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Motivation: Voltage Scaling in MOSFETs

•Supply Voltage VDD scaling keeps power consumption per chip under 
control.

•Heading for a crisis.
Source: ITRS(2007) & C. Hu, Green Transistor as a solution to the IC power crisis.

Projection

History

If the trend had continued.
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Can Tunnel-FETs replace MOSFETs?
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MOSFET Tunnel-FET

Subthreshold 
Swing

Fundamental 60mV/dec limit at 
room temperature.

Theoretically no 
lower limit.

Supply voltage 
(VDD) scaling

Difficult since either increase of 
OFF-current or decrease of 
ON-current, both undesired

Possible, 
without any 
adverse affects.

ON-current High, >1000 μA/μm Very Low: BIG 
CHALLENGE!

MOSFET Tunnel-
FET
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Tunnel-FET : PIN structure

Positive gate bias: ON STATE

BTBT

Equilibrium : OFF STATE

Source

Drain

•Low ON current.
•Effect of gate not beyond 5nm.
•Small tunneling area.
•Electric field diminishes from top 
to bottom (gate to ground).
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A special Tunnel-FET: Green-FET (gFET)

•Large ON current: Large and uniform field over a substantial area.
( Proportional to pocket length )

•Direct modulation of tunneling current through gate contact.
•Only commercial TCAD simulations, no Experimental results!

Source: Chenming Hu, Green Transistor as a solution to the IC power 
crisis.

Gate

Ec EV

Gate

Ec EV

OFF
STAT
E

ON
STAT
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BTBTN+ Pocket

P+ 
Source
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Method : Tight Binding
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Why Tight-Binding?
•Band Gap, effective mass: Bulk Vs Confinement
•Conduction and valence bands simultaneously.
•Tunneling probability in the forbidden gap.

Eg=0.37eV Eg=0.59eV

InAs : Bulk InAs : Confinement
(For the modeled structure).
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Lateral Vs Vertical
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LATERAL: PIN  VERTICAL: gFET

IOFF

ION

Increase in Tunneling area : 
High ION

Lateral
Tunneling 
Area

Vertical 
Tunneling 
Area
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TCAD gFET I-Vs

InAs gFET results: TCAD Vs OMEN

OMEN
•Atomistic, Full Band, Non-
equilibrium Quantum transport

•Tunneling present everywhere.
•High ION but high IOFF

TCAD
•Drift Diffusion & WKB
 (MEDICI, 2-band Kane model)
•Tunneling in specific regions only
•High ION and low IOFF
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LATERAL: PIN  VERTICAL: gFET

Low IOFF

High IOFF
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gFET : Vertical PIN TFET : 
Lateral

gFET OFF state current

•Region below the pocket & PIN 
TFET, similar.

•Weak electrostatic control away from 
the gate.

•Possibility of a current pathway 
contributing to OFF state current.
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gFET spatial current distribution

• OFF STATE: Lateral Tunneling
• ON STATE: Vertical Tunneling
• Unsuitable for low power logic applications: Necessitates a modification.
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gFET-OFF STATE
Red denotes high current density.

gFET-ON STATE
Different color-scale for clarity. 
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Modified gFET
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IOFF

Introduction of an 
oxide/large band-
gap material on 
the drain side.

IOFF reduces by 
several orders of 
magnitude, ION 
unaffected.

gFET Modified 
gFET
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Effect of Pocket doping & Pocket length
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•Higher pocket doping gives higher 
electric fields.

•Shorter pocket length increases the 
length of diagonal current pathways.

Diagonal current pathway
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Effect of Body thickness
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•Bands shift, away from the gate.
•Shifting of bands not good for BTBT.
•Shifting can be reduced by 
increasing body thickness (TBODY).
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Comparison
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•Optimized gFET: Modified gFET + (optimized pocket doping/length 
and body thickness)
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Summary

MOSFET : Voltage scaling difficult.
Tunnel-FET :  Possible candidate.

Lateral Vs Vertical Tunnel-FET Optimized gFET results
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Power consumption an issue
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Limited efficiency of solar cells

•Many types of Solar 
cells, but efficiency 
limited.

•20% of solar 
spectrum untapped.

•Lack of material 
around 2.3-2.4eV.

