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As the Si-CMOS technology approaches the end of the International Technology 

Roadmap for Semiconductors (ITRS), the semiconductor industry faces a formidable 

challenge to continue the transistor scaling according to Moore’s law. To continue the 

scaling of classical devices, alternative channel materials such as SiGe, carbon nanotubes, 

nanowires, and III-V based materials are being investigated along with novel 3D device 

geometries. Researchers are also investigating radically new quantum computing devices, 

which are expected to perform calculations faster than the existing classical Si-CMOS 

based structures. Atomic scale disorders such as interface roughness, alloy randomness, 

non-uniform strain, and dopant fluctuations are routinely present in the experimental 

realization of such devices. These disorders now play an increasingly important role in 

determining the electronic structure and transport properties as device sizes enter the 

nanometer regime. This work employs the atomistic tight-binding technique, which is 

ideally suited for modeling systems with local disorders on an atomic scale.  

High-precision multi-million atom electronic structure calculations of (111) Si surface 

quantum wells and (100) SiGe/Si/SiGe heterostructure quantum wells are performed to 

investigate the modulation of valley splitting induced by atomic scale disorders. The 

calculations presented here resolve the existing discrepancies between theoretically 

predicted and experimentally measured valley splitting, which is an important design 

parameter in quantum computing devices. Supercell calculations and the zone-unfolding 

method are used to compute the bandstructures of inhomogeneous nanowires made of 
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AlGaAs and SiGe and their connection with the transmission coefficients computed using 

non-equilibrium Green’s function method is established. A unified picture of alloy 

nanowires emerges, in which the nanodevice (transmission) and nanomaterials 

(bandstructure) viewpoints complement each other and illuminate the interesting physics 

of these disordered nanostructures that otherwise can not be explained using the 

traditional averaging methods such as the virtual crystal approximation. Finally, a multi-

scale modeling approach is employed, which combines the atomistic tight-binding 

method to compute the electronic structure and the real-space effective mass based 

quantum transport model including gate leakage to simulate the three terminal 

characteristics of III-V quantum well field effect transistors (QWFETs). The simulation 

methodology has been benchmarked against experimental data and it is then applied to 

investigate the logic performance of ultra-scaled III-V QWFETs with high mobility InAs 

channels.  
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1.  INTRODUCTION 

1.1. Background: Device scaling and disorders in nanoscale devices 

The shrinking of the dimensions of individual semiconductor devices has enabled the 

exponential increase in the density of integrated circuits predicted by Moore's law [1]. 

The Si based Metal Oxide Semiconductor Field Effect Transistor (MOSFET) has been 

the basic building block of integrated circuits over the past three decades. [1]. However, 

recently many researchers have pointed out that the conventional MOSFET scaling is 

already facing its limits and will slow down in near future. The physical gate length of Si-

transistors that are utilized in the current 45-nm node is about 30 nm [1]. As the critical 

device dimensions such as gate length and oxide thickness reach physical limitations, it is 

extremely challenging from the fabrication point of view to maintain the dimensional 

integrity of devices. Besides reducing the area per transistor on the die, scaling down of 

the gate length reduces the time it takes to move charge (electrons) from the source to the 

drain, increasing the switching speed of the transistor and hence the switching frequency 

at which logic circuits operate. As the device sizes scale and switching frequencies 

increase the power consumption per chip increases and the need to develop low power 

devices emerges [2, 3].  

To continue device scaling, the semiconductor industry is facing the challenge to 

invent fundamentally new approaches to device design [1]. The classical approaches 

being pursued include migration to 3D device geometries from 2D planar geometries to 

improve the electrostatic control of the channel [3-5] and the use of the high mobility 

materials such as III-V compounds [6-13] and carbon nanotubes [14-17], that can operate 

at lower power supply voltage. Fundamentally new ways of information storing, 

processing and transporting such as quantum computing architectures are also being 

actively researched [18-20]. 
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Regardless of the specific computing architecture, it is clear that the future integrated 

circuits will have critical device dimensions of few tens of nanometers or even smaller. In 

this regime, the atomistic granularity of constituent materials cannot be neglected: Effects 

of atomistic strain, surface roughness, dopant fluctuations, the underlying crystal 

symmetries, or distortions of the crystal lattice can have a dramatic impact on the device 

performance [21-26]. Such effects make characteristics of a device different from other 

devices on the same chip. These fluctuations in device characteristics deteriorate the 

circuit performance. However, such fluctuations if calculated precisely can be taken into 

account in variation-aware circuit design techniques [27]. This work employs the 

atomistic tight-binding technique in the supercell framework, which is ideally suited for 

modeling systems with local disorders on an atomic scale. 

1.2. Supercell approach to model disorder 

The knowledge of the electronic structure and transport characteristics of nanoscale 

semiconductor devices is the first and essential step toward the interpretation and 

understanding of the experimental data and reliable device design at the nanometer scale. 

The effective mass approximation has been extensively used to investigate the electron 

transport in semiconductor devices. The most basic effective mass model uses the bulk 

effective masses and the band gaps, which work well for “large” devices. However, in 

nanoscale devices band gap and effective mass values differ from their bulk values 

because of strong physical and electrostatic confinement. In more advanced models, the 

effective masses and the band gaps in nanoscale devices are derived from the 

bandstructure that takes into account the effects such as finite dimensions, electrostatics, 

and local material variations on the atomic scale [28].  

The bandstructure calculations are typically performed within a plane-wave basis in an 

infinitely periodic system. However, as devices are scaled to nanoscale, sharp variations 

on atomic scale play an increasingly important role in determining the electronic structure 

and transport properties. At the nanoscale, methods that employ local basis sets are 

theoretically more intuitive and practically more convenient compared to plane-wave 

basis set methods [29, 30]. Local basis set methods such as semi-empirical tight-binding 
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have smaller computational requirements than corresponding pseudopotential methods 

for the calculation of electronic structure in multimillion-atom systems [31-40].  

Traditional tight-binding bandstructure calculations in periodic systems are performed 

by choosing the smallest repeating unit cell along the periodic directions of the 

semiconductor crystal. However, nanostructures are seldom perfect. Examples include 

quantum dots or wires made of alloys or having rough surfaces [21, 26, 40], nanoscale 

FETs with inhomogeneous strain distributions [7, 8, 41], or simply three-dimensional 

random alloys [22]. In disordered structures translational symmetry is broken and the 

small cells differ from each other. The traditional averaging methods such as virtual 

crystal approximation (VCA) can not account for bandstructure effects of local atomic 

variations. This work uses the supercell framework to model local variations on the 

atomic scale. A supercell contains many small cells which are different from each other 

in terms of atom/strain distribution and thus the supercell itself has a random disorder in 

it. If the supercell is sufficiently large, it will represent the true disorder in the device. 

However, due to Brillouin zone-folding such supercell calculations only deliver the 

energy spectrum which can only be used to extract absolute band-minima of the 

disordered nanostructures. Supercell calculations alone can not deliver the transport 

parameters such as effective masses and relative locations of valley-minima. The zone-

unfolding method is used to unfold the supercell bandstructure, which is then used to 

extract the transport parameters such as effective mass and relative locations of valley-

minima [22, 42]. The transport parameters thus calculated include the effect of local 

atomic scale variations in the nanostructure. 

1.3. Outline of the dissertation 

In chapters 2 to 4 the electronic structure calculations of (111) and (001) Si quantum 

wells are presented. These chapters are based on references [40, 43, 44]. (111) and (001) 

Si surfaces typically reconstruct to minimize the surface energy, which results in the 

formation of staircase like features as shown in Figure 1.1(a) [45-48]. The electronic 

structure calculations that do not take such staircase like features into account predict the 

valley degeneracy of (111) Si quantum wells to be 6 [49]. However, experiments show 
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lower 2-fold and higher 4-fold valley degeneracies [45]. The supercell formalism can 

model atomic scale variations shown in Figure 1.1(a). In chapter 2, it is shown that the 

surface miscut breaks the 6-fold valley degeneracy of (111) Si quantum well into lower 

2-fold and higher 4-fold valley degeneracies. It is also pointed out that, in the effective 

mass picture, the lifting of 6-fold valley degeneracy in (111) Si quantum well is caused 

by different effective masses of valleys in the confinement direction. 

Degenerate valleys can couple and split in the presence of sharp potential variations on 

an atomic scale [50-52]. Such splitting is absent in (111) Si quantum wells because valley 

coupling in the presence of [111] directed confinement potential is negligible [51]. 

However, certain valleys strongly couple in the presence of [001] directed confinement, 

which causes valley splitting in (001) Si quantum wells [51]. Valley splitting in (001) Si 

quantum wells is being actively researched because recently several research groups have 

proposed quantum computing architectures based on (001) Si quantum wells [53-55]. In 

quantum computing devices, valley splitting is a critical design parameter, which controls 

the qubit decoherence time [55-57]. Chapter 4 of this report focuses on the valley 

splitting in SiGe/Si/SiGe quantum wells, which is the fabrication platform for the spin 

based quantum computing architecture proposed in [54, 55]. SiGe/Si/SiGe quantum wells 

are typically grown on miscut substrates to ensure the uniform growth of the 

heterostructure. Miscut (001) Si surfaces have irregular step-like morphology as shown in 

Figure 1.1(a) [48]. SiGe/Si interface is irregular as shown in Figure 1.1(b) due to alloy 

randomness of SiGe buffer. Chapter 3 develops the understanding of the origin of valley 

splitting in flat and miscut (001) quantum wells, where the oscillations in valley splitting 

 

Figure 1.1. Schematic representation of (a) the surface roughness disorder on (111) and 

miscut (001) Si surface and (b) the alloy disorder in SiGe buffer layer in SiGe/Si/SiGe 

heterostructure. 
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with confinement dimensions are explained qualitatively and quantitatively. 

Computationally more intensive calculations that include step and alloy disorders (Figure 

1.1) are presented and compared with the experimental data in chapter 4. It is found that, 

models that do not include miscuts [58, 59] over-predict the value of the valley splitting 

by an order of magnitude compared with the experimental data [60] while perfect miscut 

quantum well models [24, 61] under-predict the observed valley splitting by an order of 

magnitude. The supercell calculations that include step and alloy disorders are found to 

predict the experimentally observed valley splitting within variations induced by the 

presence of the disorders [24]. The atomistic representation of the disorders is found to be 

an essential ingredient in high precision calculations of valley splitting in 

heterostructures. 

Chapters 5 and 6 present a methodology to analyze the electronic structure and 

transport characteristics of disordered materials/devices. These chapters are based on 

references [22, 23, 25, 42]. To continue the device scaling several industry and academic 

research groups are investigating Field Effect Transistors (FETs) with novel-channel 

materials which are expected to perform faster and dissipate less power than conventional 

Si MOSFETs. In the nanometer regime, the variations on the atomic scale of the 

constituent material (Figure 1.2) have a dramatic impact on the device performance and 

such variations should be included in the simulation models [21, 23, 25, 26, 62]. In 

chapter 5, the zone-unfolding method [22, 42], which can be used to compute the 

“approximate” bandstructure of disordered nanowires is presented. The zone-unfolding 

method is an efficient way to extract the bandstructure from the folded supercell 

eigenspectrum. This method can be used to compute bandstructure of disordered 

 

Figure 1.2. Schematic of a FET device with the channel made up of a disordered material. 

