the self-orbital parameters of all surface atoms are 

shifted by -1eV. The red curves constitute the surface states obtained in ref. 37 from GW 

and the blue dots are the DFT-LDA results.  
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The lower state in the gap ( or the filled bonding state) sits mostly on the outer 

atom of the dimer, while the upper surface state (* or the unfilled anti-bonding state) sits 

mostly on the inner atom. This implies charge asymmetry and the transfer of electrons 

from the inner to the outer atom in the asymmetric dimer (referred to as Jahn-Teller effect 

in literature). 

 

6.4 Towards adaptive tight binding  

 

The above results can be understood in light of what is known about the Slater-

Koster model [18] of orthogonal tight binding. In chapter 2, it was mentioned that the 

parameters for empirical TB come from fitting to experimental or ab initio data for a 

given structure, and the orthogonal sp
3
d

5
s* parameters used in this thesis, in particular, 

come from genetic algorithm optimization to fit band edges and effective masses of ab 

initio band-structure of bulk Si or bulk Ge at symmetry k points (Klimeck et al.[19, 20]). 

It was also clear in chapter 2 that Slater-Koster formulae [18] (equations) allow the use of 

a common space reference to represent the atomic orbitals of all atoms in the system by 

the adaptation of the parameters to the universal axes rigidly rotated with respect to the 

axes associated with the individual bonds. The basic bond parameters are unmodified and 

uniform over all bonds. In other words, the Slater-Koster TB approach, while it allows 

application of bulk parameters to a bond oriented in any direction, it does not describe the 

evolution of the bond parameters when the bond environment changes (i.e., when every 

bond in the structure does not see the same spatial symmetry, number of nearest 

neighbors, bond lengths or bond angles). The modification in bond lengths, only for small 

strains (<9%) is handled reasonably well by the method described by Boykin et al.[21] But 

the sp
3
d

5
s* orthogonal TB parameters fitted for bulk Si are not directly applicable to non 

bulk-like bonds since any change in the connectivity and bond angles would affect the 

Hamiltonian and hence the TB parameters.  

The good results obtained for silicon surface from tight binding by a very simple 

modification to the surface atom parameters promise applicability of tight binding to 

surfaces and perhaps other non-bulk bond environments. One could then envision an 

adaptive tight binding. The basic idea of adaptive TB is to tweak the bulk parameters for 

non-bulk bond environments. The major dependencies that should be considered first 

include the coordination number (number of bonds) and the bond angles for each atom 

both of which modify the symmetry properties of the atom w.r.t. those in the bulk. To 

(

b) 

(

c) 



70 

 

begin with, it can be assumed that for the bond strains involved the parameter 

modifications suggested by Boykin et al. [21] hold good. Thus if the original parameter on 

an atom is represented by Pm, the co-ordination number (number of bonds) of the atom by 

n and the bond angles by i (i=1 to n), the new parameter Pm’ in adaptive tight binding is 

given by: 

Pm’ = f(Pm,n,1,2,… n)  

 

First, the optimal P’ would be obtained using an optimization procedure (genetic 

algorithms) for reasonably enough cases of n and i. The function f can then be 

represented in some Hilbert space (e.g. power series) by finding coefficients to a certain 

order in the linear combination of the basis functions for the least mean square error of f 

from the data Pm’ versus (n,1,2,… n).  

Figure 6.7 shows the full scheme of obtaining the optimal set of parameters for the 

Si(100) slab from genetic algorithm. The bond angles of the dimer atoms on the surface 

would be swept and the optimal TB parameters for each case of bond angles fitted to the 

GW bandstructure using genetic algorithms by the loop shown in figure 6.7. Then the 

function f for each parameter Pm would be obtained using the method described above. 

Fig 6.7 Flowchart depicting the process of finding optimal parameters for adaptive 

tight binding using genetic algorithms 
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