AM 1.5 Solar spectrum: Shaded region corresponds to 
21.1% of total irradiance. Fig. by Kyle Montgomery.
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Untapped portion
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Solar cell: How it works?

EC

EV

Electron-hole 
pair+heat

Reflected back
Pass through:
EPHOTON<BAND GAP

Absorbed:
EPHOTON>BAND GAP
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Multi-junction Solar cells

Layer 1
Layer 2
Layer 3

Sunlight

EG1>EG2>EG3

•Pass through : EPHOTON<BAND GAP
•Absorbed : EPHOTON>BAND GAP
•Substantial portion of the spectrum 
can be tapped.
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The ZnSe/GaAs system

• Lattice matched : Can fabricate “Digital Alloys”.
• Confined states dominate the band-edge. (Esaki & Tsu(1970), IBM).
• Super-lattice period determines the electronic properties.
 
Band offsets based on (A.J. Ekpunobi, Materials Science in Semiconductor 

Processing 8(4))
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Confined 
States
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Method: Tight-binding

Ec=0.29eV

Ev=0.96eV

Periodic BCs

2.67eV 1.42eV

GaAs ZnSeZnSe

Why Tight-binding?
•Confinement effects.
•Conduction and valence bands 
simultaneously.

•Construct Periodic tight-binding 
hamiltonian for different super-lattice 
periods.

•Eigen-values used to estimate band-gap.
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Re-parametrization of tight-binding parameters

Parameters from Vogl et. al. Need to re-parametrize

Inaccurate effective masses. More accurate experimental data 
available. (Landolt–Börnstein 
tables)

Uses low temperature gaps Device operates at room 
temperature.

Does not include spin-orbit 
coupling.

Spin-orbit interaction necessary to 
model the imaginary band linking 
the conduction and valence 
bands.

For ZnSe:

For GaAs: Source T. B. Boykin, G. Klimeck, R. C. Bowen, and R. Lake, 
PRB 56, 4102 (1997).
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Band-gap Results: Guide for experiments

Band-gap (in eV) of the ZnSe/GaAs super-lattice.

• Difference of lowest 
conduction and 
highest valence band 
eigen-value.

• EG = 2.4 eV : 20 ML 
ZnSe and 2 ML GaAs. 

• Band-gap approaches 
bulk values at 
expected periods.

• Attempt to guide 
experiments.
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Summary
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Contributions

Patents: co-patentee on,
•Tunneling field effect transistor with Low Leakage Current.
•Solar Cell and LED with lattice matched super-lattice structure and 
fabrication method thereof. 

Journal Publications:
•Agarwal, S.; Klimeck, G.; Luisier, M.; , "Leakage-Reduction Design 
Concepts for Low-Power Vertical Tunneling Field-Effect Transistors," 
Electron Device Letters, IEEE , vol.31, no.6, pp.621-623, June 2010.

•Samarth Agarwal, Kyle H. Montgomery, Timothy B. Boykin, Gerhard 
Klimeck, and Jerry M. Woodall, Design Guidelines for True Green 
LEDs and High Efficiency Photovoltaics Using ZnSe/GaAs Digital 
Alloys, Electrochem. Solid-State Lett. 13, H5 (2010).

•Samarth Agarwal, Michael Povolotskyi, Tillmann Kubis and Gerhard 
Klimeck, Adaptive quadrature for sharply spiked integrands, Journal of 
Computational Electronics, vol 9, no.3-4, 252-255.
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Contributions cont’d.

Other publications:
•S. Agarwal, G. Klimeck, 1D hetero-structure tool for atomistic 
simulation of nano-devices, Proceedings of TECHCON 2008, Austin, 
TX, Nov. 3-4, 2008.

 
•Kyle Montgomery, Samarth Agarwal, Gerhard Klimeck, and Jerry 
Woodall, Proposal of ZnSe/GaAs Digital Alloys for High Band Gap 
Solar Cells and True Green LEDs, IEEE Nanotechnology Materials 
and Devices Conference (NMDC 2009), June 2-5, 2009, Traverse 
City, Michigan, USA .

Simulation tools on the nanoHUB:
•Transport in 1D heterostructures.
•Poisson Schrödinger Solver for 1D heterostructures. 
•Transfer matrix and tight-binding tool for 1D Heterostructures. 
Supporting documents and chapters for a book by World Scientific.
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