At the nanoscale, disorder in the channel has pronounced effects on the device 

characteristics. 
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nanostructures including nanowires, quantum wells and bulk alloys. This method can also 

treat variety of disorders such as alloy disorder, inhomogeneous strain, and surface 

roughness.  

In chapter 6, the zone-unfolding method of chapter 5 is used to compute 

bandstructures of AlGaAs and SiGe nanowires and compared with the transmission 

coefficients. This chapter is based on references [23, 25]. AlGaAs nanowires have atom 

disorder due to random placement of Al atoms in GaAs lattice but no strain disorder 

because Al-As and Ga-As bond lengths are almost same. SiGe nanowires have both 

random atom disorder and inhomogeneous strain disorder due to random placement of Ge 

atoms in Si lattice and different Si-Si and Ge-Ge bond lengths. The “approximate” 

bandstructures obtained from supercell calculations and zone-unfolding are compared 

with the transmission coefficients through the same nanowires. As opposed to smooth 

step-like transmission through ideal nanowires, the transmission coefficients in 

disordered nanowires are noisy and smaller in magnitude. Transmission coefficients of 

disordered nanowires show peculiar peaks that can be identified as the localized states in 

the nanowire. The supercell approach provides a unified picture of alloy nanowires, in 

which the nanodevice (transmission) and nanomaterials (bandstructure) viewpoints 

complement each other and illuminate the interesting physics of these disordered 

nanostructures that otherwise can not be explained using the traditional averaging 

methods such as the virtual crystal approximation.  

In chapter 7, the supercell approach to the bandstructure calculation is coupled with 

the effective mass based quantum transport model to develop a multiscale device 

modeling approach and it is applied to investigate the scaling performance of composite 

InGaAs/InAs/InGaAs multi-quantum-well channel Quantum Well Field Effect 

Transistors (QWFETs). This chapter is based on reference [63]. In the multiscale 

approach, the bandstructure of the multi-quantum-well channel is computed using 

atomistic tight-binding method. The tight-binding calculations are performed on large 

supercells to accurately include the effect of the inhomogeneous strain and atomistic 

disorder in the InGaAs buffer layer. The effective masses are extracted from the tight-

binding bandstructure and used in an effective mass based quantum transport simulator to 
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obtain current-voltage characteristics of QWFETs. The effective mass approach is chosen 

to simulate the transport because it is computationally too intensive to include the gate 

leakage in the atomistic approach. A very good quantitative agreement of the simulations 

with the experimental data [8] on QWFETs with gate lengths ranging from 30 to 50 nm is 

demonstrated. The simulation methodology is then used to investigate the scaling 

performance of InAs QWFETs. It is shown that such devices can be successfully scaled 

to 20 nm gate lengths and that the best performance can be achieved in thin InAs channel 

devices by reducing the insulator thickness to improve the gate control, increasing the 

gate work function to suppress the gate leakage, and maintaining a flat gate geometry. 

Finally, summary of this work is presented in chapter 8. 
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2.  VALLEY DEGENERACIES IN (111) SI QUANTUM WELLS 

2.1. Introduction 

Silicon nanostructures exhibit a plethora of interesting physical phenomena due to the 

6 fold valley degeneracy of the bulk conduction band. Silicon devices are being pursued 

for spin based quantum computing [53, 64] and spintronics [65] due to their scaling 

potential and integratability within the industrial nanoelectronic infrastructure. Relative 

energies and degeneracies of spin and valley states are critical for device operation in 

these novel computing architectures [53, 64, 65], and conventional 

metal−oxide−semiconductor field−effect transistors (MOSFETs) that often involve the 

formation of a 2 dimensional electron gas (2DEG) at the semiconductor-insulator 

interface. Valley degeneracy of the 2DEG is highly dependent on the interface 

orientation. (100) Si quantum wells show lower 2 fold and raised 4 fold valley 

degeneracy while (110) Si quantum wells show lower 4 fold and raised 2 fold valley 

degeneracy. The origin of these valley degeneracies is well understood and the 

experimental observations are in agreement with the effective mass based theoretical 

predictions [51]. 

Valley degeneracy in (111) Si quantum wells should be 6 according to standard 

effective mass theory.  Experimental measurements on (111) Si/SiO2 MOSFETs, 

however, show a conflicting valley degeneracy of 2 and 4 [51, 66, 67]. Recently 2-4 

valley splitting has also been observed in magneto-transport measurements performed on 

hydrogen terminated (111) Si/vacuum field effect transistors [45]. Previously proposed 

theory of local strain domains [66] can not explain this splitting since the Si-vacuum 

interface is stress free. The splitting is also unlikely to be a many-body phenomenon [68, 

69]. 
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Careful imaging of the surface morphology shows the presence of mono-atomic steps 

(miscut) on the (111) Si surface [45, 46] as well as at the Si/SiO2 interface in (111) Si 

MOSFETs [46, 47]. Atomistic models such as tight-binding are needed to accurately 

model the electronic structure of miscut quantum wells. Through systematic tight-binding 

calculations of flat and miscut (111) Si quantum wells we show that the surface miscut 

leads to the 2-4 degeneracy breaking and resolve the conflict between theory and 

experimental observations. To reduce the computational burden associated with searching 

the whole Brillouin-zone for valley minima, an effective mass based valley-projection 

model [49] tailored to miscut (111) surfaces is used. Electronic structure calculations are 

performed using the general purpose NEMO-3D Code [39]. 

2.2. (111) surface model 

Hydrogen terminated (111) Si surfaces as well as the (111) Si/SiO2 interfaces have 

mono-atomic steps (Figure 2.1(a,b)). For simplicity, the steps are assumed to run 

perpendicular to the [ ]211  direction. This surface morphology can be implemented by 

repeating the rectangular unit cell of Figure 2.1(c) in the miscut [ ]211  direction. The in-

 

Figure 2.1. (a) Schematic of a miscut (111) quantum well.  A rectangular unit cell is 

repeated in space to build the miscut quantum well. (b) Atomistic view of a unit cell of a 

4.5° miscut (111) Si quantum well. The reduced symmetry along the direction 

perpendicular to steps results in a larger unit cell. The smallest repeated miscut quantum 

well unit cell along [ ]211  direction has 6 steps. (c) Atomistic view of a flat (111) Si 

quantum well. The rectangular unit cell is larger than the hexagonal primitive unit cell. 
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plane unit cell dimensions are Six aa 23=  and Siy aa 21= , where aSi is Si lattice 

constant [70]. The advantage of using a rectangular unit cell is two-fold. First, the 

rectangular geometry simplifies the underlying mathematics and implementation of the 

periodic boundary conditions in the bandstructure calculation. Second, the surface miscut 

can be easily implemented by applying shifted boundary condition to the rectangular 

supercell. 

The Brillouin Zone and 6 degenerate valleys in the bandstructure of the hexagonal 

primitive unit cell of a flat (111) Si quantum well (Figure 2.1(c)) are shown in Figure 

2.2(a). The 2 bulk valleys along [ ]001  direction are projected along [ ]211  direction while 

the remaining 4 bulk valleys along [ ]100  and [ ]010  are symmetrically projected in each 

of the four quadrants [49]. The 2 valleys along [ ]211  are labeled as A and remaining 4 

valleys are labeled as B. The rectangular unit cell is larger than the hexagonal primitive 

unit cell (Figure 2.1(c)). The Brillouin Zone of the rectangular unit cell of Figure 2.1(b) is 

given by {(kx,ky): 32− π/aSi  ≤ kx ≤ 32 π/aSi, 2− π/aSi ≤ ky ≤ 2 π/aSi}. It is smaller 

than the hexagonal Brillouin Zone in Figure 2.1(a) and 2 A type valleys are folded.  

2.3. Miscut (111) surface 

The miscut surface morphology can be conveniently implemented by extending the 

rectangular unit cell in one direction (Figure 2.1(b,c)). The unit cell shown in Figure 

2.1(b) has a miscut angle of 4.5°. In the (x,y,z) co-ordinate system of Figure 2.1(a) the 

surface normal of this quantum well is along [ ]n01  direction. This direction is related to 

the miscut angle by ( )xzT naa /tan 1−=θ , where Six aa 23=  and Siz aa 3= . 
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Typical miscuts range from 0.1-8°. Before going to the experimental 0.2° miscut [45] 

we illustrate the essential physics and reduce the computational burden significantly by 

studying the effect the miscut of 13°, which can be investigated in a system extending six 

unit cells along the miscut direction and has a smaller supercell compared to 0.2° miscut. 

These unit cells are schematically shown along with energy contours of their lowest 

conduction bands in Figure 2.2(c,d). Only the positive quadrant is shown. The flat 

   

Figure 2.2. (a) Brillouin zone of the primitive unit cell of a flat (111) Si quantum well. 6 

degenerate valleys are shown. (b) Brillouin zone and bandstructure of a (111) Si quantum 

well plotted using the rectangular unit cell of Figure 2.1(b). The bandstructure is folded 

as shown schematically in (a). (c) Bandstructure of a flat (111) Si quantum well in 

repeated zone scheme plotted using a supercell which contains 6 small cells in x-

direction. The bandstructure of Figure 2.1(b) is folded in the 1
st
 Brillouin zone. A type 

valleys along kx-direction and B type valleys along the dotted line are degenerate. (d) 

Bandstructure of a 13° miscut (111) Si quantum well in repeated zone scheme. A-type 

valleys along kx-direction are lower in energy than B-type valleys along the dotted line. In 

the flat quantum well the dotted line subtends an angle of 30° with the negative y-axis 

while this angle is 36.84° in a miscut quantum well. 
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quantum well supercell of Figure 2.2(c) is 6 times longer in the x-direction compared to 

the rectangular unit cell used to plot the bandstructure in Figure 2.2 (b) resulting in zone-

folding of this supercell to 1/6
th

. In the first Brillouin zone A-type valleys lie along the kx-

direction and the B type valleys lie along the solid zig-zag line. In the repeated-zone 

scheme the bandstructures along the solid zig-zag line is the same as that along the dotted 

straight line. The bands corresponding to A and B type valleys clearly show that in a flat 

(111) Si quantum well both valleys are degenerate while in a miscut quantum well two A-

type valleys have lower energy compared to four B-type valleys (Figure 2.3(d)). This 

degeneracy breaking is the effect of different confinement effective masses of A- and B-

type valleys in a miscut quantum well. 

2.4. Valley-projection model 

Experimentally relevant quantum wells have typical miscuts ranging from 0.1-8°. As 

the miscut angle becomes smaller the size of the unit cell increases. For example, the unit 

cell of 23 nm thick 13° miscut quantum well contains 2,100 atoms while a 0.2° miscut 

quantum well requires 119,100 atoms. An effective mass theory can be used to determine 

the directions of valley minima thereby reducing the computational burden associated 

with searching the whole Brillouin zone. Here we outline the valley projection model 

[49] as applied to determine the directions of valley minima of miscut (111) Si quantum 

wells. 

Consider the miscut quantum well unit cell of Figure 2.1(c), the rotation matrix R from 

bulk valley co-ordinate system to (x´,y,z´) co-ordinate system is given by 


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Wavefunction of a quantum well with the growth direction along kz’ can be written as 

( ) ( ) yikxik yxezzyx
+

=
'''',,' ξψ . In the effective mass formalism the sub-bands of this 

quantum well are given by [49] 
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where, the reciprocal effective mass matrix [ ]W  is given by 

[ ] [ ]∑ −=
α

αααα
1

0MRRW jiij ;  { }',,',, zyxji ∈α  (2.3) 

here [ ]0M  is the effective mass matrix in the bulk valley co-ordinate system. The 

position of the sub-band minimum, 0
iE , is determined by the confinement effective 

mass ''' 1 zzz wm =  and the confinement potential in the direction perpendicular to the 

quantum well surface. In this formalism two A-type valleys which lie along [100] 

direction are projected along kx´ while the remaining four B-type valleys are projected 

along the directions which subtend angles ±φ with ±ky axis. The angle φ can be 

determined by rotating the co-ordinate system (kx´,ky) such that the cross term in equation 

(2.2) vanishes. This angle is given by 








−
= −

ba

c1tan
2

1
ϕ  where a, b and c denote 

coefficients of terms 2
'x

k , 2
yk  and yx

kk
'

 respectively. One of these four directions which 

lie in the positive quadrant is shown for flat and miscut quantum wells in Figure 2.2.  

While in a flat (111) quantum well confinement effective masses, mz´, are the same for 

A- and B-type valleys, a miscut alters these masses such that mA>mB resulting in a broken 

degeneracy of lower 2 fold and raised 4 fold. Although the effective mass theory can 

explain the origin of ∆2-4 splitting more sophisticated methods such as tight-binding are 

needed to accurately model the effect of mono-atomic surface steps on the electronic 

structure. The ∆2-4 splitting increases with the miscut angle due to increasing difference 

between confinement effective masses of A- and B-type valleys. Both effective mass and 

tight-binding models show this trend, the effective mass model, however, gives smaller 

splitting compared to the tight-binding model. As shown in Figure 2.3 the step 

morphology of the quantum well surface modulates the wavefunction which in turn 

influence energy levels to give rise to ∆2-4 splitting.  
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2.5. Comparison with experiments 

A 0.2° miscut resembles closely to that of the experiment [45]. The unit cell of a 

quantum well of this miscut is Lx=264.07 nm and Ly=0.38 nm long in x- and y- 

directions, respectively. A constant z-directed electric field of 10 MV/m which 

corresponds to the electron density of 6.5×10
11

 cm
-2

 is assumed [45]. To avoid any 

truncation effects of electronic domain on eigenvalues a quantum well thickness of Lz=23 

nm is simulated. This is the smallest unit cell which can be repeated in xy-plane to 

generate a 23 nm thick 0.2° miscut quantum well. This unit cell contains around 0.1 

million atoms which makes it computationally expensive to search the whole 2 

dimensional Brillouin zone for valley minima. To reduce the computational burden, the 

valley-projection method described above is used to identify the directions of valley 

minima. The valley minima of A-type valleys occur along the kx-direction while valley 

minima of B-type valleys occur at an angle φ=±30.13° to ky axis. The confinement 

effective masses, mz, for A- and B-type valleys are 0.2608m0 and 0.2593m0 (where m0 is 

the mass of the free electron) respectively. The ∆2-4 valley splitting in a 0.2° miscut 

quantum well calculated using an effective mass and the sp
3
d

5
s

*
 tight-binding models are 

1.25 (108 µeV) and 3.98 K (343 µeV) respectively. An analytical formula for energy 

levels in triangular potential wells is used to estimate the splitting in the effective mass 

model [49]. The splitting reported from the temperature dependence of the longitudinal 

   

Figure 2.3. (a) A typical wavefunction of a 4.5° miscut (111) Si quantum well of Figure 

2.1(b) at the valley minimum. Thickness of the quantum well is 23 nm, however, only the 

near surface portion having appreciable wavefunction magnitude is shown. (b) 

Electrostatic potential and wavefunction cut along two dotted lines in Fig (a). Confining 

potential due to constant electric field (10 MV/m) pulls the wavefunction to the surface. 

Surface steps modulate the wavefunction amplitude and modify energy levels which give 

rise to the ∆2-4 splitting. 
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resistance [45] is 7K (604 µeV) which shows that the tight-binding calculation matches 

closer to experiments compared to the effective mass calculation.  

In conclusion, the miscut morphology of the (111) Si surface is shown to be the origin 

of breaking of 6 fold valley degeneracy into lower 2 and raised 4 fold valley 

degeneracies. Atomistic basis representation such as tight-binding is needed to capture 

the effect of wavefunction modulation at mono-atomic steps on the electronic structure. 

Compared to effective mass the tight-binding calculations are found to match closer to 

experimentally measured ∆2-4 splitting. Additional surface phenomena could be 

responsible for enhanced ∆2-4 splitting reported in experiments [45]. 

2.6. Conclusion 

The miscut morphology of the (111) Si surface is shown to be the origin of breaking of 

6 fold valley degeneracy into lower 2 and raised 4 fold valley degeneracies. Atomistic 

basis representation such as tight-binding is needed to capture the effect of wavefunction 

modulation at mono-atomic steps on the electronic structure. Compared to effective mass 

the tight-binding calculations are found to match closer to experimentally measured ∆2-4 

splitting. Additional surface phenomena could be responsible for enhanced ∆2-4 splitting 

reported in experiments [45].  
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3.  VALLEY SPLITTING IN NANOSTRUCTURES GROWN ON 

MISCUT SUBSTRATES 

3.1. Introduction 

Valley splitting in (001) Si quantum wells is being actively researched and recently 

several research groups have proposed quantum computing architectures based on (001) 

Si quantum wells embedded in SiGe buffer layers [24, 53-55, 60, 61, 71, 72]. Si is 

desirable for quantum computing due to its long spin-decoherence times, scaling potential 

and integrability within the present microelectronic infrastructure [56, 57]. Bulk Silicon 

has 6 degenerate X-valleys. In strained Si 6-fold valley-degeneracy of Si is broken into 

lower 2-fold and raised 4-fold valley-degeneracies. The presence of 2-fold valley-

degeneracy is a potential source of decoherence which leads to leakage of quantum 

information outside qubit Hilbert space [57]. Therefore, it is of great interest to study the 

lifting of remaining 2-fold valley degeneracy in strained Si due to sharp confinement 

potentials in recently proposed [55] SiGe/Si/SiGe quantum well heterostructures based 

quantum computing architectures. 

Miscut surfaces as opposed to flat surfaces are often used to ensure uniform growth of 

Si/SiGe heterostructures. The most commonly used miscut substrate has its surface 

oriented at 2
o
 to the (001) crystallographic plane. Existing theories of valley splitting, 

which do not include miscut surface geometries, predict valley splitting in SiGe/Si/SiGe 

quantum wells higher by at least an order of magnitude than experimental measurements 

[60]. This over-prediction has been associated with the experimental condition that the 

quantum wells are grown on a 2
o
 tilted (001) substrate. The tight-binding treatments in 

small atomistic representations support this claim [61]. Effective mass treatments [71, 72] 

can explain the behavior of valley splitting in miscut quantum wells, however they rely 

on perturbation theories, ad-hoc structure dependent fitting parameters, and they cannot 
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address the atomistic alloy disorder at the interface. This chapter develops qualitative and 

quantitative understanding of valley splitting in miscut quantum wells with no disorders 

such as surface roughness or alloy randomness. The valley splitting theory is extended to 

include disorders and magnetic fields and the results are compared with the experimental 

data in chapter 4. 

The valley splitting in flat (001) Si quantum wells is reviewed in section 3.2. Section 

3.3 describes the bandstructure of the miscut quantum well from effective mass and tight-

binding point of view. Sections 3.4 and 3.5 develop the understanding of valley splitting 

in miscut nanowires (which resemble quantum wells in the presence of electrostatic 

confinements) from bandstructures of miscut quantum wells. Wavefunction parities and 

analytical calculations of valley splitting are discussed. Finally the results are 

summarized in section 3.6.  

3.2. Valley splitting in a flat (001) quantum well 

In the effective mass picture, electrostatic confinement due to finite thickness of the 

(001) Si quantum well splits 6-fold valley degeneracy of Si into lower 2 and higher 4-fold 

degeneracy. The lower 2-fold degeneracy consists of the 2 degenerate z-directed valleys 

while higher 4-fold degeneracy consists of 2 x-directed and 2 y-directed valleys [51]. 

Here, x, y, and z directions respectively correspond to [100], [010], and [001] 

crystallographic axes. This splitting is a result of different effective mass of valleys in the 

confinement (growth) direction of the quantum well. Similar lifting of 6-fold valley 

degeneracy of bulk Si into lower 2-fold and higher 4-fold degeneracies occurs in the 

presence of biaxial strain applied in xy-plane [51]. Lower 2-fold degenerate valleys 

further split in the presence of the sharp confinement potential at the edges of the 

quantum well. Because the valley minima lie completely within the Brillouin zone, there 

are four propagating states (with z wave vectors 1
zk±  , 2

zk±  near the minima at 0
zk± ) at 

each energy within the valleys (Figure 3.1 (a)). In the simplest approximation, the 

quantum well bound states are linear combinations of all four propagating states, and as a 

result, the bound states occur in doublets. The splitting between the states comprising the 
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lowest doublet is referred to as the valley splitting, which is plotted as a function of the 

quantum well thickness in Figure 3.1 (b).  In a flat [001] quantum well the valley minima 

of split valleys occur at ( ) ( )0,0, =yx kk . The valley splitting can be included in effective 

mass theory by using perturbation theories and ad-hoc structure dependent parameters. 

However, tight binding naturally gives such splitting because the finite size effects are 

automatically included due to atomistic nature of the Hamiltonian and the finite size of 

the semiconductor crystal. The physics of valley splitting in a flat [001] quantum well in 

tight-binding formalism is discussed in detail in [58, 59]. The valley splitting oscillates as 

a function of quantum well thickness, with a period that is determined by the location of 

the valley minimum ( 0
zk ) in the bulk Brillouin zone. The envelope of the splitting decays 

as S
-3

, where S, the number of atomic layers in the quantum well. The analytical 

expression describing valley splitting in (001) Si quantum wells is derived in [58, 59] and 

it is given by 

( )
( ) ( )00

3

2

sin2sin
2

16
zzv kakS

S

u
+

+
≈∆

π
 (3.1) 

where, 0
zk  is the location of z-valley minima, a is the lattice constant of Si. The fitting 

parameter, u depends on the valley effective mass and the location of valley minima. As 

      

Figure 3.1. (a) z-directed valleys of bulk silicon. Quartet of states near the valley-minima 
z

k0±  interact and split in the presence of [001] directed confinement present in (001) 

quantum well. (b) Valley splitting in a (001) Si quantum well oscillates with the quantum 

well thickness and decays with the envelope of S
-3

, where S, the number of atomic layers 

in the quantum well. 
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discussed in the following sections, the theory of valley splitting in miscut quantum wells 

is closely related to the flat quantum well and it can be estimated by the similar analytical 

formula. 

3.3. Bandstructure of a miscut quantum well  

The valley splitting physics of a miscut quantum well is slightly different than a flat 

quantum well. The first step in understanding the valley splitting in a miscut quantum 

well is to start with the bandstructure. Following sub-sections describe the bandstructure 

in effective mass and tight-binding formalisms. 

3.3.1. Effective mass 

The lowest conduction band of a miscut quantum well in the effective mass 

approximation can be obtained by projecting the z-valleys onto the quantum well growth 

surface ( n01 ) as shown in Figure 3.2. n=28 for a 2
o
 miscut quantum well. Projected z-

valleys are shifted away from the origin along the tilt-direction [ 01n ]. The states in these 

 

Figure 3.2. Bandstructure of a miscut quantum well in effective mass approximation: (a) 

Bandstructure of a quantum well grown on a miscut surface can be obtained by projecting 

bulk conduction band valleys at (0, 0, ±k0) onto the quantum well growth surface [73]. 

Two degenerate valleys are located at Tx
kk θsin0

0
' ±=  along [ 01n ] direction. The 

quantum well growth direction is [ n01 ]. n=28 for 2
o
 miscut. 
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valleys only weakly interact in the presence of confinement. Thus a miscut quantum well 

shows the presence of two degenerate valleys located at Tx
kk θsin0

0
' ±= . Valley-valley 

interaction, however, is stronger at 0' =
x

k  which causes the splitting called the minigap 

(∆m) [74, 75].  

In this analytical view where mt and ml are the bulk Si transverse and longitudinal 

effective masses, the effective mass of the projected z-valleys along [n01] direction is 

( ) ( ) lTtT mm θθ 22

eff sincos  1/m += . Here, the tilt angle ( )nT 1 tan -1=θ  is the angle 

between [100] and [n01] crystal directions. At 00
' =

x
k  a small minigap forms due to 

stronger valley-valley interaction [73]. This gap is, however, significantly higher in 

energy than the two degenerate valleys at 0
'x

k± . Thus atomic scale modulation of surface 

topology leads to very different electronic structures in flat and miscut quantum wells. In 

a flat (001) quantum well, valleys are split while in a miscut quantum well they are 

degenerate. Additional lateral confinement is needed in miscut quantum wells to split the 

degeneracy of these lowest valleys which can be provided by lateral electrostatic gates or 

a magnetic field [60]. 

 

Figure 3.3. (a) A minimal unit cell of a 2
o
 miscut quantum well consists of 4 steps. x´ and z´ 

directions are along [ 01n ] and [ n01 ] crystallographic axes respectively. n=28 for 2
o
 tilt. (b) 

The x´z´-cut through the Brillouin zone. Si

x

L naa =' , Si

z

L a
n

n
a

12

'

+
= . 0

'x
k±  and 0

'z
k±  are the 

positions of the conduction-band valley-mimima. 
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3.3.2. Tight-binding 

A quantum well grown on top of a miscut substrates has steps resulting from the 

misorientation between crystallographic direction [001] and the quantum well growth 

direction [ n01 ]. Typically miscut produces steps of mono-atomic height aSi/4 [48], 

where aSi is the lattice constant of Silicon. The detailed atomistic view of the unit cell of a 

miscut quantum well grown on a ( n01 ) surface is shown in the xz-plane in Figure 3.3(a). 

The structure shown in the figure can be repeated in x´ and y-directions to form the whole 

quantum well.  

The length of the steps (Ls) is related to the miscut angle of the substrate, by 

( )Ts hL θtan= . The periodicity is along x´ and y-directions while z´ direction is confined. 

In NEMO-3D, periodic boundary conditions are generally applied along x, y and/or z 

directions i.e. along the crystallographic axes [100], [010], and [001]. However the unit 

cell of Figure 3.3(a) is periodic along x´ and z´ directions i.e. [ 01n ] and [ n01 ] directions 

    

Figure 3.4. Tight-binding bandstructures of a 2
o
 miscut quantum well. (a) Bandstructure 

of a 2
o
 miscut unit cell confined in z′ direction shows two degenerate valleys centered at 

Tx
kk θsin0

0
' ±= . Lateral extensions of the unit cell are Lx=15.33nm, Ly=0.5432nm, and 

thickness is tz=5.26nm. Confinement in x′-direction causes quadrate of states in these two 

degenerate valleys to interact and split. (b) Bandstructure of a 2
o
 miscut unit cell confined 

in x′ direction shows two degenerate valleys centered at Tz kk θcos0

0

' ±= .  Confinement in 

z′-direction causes quadrate of states in these two degenerate valleys to interact and split. 

All bandstructures are calculated in sp
3
d

5
s

*
 tight-binding model with spin-orbit coupling. 

Lateral extensions of the unit cell are Lx=15.33nm, Ly=0.5432nm, and thickness is tz=5.26 

nm. 
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respectively. In the NEMO-3D framework the periodic boundary conditions are applied 

after integer number of unit cells. Since the step height is equal to the quarter of unit cell 

dimension this unit cell can be made periodic after four steps. The Brillouin zone of this 

unit cell is  

( )








+≤≤+−≤≤−≤≤− 11,,:,, 2

'

2

''' n
na

kn
naa

k
ana

k
na

kkk zyxzyx

ππππππ
 (3.2) 

where a is the lattice constant of Silicon. The x´z´-cut through the Brillouin zone is shown 

in Figure 3.3(b). The positions of valley-minima are marked by 0
'x

k±  and 0
'z

k± . 

Figure 3.4(a) shows the bandstructure of the unit cell in Figure 3.3(a) plotted by 

applying periodic boundary conditions in x´ and y-directions and closed boundary 

conditions in z´-direction. The lowest conduction band shows the two degenerate valleys 

similar to those observed in effective mass picture of Figure 3.2. Additional confinement 

in x´ direction will cause the quartet of states shown in Figure 3.4(a) to interact and form 

two valley-split states. However, with x´-confinement in addition to z-confinement a 

miscut quantum well becomes a miscut nanowire. Thus miscut quantum well has two 

degenerate valleys while in a miscut nanowire this valley-degeneracy is broken to form 

valley-split states.  

Figure 3.4(b) shows the bandstructure of the unit cell for Figure 3.3(a) plotted by 

applying periodic boundary conditions in y and z′-directions and closed boundary 

conditions in x´ direction. Similar to Figure 3.4(a) bandstructure under these boundary 

conditions shows two degenerate valleys along z′-direction. These valleys interact and 

split in the presence of additional z′ confinement to give rise to valley splitting in a 

miscut nanowire. 

3.4. Wavefunction parities in a miscut nanowire 

Each of the two valley-split wavefunctions of a miscut nanowire can be roughly 

expressed as the product of x′ and z′ components as  

'' zx ψψ=Ψ  (3.3) 
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As shown in Figure 3.5 and Figure 3.6, 'zψ  and 'xψ  coefficients of the ground state 

on anions/cations have odd/even parities. While 'zψ  and 'xψ  coefficients of the 

valley-split state on anions/cations have even/odd parities. The wavefunction components 

exhibit such definite parity relations in x′ and z′ directions because they are the result of 

 

Figure 3.5. (a) Anion s-orbital contributions of the two valley-split states along thickness 

of a 2
o
 miscut nanowire. Low energy state has even parity while the valley-split state has 

odd parity. (b) Cation s-orbital contributions have parities opposite to the anion s-orbital 

contributions of Fig. (a). Dimensions of the simulated nanowire unit cell are 

Lx=15.33nm, tz=5.26nm  in the confinement directions and Ly=0.55nm in the periodic 

direction. 

 

 

Figure 3.6. s-orbital contributions of the valley-split wavefunctions on anion (a) and 

cation (b) sites along lateral (x′) direction.  Anion s-orbital contributions of the ground 

state have even parity while those of the valley-split state have odd parity. Parities are 

reversed for cation s-orbital contributions. Dimensions of the simulated structure are the 

same as in Figure 3.3. 
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interaction of a quartet of states shown in Figure 3.4. Similar wavefuntion parities are 

observed in a flat [001] quantum well [76]. In [76] an approximate expression for valley 

splitting is derived using even/odd parities of wavefunction coefficients. Valley splitting 

in a miscut quantum well essentially follows similar physics as a flat quantum well with 

additional complication that the valley splitting in a miscut quantum well (nanowire) is a 

result of two confinements. Therefore similar expressions as those derived in [76] can be 

used to estimate the valley splitting in a miscut nanowire.  

3.5. Dependence of valley splitting on confinement dimensions 

The valley splitting as a function of the thickness (z′ confinement) of a miscut 

nanowire can be approximated as 

( )
( ) ( )00

3

2

'' sin2sin
2

16
zzz

z

L

zt

v kakS
S

u x

z +
+

≈∆
π

 (3.4) 

where, Tz
kk θcos0

0
' =  is position of the valley-minimum as shown in Figure 3.4(b). Sz is 

the number of atomic layers in the thickness direction of the miscut nanowire. The fitting 

parameter xL

zu  depends on the lateral electrostatic confinement xL  of the quantum well 

and the position of valley-minimum ( Tx kk θsin0

0

' ±= ) in x'-direction. The thickness 

 

Figure 3.7. Valley splitting as a function of miscut nanowire thickness: (a) Tθ =14
o
. The 

solid black line shows the valley splitting calculated in sp
3
d

5
s

*
 tight-binding model and 

dotted blue line shows valley splitting calculated using equation (3.4). (b) valley splitting 

in a 2
o
 miscut nanowire. Confinement in x′-direction is 15.32 nm. 
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dimension (tz) of a miscut nanowire is related to Sz by 2aSt zz = . 

Figure 3.7(a) shows the valley splitting versus thickness of the 14
o
 (= Tθ ) miscut 

nanowire calculated with full nearest-neighbor sp
3
d

5
s

*
 tight-binding model and using 

equation (3.4). The fitting parameter eVu xL

z

3103 −×=  is used. Similar plot of the 

dependence of the valley splitting on the thickness of a 2
o
 (= Tθ ) miscut quantum well is 

shown in Figure 3.7(b). The fitting parameter used here is eVu xL

z

3101 −×= . Valley 

splitting shows an oscillatory behavior with the decaying envelop of 
3−

zS . 

The valley splitting as a function of a lateral dimension xL  of a miscut nanowire can 

be approximated as 

( )
( ) ( )akakS

S

u
xxx

x

t

xL

v
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x 00
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2

'' sin2sin
2

16
+

+
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π
 (3.5) 

where, Tx
kk θsin0

0
' =  is position of the valley-minimum as shown in Figure 3.4(a). The 

smallest repeating unit in x′ direction is comprised of 2 steps. Hence, 2xx NS = , where 

xN  is the number of steps in the lateral (x′) direction of a miscut nanowire. In a miscut 

nanowire grown on ( n01 ) surface, the lateral confinement length (Lx) is related to Sx by 

4naSL xx = . The fitting parameter zt

xu  depends on the electrostatic confinement length 

in thickness direction ( zt ) and the position of valley-minimum ( Tz kk θcos0

0

' ±= ) in z′-

direction.  

The valley splitting in a 14
o
 miscut nanowire as a function of the lateral confinement is 

shown in Figure 3.8(a). 14
o
 tilt with respect to the [100] crystallographic axis corresponds 

to the crystal direction [4 0 1]. The step length of this quantum well is equal to the lattice 

constant in x-direction (ax) which corresponds to 4 atomic layers. The valley splitting 

calculated using full sp
3
d

5
s

*
 tight-binding model and using equation (3.5) show good 

agreement. The fitting parameter 41022.3 −×=zt

xu  is used.  The valley splitting shows 

decaying oscillatory behavior when lateral confinement length is made commensurate 

with even number of steps.  
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Figure 3.8(b) graphs the valley splitting in a 2
o
 miscut nanowire as a function of the 

lateral confinement. The fitting parameter, eVu zt

x

21012.2 −×=  is used in equation (3.5). 

2
o
 tilt with respect to the [100] crystallographic axis corresponds to the crystal direction 

[28 0 1]. The step length of this quantum well is equal to 7ax where ax is the lattice 

constant in x-direction. Oscillations in 14
o
 miscut quantum wells are more rapid than 2

o
 

miscut quantum wells because length of steps in 14
o
 miscut quantum wells is smaller than 

2
o
 miscut quantum wells. The valley splitting calculated using full sp

3
d

5
s

*
 tight-binding 

model and using equation (3.5) show same qualitative behavior and reasonable 

quantitative agreement. 

3.6. Conclusion 

A simple understanding of the origin of valley splitting in nanostructures grown on 

miscut substrates is developed. It is found that the lowest energy valleys in a miscut 

quantum well are degenerate. Additional lateral confinement in required to break this 

degeneracy. Wavefunctions of valley split states in a miscut nanowire can be expressed 

 

Figure 3.8. Valley splitting in a miscut nanowire as a function of the lateral confinement: 

(a) Tθ =14
o
. Valley splitting calculated in sp

3
d

5
s

*
 tight-binding model (solid line) and 

from equation (3.5) (dotted line). (b) Valley splitting in a 2
o
 miscut nanowire. To 

compare with the valley splitting calculated from equation (3.5) (blue line), only the 

points which are even multiples of step length are chosen (red line). Thickness of the 

miscut nanowire is tz=5.26nm. 
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as a product of x and z components. Based on this observation analytical formulae are 

proposed for calculating valley splitting in a miscut nanowire. Valley splitting calculated 

using full sp
3
d

5
s

*
 tight-binding model are found to be in agreement with proposed 

formulae. 
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4.  MAGNETIC FIELD DEPENDENCE OF VALLEY SPLITTING IN 

SI/SIGE HETEROSTRUCTURES 

4.1. Introduction 

The quantum well energy spectrum is often measured using traditional magnetic probe 

techniques such as Shubnikov de Haas oscillations. Recent experiments employ quantum 

point contact [60] techniques for higher resolution and to probe individual nanostructures. 

Valley and spin-splittings are determined by analyzing the energy spectrum data. In these 

measurements magnetic field is applied perpendicular to the plane of a quantum well. In 

the absence of lateral electrostatic gates, in plane (lateral) confinement is provided by the 

magnetic field, which results in the formation of Landau-levels. This chapter focuses on 

the effect of magnetic field confinement and substrate orientation on the valley splitting 

in the miscut (001) SiGe/Si/SiGe quantum wells, which is the fabrication platform for the 

spin based quantum computing architecture proposed in [54, 55]. 

Schematics of quantum wells grown on flat (001) and miscut (001) substrates are 

shown in Figure 4.1(a,b). Miscut modifies the energy spectrum of a quantum well. In a 

flat quantum well, valley splitting is higher that spin splitting while in a miscut quantum 

well valley splitting is suppressed and becomes smaller that spin splitting (Figure 4.1). As 

a result of this, first two conduction band states in a flat quantum well have same valley-

index and opposite spins. However, first two conduction band states in a miscut quantum 

well have identical spins but different valley-index. Valley splitting and spin splitting are 

important design parameters for spin-based quantum computing and spintronic devices 

and thus need precise modeling techniques that include miscut orientations and disorders 

in buffer layers. In this chapter, a supercell tight-binding technique is employed to model 

valley splitting in the miscut (001) SiGe/Si/SiGe quantum wells. This chapter expands on 

the concepts of previous chapter, represents strain and interfaces atomistically, includes 
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disorder at the steps [48] and disorder in the confining alloy, without any ad-hoc fitting 

parameters. The general purpose code NEMO-3D [39, 40, 77] is utilized to perform 

multi-million atom simulations in domains that are large enough to be representative of 

realistic device geometries. Outline of this chapter is as follows. Section 4.2 describes 

models used to include electric and magnetic fields in the tight-binding Hamiltonian. 

Section 4.3 presents comparison between valley splitting in ideal flat and miscut (001) Si 

quantum wells. Effect of barrier height at the Si/SiGe interface is discussed in section 4.4. 

In section 4.5 valley splitting calculations on realistic SiGe/Si/SiGe quantum wells are 

presented. These calculations include inhomogeneous strain and step roughness disorder 

on the atomistic scale and match well with the experimental measurements. Finally, 

conclusions are presented in section 4.6.  

4.2. Model 

The general purpose electronic structure calculation code NEMO-3D is used to model 

strain distribution and electronic structure in the SiGe/Si/SiGe quantum wells. The 

valence force field (VFF) model with the Keating potential [78] is used to move the 

atoms to positions which minimize the total strain energy. A subsequent electronic 

structure calculation is based on the 20 band sp
3
d

5
s

*
 tight-binding model [76, 79]. The 

strain is included in the tight-binding Hamiltonian following the prescription given in 

                                   

Figure 4.1. Fan diagrams of valley and spin-split states in flat (a) and miscut (b) quantum 

wells in the presence of the magnetic field. The two lowest energy states in a flat 

quantum well are spin-split states while in a miscut quantum well the states are valley-

split and have identical spins. 
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[80]. 

4.2.1. Electric field 

Modulation doping used to generate two dimensional electron gas (2DEG) induces a 

built-in electric field in SiGe/Si/SiGe heterostructures. Here, we do not solve the 

electrostatic potential self-consistently but focus on the essential physics and assume a 

constant electric field of zE =9 MV/m along the quantum well growth direction which 

resembles the experiments in [60]. The electric field is incorporated in the Hamiltonian 

by adding the scalar potential term ( ) zzER −=Φ  to the diagonal elements of the 

Hamiltonian. 

4.2.2. Magnetic field 

The external magnetic field used to probe energy levels in the quantum well is 

included by using gauge-invariant Peierl’s substitution [81, 82]. Consider a tight-binding 

Hamiltonian that is characterized by the on-site and coupling Hamiltonian matrix 

elements 

RHRR ,ˆ, 00

, ααεα = , 

RHRt
RR

,ˆ',' 00

,,,' ' αα
αα

=  

(4.1) 

Here, the orthonormal basis states R,α  are labeled by a site index R  and an orbital 

index α that labels an orbital at a given site. Under Peierl’s substitution off-diagonal 

(coupling) matrix elements of the tight-binding Hamiltonian are scaled as 

( )








−= ∫
'

0

,,,',,,'
.,exp''

R

R

RRRR
dltrA

ie
tt

h
αααα

 (4.2) 

The spin contribution to the magnetic moment is included by adding µBσ·B to the 

diagonal matrix elements, where µB is Bohr magneton and σ are Pauli spin matrices. The 

modification to the diagonal matrix element due to electric field and spin contribution of 

the magnetic field is given by 
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( ) BR BRR .0
,, σµεε αα +Φ−=  (4.3) 

4.2.3. Magnetic gauge and lateral device geometry 

As explained in chapter 3, confinement along the step direction (y-direction) does not 

modify valley splitting in flat or miscut quantum wells. Therefore, asymmetric (Landau) 

gauge in which the vector potential is given by yBxA ˆ=  is chosen. Magnetic field is 

applied in the direction perpendicular to the quantum well surface. In a low magnetic 

field regime of interest the vector potential is slowly varying on the scale of nearest 

neighbor distance. Under this approximation the line integral in equation (4.2) can be 

approximated as 

( ) ( ) ( )( )( )RRRARAdltrA

R

R

−+=∫ '.'
2

1
.,

'

 (4.4) 

Here time independent version of Peierl’s substitution is used. Hence the time 

dependence in equation (4.2) is not included. In asymmetric gauge, equation (4.4) 

simplifies to 

( )( )








−+= yyxxBtt
RRRR

'.'
2

1
exp0

,,,',,,' '' αααα
 (4.5) 

Due to the x-coordinate dependence of asymmetric gauge the device geometry cannot be 

taken as periodic in x-direction. The system must therefore be closed in the x-direction, 

which will indeed introduce confinement effects. The artificial confinement induced by 

these spatial boundary conditions compete with the realistic magnetic confinement 

effects. The lateral x-dimension is set to 150nm, which is about 7 times larger than the 

maximum magnetic confinement length in a 2DEG at B=1.5T (�21nm). For the 

magnetic field ranges of 1-5T no lateral x-confinement effects due to the closed boundary 

conditions are visible in our simulations. Confinement is dominated by the magnetic 

field. 
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4.3. Valley splitting in infinite barrier quantum wells 

Evolution of first four conduction band states of a 10nm thick strained flat (001) Si 

quantum well in magnetic field is shown in Figure 4.2. Magnetic field is applied in the 

direction perpendicular to the quantum well surface. Same scheme as in Figure 4.1 is 

used to label the quantum well states. First two states E0 and E1 are spin split while E0 

and E2 are valley-split. Valley split states are distinguished from the spin split states by 

observing the wavefunctions. Spin split states have the same special distribution. Valley-

split states have the same wavefunction envelop but their rapidly varying components are 

out of phase [58]. Valley splitting (∆v=E2-E0) and spin splitting (∆s=E1-E0) in a flat 

quantum well are shown in Figure 4.3(a). Valley splitting is higher than spin splitting in 

the low magnetic field regime. 

Valley splitting in 2
o
 miscut quantum wells is suppressed by at least 2 orders of 

magnitude as compared to flat quantum wells (Figure 4.3(a,b)). Spin splitting, however, 

is not affected by the change in substrate orientation since it is a result of the geometry 

independent spin-correction µBσ·B. The Lande g-factor extracted from the spin splitting 

plots in Figure 4.3(a) is 2.0028, which is very close to the ideal free-electron value as 

reported in [60]. The computed valley splitting in 2
o
 miscut quantum wells (Figure 

4.3(b)) scales linearly with the magnetic field as observed in [60]. 

 

Figure 4.2. Evolution of first four conduction band states of a 10nm thick strained flat Si 

quantum well in magnetic field. Valley splitting is higher than spin splitting in the low 

magnetic field regime shown here. Inherent electric field of 9MV/m present in Si/SiGe 

heterostructure due to modulation doping is included. 
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4.4. Valley splitting in finite barrier quantum wells 

Almost all fabricated quantum wells are realized in heterostructure configurations, few 

examples are Si quantum wells embedded in Si1-xGex barriers, GaAs embedded in 

AlxGa1-xAs barriers and InxGa1-xAs embedded GaAs barriers. These barrier materials 

have higher bandgap than the quantum well material due to which electrons are confined 

in a quantum well. Although most of the electron wavefunction is localized in the 

quantum well it partly diffuses into the barriers. The extent of the penetration of the 

electron wavefunction into the barrier is controlled by the conduction band-offset 

between the quantum well and the barrier. Valley splitting in a finite barrier quantum 

well depends on the extent of the wavefunction penetration into the barrier. Therefore 

valley splitting in a Si quantum well depends on Si/SiGe barrier height. Disorders such as 

random placement of Ge atoms in SiGe and resulting inhomogeneous strain also affect 

valley splitting. First a simple case of smooth barriers is considered. Figure 4.4 shows the 

effect of the barrier height (or conduction band-offset) on valley splitting in a 2
o
 miscut 

quantum well. The smooth barriers are made up of a fictitious material formed by raising 

values of onsite tight-binding parameters of Si by energies equal to the conduction band-

 

Figure 4.3. Valley and spin splittings versus magnetic field in a 10nm thick strained Si 

quantum wells grown on (a) flat and (b) 2
o
 miscut substrates. (a) Valley splitting in a flat 

quantum well is higher than spin-splitting in low magnetic field regime. (b) Valley 

splitting in a miscut quantum well is lower than that in a flat quantum well. Inset shows 

the zoomed-in view of the valley splitting in a miscut quantum well. Confinement in x-

direction is 150nm to avoid interference of hard-wall boundary conditions with magnetic 

field confinement. All simulations include inherent electric field of 9MV/m present in 

Si/SiGe heterostructure due to modulation doping. 
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offset. Valley splitting increases as the barrier height is lowered. 

Dependence of valley splitting on the barrier height can be qualitatively explained by 

comparing the wavefunction leakage into the barrier. Figure 4.5(a) shows valley splitting 

as a function of the barrier height at magnetic field of 2.5T. Valley splitting versus barrier 

height is plotted on the right hand side y-axis while the corresponding fraction of the 

wavefunction leakage into the barrier is plotted on the left hand side y-axis. Valley 

 

Figure 4.4. Valley splitting in 2º miscut Si quantum wells embedded in a smooth barrier. 

Valley splitting is higher for lower barrier height. Electric field = 9 MV/m. Thickness of 

Si quantum well is 10nm and it is embedded in a 3 nm thick barrier on both (top and 

bottom) sides. Confinement in x-direction is 150nm. 

 

 
Figure 4.5. (a) Valley splitting in a 10nm thick 2

o
 miscut Si quantum well as a function of 

the barrier height. Valley splitting follows the same trend as the wavefunction leakage in 

the barrier. (b) Ground state wavefunction of a 2
o
 miscut Si quantum well embedded in a 

smooth barrier of height 150meV. Magnetic field: B = 2.5T, Electric field: Ez = 9 MV/m. 
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splitting follows the trend of wavefunction leakage into the barrier. Same behavior is 

observed for small barrier heights (considered here) in finite barrier flat quantum wells. A 

typical ground state wavefunction is shown in Figure 3.5(b). The wavefunction is pulled 

towards top Si/SiGe interface because of the built-in electric field due to the modulation 

doping present in these heterostructures. The wavefunction leakage is the fraction of the 

total wavefuntion probability that resides in the barrier. A detailed study of valley 

splitting in finite barrier quantum wells is published in [83]. 

4.5. Valley splitting in SiGe/Si/SiGe quantum wells with disorder 

This section presents valley splitting calculations in 2
o
 miscut strained SiGe/Si/SiGe 

quantum wells. The results are compared with experimental measurements of [60]. 

4.5.1. Disorders in Si/SiGe heterostructures 

Alloy and surface roughness disorders are inherently present in experimental 

realizations of devices fabricated in Si/SiGe heterostructures. Alloy disorder refers to the 

fact that Ge atoms are randomly distributed in SiGe. Figure 4.6(b) shows a zoomed view 

of a random interface configuration when the Si/SiGe interface is represented 

atomistically. This random distribution of Ge produces inhomogeneous strain due 

different Si-Si, Ge-Ge, and Si-Ge equilibrium bond lengths. Atom disorder is 

automatically taken into account because every atom is represented explicitly in the tight-

binding calculations and Si and Ge have different tight-binding parameters. 

Inhomogeneous strain disorder is incorporated in the tight-binding Hamiltonian 

according to the prescription of [80]. 

Another type of disorder which is always present in the quantum wells grown on 

vicinal substrates is the step-roughness disorder. Miscut quantum wells grown on (001) 

vicinal substrates can be assumed in a first approximation, to be made up of repeated 

regular steps (Figure 4.6(a),(c)) creating a tilt angle (θT) to the [100] direction in the 

growth plane, causing the unit cell to be large compared to that of a flat quantum well. 

However, Si quantum wells grown on miscut substrates have an irregular step-like 
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structure along the [100] crystallographic axis (Figure 4.6(d)) [48, 84]. This irregular 

structure results from the fact that the mono-atomic steps on the miscut surface interact 

and settle into the minimum surface energy configuration. This minimum energy 

configuration has alternating regular and rough steps as shown in Figure 4.6(d). The 

deviation-deviation correlation function of the step edges, and the distribution of terrace 

lengths of miscut substrates are extensively studied using scanning tunneling microscopy 

(STM) and statistical physics [48, 84]. Step roughness is included in the tight-binding 

simulations by generating the step roughness profiles following the prescription of [84] 

and imposing these profiles on the atomistic grid. 

4.5.2. Simulation domain 

Schematics of the strain and the electronic structure domain for both flat and miscut 

quantum wells are shown in Figure 4.7. Strain disorder is known to have long range 

        

           

Figure 4.6. (a) Schematic of SiGe/Si/SiGe heterostructure and confining potential (Vz) 

along growth direction. (b) Atomic scale representation of a disordered Si/SiGe interface. 

(c) Ideal steps along [100] direction. (d) Schematic of the step disorder along y-direction 

in Si/SiGe heterostructures grown on 2
o
 miscut substrates. Flat and disordered steps 

alternate [48, 84]. 
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nature [85]. 40nm of SiGe layers are included on the top and the bottom of 10nm Si 

quantum well for strain calculations. This SiGe thickness is sufficient to model the long-

range strain disorder, where the detailed strain boundary conditions are not important and 

the SiGe volume exceeds the Si quantum well volume significantly. SiGe buffers provide 

electronic confinement of approximately 100meV due to which the electronic states of 

interest in this problem are spatially confined to the quantum well and only weakly 

penetrate into the SiGe buffer. Therefore one can safely reduce the electronic structure 

domain to 3nm of SiGe buffer around the Si quantum well. For this setup the strain 

calculation requires 10 million atoms and the electronic structure calculation requires 2 

million atoms. For the idealized geometries without a SiGe buffer, a homogeneous lattice 

distortion of 013.0|| =ε  is assumed throughout the Si quantum well, as approximated 

from the full SiGe buffer system calculation and hard wall boundary conditions are 

assumed in z-direction. Such electronic structure calculations require about 0.5 million 

atoms. Following the discussion of section 4.2.3, the lateral extension of the strain and 

the electronic structure domain is set to 150nm. The lateral confinement of the 

wavefunction is dominated by magnetic field and the closed boundary conditions applied 

along x-direction do not modify the energy spectrum of a quantum well. Modulation 

doping in Si/SiGe heterostructures induces built-in electric field. In the simulations 

performed here an electric field of 9 MV/m is assumed in the growth direction. Quantum 

wells extend 15 nm along y-direction to take into account the step roughness disorder 

shown in Figure 4.6(d). SiGe alloy disorder is also assumed to be quasi-periodic with the 

period of 15nm, which is sufficient to capture the effect of inhomogeneous strain 

disorder. The choice of asymmetric magnetic gauge ( yBxA ˆ= ) is still valid because the 

electronic domain is assumed to be quasiperiodic in y-direction. 
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4.5.3. Comparison with experimental data 

In the presence of the applied magnetic field the 2-DEG is quantized in Landau levels 

(LLs). The valley-degeneracy of LLs is broken in the presence of sharp confinement due 

to Si/SiGe interfaces in a quantum well. The valley splitting of the first LL in flat and 2
o
 

miscut quantum wells is plotted as a function of the applied magnetic field in Figure 4.8. 

The valley splitting in ideal (no SiGe disorder) miscut quantum wells is 2 orders of 

magnitude less than that in flat quantum wells. The finite SiGe barriers enhance valley 

splitting in flat as well as miscut quantum wells. This is expected because as described in 

section 4.4 valley splitting is a decreasing function of the barrier height for smaller 

barrier heights. Addition of SiGe buffers to the electronic structure calculation domain in 

2
o
 miscut quantum wells increases valley splitting, however, experimentally observed 

valley splitting is slightly higher.  

If the step-roughness disorder alone is included in the simulations, the computed 

valley splitting is higher compared to that of an ideal miscut quantum well (Figure 4.9 

(a)). In these calculations surface roughness model described in section 4.5.1 is used and 

the uniform biaxial strain of 013.0|| =ε  which corresponds to Si0.7Ge0.3 buffer 

composition is assumed. This valley splitting, however, is slightly smaller than the 

experimentally measured valley splitting. This discrepancy can be answered by adding 

SiGe buffers in the electronic structure simulation domain. 3nm of SiGe buffer is 

 

Figure 4.7. Schematics of simulated quantum wells: (a) Flat and (b) Miscut quantum 

wells embedded in SiGe barriers. Strain domain extends 40 nm on either (top and 

bottom) sides of a Si quantum well while electronic structures domain extends 3 nm on 

either sides. Quantum wells are 15nm long in y-direction to take into account the alloy 

and the step roughness disorder. 
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included on top and bottom of the Si quantum well to take into account the wavefunction 

penetration into the finite barrier quantum well buffers. Strain computation domain has 

same the x and y dimensions as the electronic structure domain. To take into account the 

long range nature of strain 40nm of SiGe buffer is included on both sides of Si quantum 

well. As shown in Figure 4.9(b), the valley splitting computed by taking both step and 

alloy disorders into account is found to match closely to the experimentally measured 

values. Figure 4.10 shows valley splitting data used to generate averaged valley splitting 

plots in Figure 4.8(b) and Figure 4.9. In general, valley splitting increases when SiGe 

buffer and step roughness are included in the simulation domain. Valley splitting values 

for each disorder sample are different because of local atomic scale variations at the 

 

Figure 4.8. Enhancement in valley splitting due to SiGe buffers in flat (a) and 2
o
 miscut 

(b) quantum wells. Valley splitting is higher due to the penetration of wavefunction in 

SiGe buffers. 

 

 
Figure 4.9. (a) Enhancement in valley splitting due to step disorder alone. SiGe buffers 

are not included in the electronic structure simulation domain. (b) Valley splitting 

calculated with both disorders matches with the experimentally observed valley splitting. 
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Si/SiGe interface.  The lateral extent of the experimental sample is much larger compared 

to the simulation domain of Figure 4.7. To mimic the large lateral extent of the 

experimental samples, several disorder samples are simulated. The average value gives 

better approximation to the experimental measurement. 

4.6. Conclusion 

Earlier theories of valley splitting, which do not include miscut surfaces [58, 59] over-

predict the value of the valley splitting compared to experimental data [60] while perfect 

miscut quantum wells underpredict the observed valley splitting by an order of 

magnitude. Effective mass formalisms [71, 72] suggest that disorder in the miscuts 

enhances the valley splitting, their model however uses ad-hoc structure dependent fitting 

parameters. Unlike effective mass, tight-binding can predict valley splitting without any 

ad-hoc fitting parameters [71]. The atomistic representation of the confinement buffer 

and the local step disorder is therefore an essential ingredient in high precision 

calculations of valley splitting in heterostructures.  

 

 

Figure 4.10. Valley splitting in the presence of various disorders. (a) Alloy disorders in 

SiGe buffer layer. (b) Step disorder at the Si/SiGe interface. (c) Both alloy and step 

disorder. Fifteen samples of each disorder are simulated. 
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5.  ZONE-UNFOLDING FORMALISM 

5.1. Introduction 

Bandstructure calculations are critical in evaluation of device properties. Such 

calculations are typically performed within a plane-wave basis in an infinitely periodic 

system. However, as devices are scaled to nanoscale sharp variations on atomic scale 

play an increasingly important role in determining the electronic structure and transport 

properties. At the nanoscale, methods that employ local basis sets are theoretically more 

intuitive and practically more convenient compared to plane-wave basis set methods. 

Local basis set methods such as semi-empirical tight-binding have smaller computational 

requirements than corresponding pseudopotential methods for the calculation of 

electronic structure in multimillion-atom systems [31-38]. The power of tight-binding 

method is fully utilized in the large-scale calculations performed on nanostructures with 

sharp interfaces and atomistic alloy-disorder. These methods have been successfully 

applied in treating SiGe/Si/SiGe quantum wells [24], impurities [86-89], quantum dots 

[90], and alloys [22].  

Traditional tight-binding bandstructure calculations in periodic systems are performed 

by choosing the smallest repeating unit cell along the periodic directions of the 

semiconductor crystal. However, nanostructures are seldom perfect. Examples include 

quantum dots or wires made of alloys or having rough surfaces, nanoscale FETs with 

inhomogeneous strain distributions, or simply three-dimensional random alloys.  

In disordered structures translational symmetry is broken and the small cells differ 

from each other. The traditional averaging methods such as the virtual crystal 

approximation (VCA) can not account for bandstructure effects of random alloying [22]. 

In nanostructures such effects due local disorders are more pronounced. Conventionally 

alloy disorders are treated in the supercell framework. Such a supercell contains many 
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small cells which are different from each other in terms of atom/strain distribution 

(Figure 5.1(a,b)). Thus the supercell itself has a random disorder in it. If the supercell is 

sufficiently large, one would expect it to represent the true disorder in the device. 

However, due to Brillouin zone-folding such supercell calculations only deliver the 

energy spectrum which can only be used to extract absolute band-minima of the 

disordered nanostructures (Figure 5.1(c)). Supercell calculations alone can not deliver the 

transport parameters such as effective masses and relative locations of valley-minima. 

This chapter outlines a zone-unfolding method which can be used to unfold the supercell 

bandstructure (Figure 5.1(c)). Unfolded bandstructure ((d)) can be used to calculate the 

transport parameters such as effective mass and relative locations of valley-minima, 

which can be used in the top-of-the-barrier-model to predict device performance. 

The use of a supercell representation is associated with the problem of zone-folding as 

shown schematically in Figure 5.2. The advantage of using supercell representation is the 

fact that it can naturally account for disorders such as random alloying, impurities surface 

roughness. In the presence of disorders the very existence of the bandstructure becomes 

questionable. However, in the view that the experiments measure bandstructure 

properties such as band-gaps and effective masses one would expect that in such systems 

the bandstructure should exist in approximate sense. 

 

Figure 5.1. Supercell representation and its bandstructure: (a) Random alloy disorder 

and (b) surface roughness on atomic scale. Small cells (dotted rectangles) in the 

disordered supercell  differ from each other. (c) Folded bandstructure of a supercell. 

Such bandstructure can only deliver the absolute band minima. (d) Unfolded 

bandstructure obtained by unfolding the supercell bandstructure. Unfolded 

bandstructure can be used to extract effective masses and relative positions of different 

valley minima. 
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This chapter presents the zone-unfolding method to obtain approximate bandstructures 

from the supercell eigenspectrum of the disordered nanostructures. In section 5.2 an 

analytical zone-unfolding calculation on a 1D toy nanowire is presented. Section 5.3 

generalizes this method for realistic nanowires with finite cross-section while section 5.4 

generalizes it to unfold irregular nanowire supercell bandstructures. The conclusion is 

presented in section 5.5. 

5.2. 1D toy model 

This section develops the zone-unfolding method for 1D toy nanowire. The method 

can be easily extended to realistically sized nanowires and to 2D and 3D nanostructures. 

We consider a 1D chain of atoms each having 2-orbitals, which are labeled as s and p. 

The onsite tight-binding parameters are denoted by εs and εp, while the two-center 

integrals are denoted by Vss, Vsp and Vpp. Values of the tight-binding parameters are taken 

to be εs = 2.317 eV, εp = 3.683 eV, Vss = 0.2705 eV, Vsp = 0.3415 eV, and Vpp  = 0.9535 

eV. Two different models are used to describe the same system, (i) Small cell model, 

where the smallest repeating unit contains only one atom. Since each atom has two 

orbitals this model leads to the two-band representation, (ii) Supercell model, where the 

 

 

Figure 5.2. Zone-folding: (a) Unit cell (black) and subsequent larger supercells of a 1D 

toy nanowire. (b) Disorders such as impurities or roughness can be introduced in the 

supercell representation. (c) Bandstructures of a 1D toy nanowire plotted with repeating 

cells of Fig. (a). Brillouin zone of a supercell made up of N small cells spans from –π/Na 

to π/Na, where a is length of a small cell. Thus the bandstructure of a small cell that spans 

from –π/a to π/a is folded into a supercell Brillouin zone that spans from –π/Na to π/Na. 
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smallest repeating unit contains three atoms. This model leads to the six-band 

representation. Both small cell and supercell models are physically identical and 

therefore, transformation of the bandstructure obtained from one model to the 

bandstructure obtained from another model is possible. The zone-unfolding algorithm 

gives us an efficient way to construct the small cell bandstructure from the supercell 

bandstructure.  

5.2.1. Small cell bandstructure 

In this representation the nanowire is assumed to be made up of repeating unit cell 

containing a single atom. Since each atom has two orbitals this model leads to the two 

band description of the electronic structure of the nanowire. The Hamiltonian for this unit 

cell can be written as 

( ) ( )
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The Brillouin zone of this representation extends over the range aka ππ ≤<− , where 

a is length of the unit cell. This Hamiltonian can be easily diagonalized analytically. The 

eigenvalues are given by 
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while corresponding eigenvectors of the Hamiltonian are 

( ) 







+
=

2,1
2

2,1

2,1

1

1

1

αα
ψ  (5.3) 

where 
( )
( )kaiV

EkaV

sp

sss

sin2

cos2 2,1
2,1

−+
=

ε
α  



 

 

 

45 

The bandstructure (equation 5.2) of the small cell is plotted in Figure 5.3(c). In a two-

band description the eigenvector of a 1-D chain has Bloch periodicity as shown in Figure 

5.3(a). Since, the Bloch phase of the nearest unit cells differ by ika
e  the eigenvector of 

the supercell (containing 3 small cells) in the small cell representation can be written as 
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5.2.2. Supercell bandstructure 

In this representation, we group three small unit cells to form a bigger supercell, which 

has three atoms or six orbitals per supercell. The length of the supercell is A=3a where a 

is length of the small cell. The Hamiltonian matrix for the supercell representation is 

given by   

 

 

Figure 5.3. Illustration of zone-unfolding in a 2-band model: (a) Small cell contains one 

atom with 2 orbitals. (b) Supercell contains 3 small cells. (c) Bands in a supercell 

eigenspectrum are translated by appropriate reciprocal lattice vectors nG  to obtain small 

cell bandstructure. 

 



 

 

 

46 



























−

−

−

−

−

−

=

pppsp

iKA

pp

iKA

sp

sspss

iKA

sp

iKA

ss

ppsppppsp

spsssspss

iKA

pp

iKA

spppspp

iKA

sp

iKA

ssspsss

VVeVeV

VVeVeV

VVVV

VVVV

eVeVVV

eVeVVV

H

ε

ε

ε

ε

ε

ε

0

0

0

0

0

0

 (5.5) 

 

the Brillouin zone of this supercell extends over the range AKA ππ ≤<−  i.e. 

aKa 33 ππ ≤<− , is one third of that of the small cell. Six eigenvalues of this 

Hamiltonian are given by 
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where  
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Examining the periodicity of the supercell the eigenvectors can be written as follows:  
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The bandstructure (equation 5.6) of the supercell is plotted in Figure 5.3(c). The Brillouin 

zone of the supercell is one third of that of the small cell. However, supercell 

bandstructure contains thrice as many bands as the small cell bandstructure. Thus both 

representations contain the same physical information. The small cell bandstructure can 

be retrieved from the supercell bandstructure by shifting the bands by appropriate 

reciprocal lattice vectors, Gn’s. Alternatively, supercell bandstructure can be obtained by 

shifting the small cell bands back into the supercell Brillouin zone. The zone-unfolding 

method to retrieve the small cell bandstructure from the supercell bandstructure is 

described in the next section. 

5.3. The zone-unfolding method for perfect supercells 

5.3.1. Method 

The supercell and the small cell representations of a perfect elemental nanowire are 

equivalent because all small cells in a perfect supercell are identical. The eigenstate of a 

nanowire at energy Ep and wavevector K can be expressed as the following Bloch sum:  
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 Here, the summation index j runs over supercells and l runs over each small cell in a 

supercell, There are NO,cell orbitals per small cell, which are indexed by orbital type α (s, 

px, etc.) and atom within the small cell µ. There are NC small cells in a supercell and NS 

supercells in the nanowire. Rj and ρl denote the positions of the supercell along the 

nanowire and the position of small cell in this supercell respectively. β stands for the 

eigenvector coefficients. 

Suppose that the same eigenstate (of energy Ep) in the small cell representation 

appears at a wavevector k=K+Gn. This eigenstate can be written as follows:  
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Here, Gn is a supercell reciprocal lattice vector such that k=K+Gn lies in the first BZ of 

the small cell. Gn’s are called allowed wavevectors. Note that the underlying periodicity 

of eigenvector coefficients µαβ ,

, pl  in equation (5.9) is a supercell periodicity while 

eigenvector coefficients µα ,

pb  in the Bloch state of equation (5.10) have a small cell 

periodicity. 

The determination of the allowed wavevectors Gn’s depends on the supercell 

geometry, specifically on the number of small cells (NC) contained in the supercell. Small 

cell BZ ranges from -π/a to +π/a while supercell BZ ranges from -π/NCa to +π/NCa. Each 

band in the small cell eigenspectrum appears in NC segments in the supercell 

eigenspectrum. To obtain the small cell eigenspectrum each of these segments are 

translated from the wavevector K in supercell BZ to the wavevector k in small cell BZ by 

the allowed wavevectors i.e. k=K+Gn(j). There are NC allowed wavevectors and they are 

given by the following prescription:  
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Note that all Gn(j)’s satisfy the Born-vonKarmann boundary condition ΨK+G(x+NCa)= 

ΨK+G(x) and lie in the first BZ of the small cell. These criteria are used to calculate Gn(j) 

[42, 70, 91]. Supercell and small cell eigenstates of equations (5.9) and (5.10) are 

eigenstates of the same periodic nanowire structure expressed as linear combinations of 

the same set of atomic-like orbitals ( )ljR ρµα +;, . Hence they must be linear 

combinations of each other, which can be expressed as 

( ) ( ) ( )( )jnnp

N

j
jnpp GKaK
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,

1
,

ψ  (5.12) 

In a pure elemental nanowire many of the coefficients ap,n(j) are zero. Non-zero ap,n(j) are 

interpreted as that the small cell state of energy Ep and wavevector k=K+Gn(j) contributes 
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to the supercell state of the same energy Ep and the wavevector K. Equation (5.12) is 

solved for ap,n(j) ’s by employing the procedure of [42], which is briefly described here. 

Note that the supercell eigenstates, ( )KpΨ  are known from the supercell eigenspectrum 

calculation while expansion coefficients ap,n(j) and small cell eigenstates, 

( )( )jnnp GK +,ψ  are unknown. However, as described below one can exploit the 

normalization property of the small cell eigenstates to compute |ap,n(j)|
2
, which is 

sufficient to obtain unfolded supercell bandstructure.  

Substituting equations (5.9) and (5.10) into equation (5.12), projecting out the 

component for the ket ljR ρµα +;, , and rearranging gives NC equations for l=1,2,…,NC 
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These equations expressed in the matrix form 
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(5.15) 

and the NC×NC unitary matrix U is give by 
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Exploiting the unitarity of U, equation (5.14) is repeatedly solved for each supercell 

eigenvector of energy, Ep and (atom, orbital) combination (α,µ) to get ( )( )KCp
µα ,  

( )( ) ( )( )KBUKC pp
µαµα ,, ⋅=

+
 (5.17) 

Using the normalization of the bulk eigenstates, the coefficients of linear combinations 

ap,n(j) are obtained by summing over atoms and orbitals for a fixed energy, Ep, and 

supercell reciprocal lattice vector Gn(j)  

( )
( )[ ]∑=

µα

µα

,

2
,

, jpjnp Ca , 

( )[ ] ( )
( )

( )( )jnpjnpjp GKbaC += µαµα ,
,

,  

(5.18) 

The coefficients of linear combinations ap,n(j) give the contribution of each small cell state 

of energy, Ep to a supercell state of the same energy, Ep. To obtain the small cell 

bandstructure, for each non-zero ap,n(j) energy (Ep) is translated from the wavevector K in 

supercell BZ to the wavevector k in small cell BZ by the corresponding allowed 

wavevector i.e. k=K+Gn(j). 

5.3.2. Analytical zone-unfolding calculation in 1D toy example 

In the 1D toy example described in section 5.2, a supercell is composed of three small 

cells (i.e. NC=3). For this simple case of the 1D toy model, the zone-unfolding calculation 

can be done analytically. The real space small cell lattice vectors are given by 01 =ρ , 

,2 a=ρ  and a23 =ρ  while the allowed wavevectors for this supercell are respectively 

given by ( ) aGn 321 π−= , ( ) 02 =nG , and ( ) aGn 323 π= . The basis transformation 

between the supercell and small cell eigenstates of energy Ep can be expressed as  

( ) ( ) ( ) ( )( )jnjnp
j

jnpp GKaK +∑=Ψ
=

,

3

1
,

ψ  (5.19) 

The expansion coefficients, ap,n(j)’s can be obtained by following the procedure of section 

5.3.1. Here, an analytical zone-unfolding calculation is shown for the supercell band, B1 

of Figure 5.3(c). The supercell eigenvector for this band is given by 
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where γ1 is given by equation (5.8). Following the procedure of section 5.3.1, equation 

(5.19) can be cast in matrix form of equation (5.17). Substituting U
†
 and 1Ψ  into 

equation (5.19) gives 

Gn(1) = -2π/3a Gn(2) = 0 Gn(3) = 2π/3a Supercell band 

index (p) |ap,n(1)|
2
 |ap,n(2)|

2
 |ap,n(3)|

2
 

1 0 0 1 

2 1 0 0 

3 0 0 1 

4 0 1 0 

5 1 0 0 

6 0 1 0 
 

 

Figure 5.4. A table of coefficients ap,n(j)’s in equation 5.19.  

 

 

Figure 5.5. Unfolding of supercell band B1. The contributions (ap,n(j)) from small cell 

eigenvectors at k=K+Gn(j) for Gn(j)=-2π/3a, 0, 2π/3a are plotted in Figures (b), (c), and 

(d) respectively. Since the only non-zero contribution comes from G=2 π /3a, the band 

B1 is shifted by the reciprocal lattice vector G=2π/3a from supercell wavevector K to a 

small cell wavevector k=K+2π/3a in the small cell Brillouin zone. 
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which further simplifies to 
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Exploiting the normalization of small cell states, the expansion coefficients |a1,n(j)| are 

obtained as follows:  

( )
( )[ ]

( )

( )

( )








=

=

=

=∑=

1

0

0

3,1

2,1

1,1

,

2
,

1,1

,

n

n

n
N

jjn

a

a

a

Ca
cellO

µα

µα  (5.23) 

Since each supercell contains only one atom, the summation runs over s and p orbitals of 

an atom in each supercell. Similar calculations can be performed for all supercell bands, 

B1,…,B6. The values of |ap,n(j)| for each supercell band are given in Figure 5.4. As 

discussed in [42], |ap,n(j)|
2
 is interpreted as the probability that the eigenvalue of energy Ep 

at the supercell wavevector K is shifted by the reciprocal lattice vector, Gn(j) in the small 

cell eigenspectrum. This procedure is illustrated for supercell band B1 in Figure 5.5, for 

B2 in Figure 5.6, and for B4 in Figure 5.7. 
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5.3.3. Perfect Si nanowire 

The small cell and the supercell representations of a perfect elemental Si nanowire are 

shown in Figure 5.8. Figure 5.9(b) shows the bandstructure of a 2.2×2.2nm Si nanowire 

obtained by simulating a small cell similar to that shown by dotted rectangle in Figure 5.8 

and by unfolding the supercell eigenspectrum of a 22×2.2×2.2nm supercell following the 

procedure of section 5.3.1. Both bandstructures match exactly as expected because no 

disorder is introduced in the supercell. Next section outlines the procedure to extract the 

small cell bandstructure from imperfect supercells. 

 

 

Figure 5.6. Unfolding of supercell band B2. The contributions (ap,n(j)) from small cell 

eigenvectors at k=K+Gn(j) for Gn(j)=-2π/3a, 0, 2π/3a are plotted in Figures (b), (c), and 

(d) respectively. Since the only non-zero contribution comes from G=-2 π /3a, the band 

B2 is shifted by the reciprocal lattice vector G=-2π/3a from supercell wavevector K to a 

small cell wavevector k=K-2π/3a in the small cell Brillouin zone. 

 

 

 

 

Figure 5.7. Unfolding of supercell band B4. The contributions (ap,n(j)) from small cell 

eigenvectors at k=K+Gn(j) for Gn(j)=-2π/3a, 0, 2π/3a are plotted in Figures (b), (c), and 

(d) respectively. Since the only non-zero contribution comes from G=0, the band B4 is 

not shifted. 
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5.4. Band-projection method for imperfect supercells 

5.4.1. Method 

Details of small cell band extraction in imperfect systems are given in [22]. Only the 

relevant procedure is summarized here. In an imperfect system the supercell state is 

generally a superposition of all small-cell Bloch states. Equation (5.12) gets modified to  

 

Figure 5.8. Two equivalent representations of a [100] Si nanowire. Small cell 

representation in which a wire is made up of a smallest repeating unit i.e. 4 atomic planes 

thick slab. Supercell representation in which a repeating unit consists of integer number 

of small cells. Here, nanowire supercell (solid lines) consists of 11 small cells (dotted 

lines). 

 

 
Figure 5.9. Small cell and unfolded supercell bandstructures of a perfect 2.2×2.2nm Si 

nanowire: (a) Coefficients ap,n(j) obtained by solving equation (5.12) for 22×2.2×2.2nm 

supercell wavevector K=0 and reciprocal lattice vector G=0. Energy values for which 

coefficients ap,n(j) are non-zero are shifted from K=0 in the supercell Brillouin zone to 

k=K+G=0 in the small cell Brillouin zone. This procedure is repeated for all Gn(j) in 

equation (5.11) to obtain unfolded bandstructure in Figure (b). 
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The summation index η runs over all NO,cell small cell bands. The number of bands, NO,cell 

in a small cell is given by number of atoms in a small cell multiplied by number of 

orbitals per atom. The supercell state of energy Ep is composed of small cell states of all 

energies Eη’s. Generally the contribution of only few Eη’s is significant and this 

contribution is quantified by expansion coefficients ap;η,n(j)’s. One can project the small-

cell states out of the supercell state by following similar procedure as described in section 

5.2.2 to obtain the band probabilities 
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(5.25) 

 

Here Pp;n(j) denotes the probability of there being a small cell state at energy Ep and small 

cell wavevector k=K+Gn(j). The zone-unfolding procedure is summarized below: 

1. Calculate the allowed supercell reciprocal lattice vectors Gn(j). 

2. Choose a small cell wavevector k=K+Gn(j) at which to perform unfolding. 

3. Compute and save the probability sums, Pp;n(j), generated by repeatedly solving 

equation (5.25) for each supercell state of energy Ep. 

4. Search for steps in the cumulative probability as a function of the energy, Ep. 

5. Using the energies Ep and corresponding probability sums, Pp;n(j), compute the 

mean energies E
~

 and standard deviations ∆E between successive steps in the 

cumulative probability. 

5.4.2. SiGe nanowire 

Figure 5.10 shows the result of the band-projection method applied to unfold the 

bandstructure of 32.5×7.1×7.1nm Si0.8Ge0.2 alloy nanowire supercell to obtain 

bandstructure of 7.1×7.1nm Si0.8Ge0.2 alloy nanowire. Figure 5.10(a,b) show a typical 
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result of the projection method for supercell wavevector K=0 and reciprocal lattice 

vectors G=0 and π/3a respectively as a function of energy. For band detection, 

cumulative probability distribution (cdf) obtained from probability sums, Pp;n(j), is used. It 

is easier to detect the steps in cdf than the detection of peaks in Pp;n(j). If the band at Ep 

has degeneracy of gv then the cdf jumps by gv at Ep. Since the unfolded supercell 

bandstructure is approximate it has an error bar associated with each energy and k point 

in the dispersion. The error bars on the bands of Figure 5.10(c) represent the standard 

deviation error in the band detection algorithm. These energy uncertainties can be used to 

calculate the scattering time of the state according to the prescription of [92]. 

5.5. Conclusion 

The zone unfolding method for 1D nanostructures is outlined in this chapter. The 

simple toy model of section 5.2 summarizes the essential physics of unfolding. The zone-

unfolding method for realistically sized perfect nanowires is presented in section 5.3. In 

section 5.4, the generalized zone-unfolding method for imperfect supercells is presented. 

 

Figure 5.10. Zone unfolding of the bandstructure of 32.5×7.1×7.1nm Si0.8Ge0.2 alloy 

nanowire supercell to obtain bandstructure of 7.1×7.1nm Si0.8Ge0.2 alloy nanowire: 

Probability sums calculated using equation (5.25) for supercell wavevector K=0 and 

reciprocal lattice vectors  G=0 and π/3a are plotted as a function of energy in figures (a) 

and (b) respectively. The mean energies E
~

 and standard deviations ∆E are calculated 

from the cumulative probability distribution. The degeneracies are denoted by gv. The 

mean energy values in figures (a) and (b) are translated to k=0 and π/3a respectively in 

small cell Brillouin zone in Figure (c). The procedure is repeated for all allowed 

reciprocal lattice vectors Gn(j) to obtain small cell bandstructure shown in Figure(c). 
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In the next chapter the zone-unfolding method is employed to study of the electronic 

transport in alloy nanowires. 
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6.  APPLICATIONS OF ZONE-UNFOLDING: ELECTRONIC 

STRUCTURE AND TRANSPORT IN ALLOY NANOWIRES 

6.1. Introduction 

Semiconductor nanowires are believed to be the potential candidates for devices 

beyond conventional planar Si-CMOS technology. Nanowires are also attractive for 

sensing applications due to their high surface-to-volume ratio. Nanowire transistors 

provide the possibility of 3-D integration to improve the device density on the chip. 

Nanowire transistors can be scaled down to much smaller sizes than their planar 

counterparts because of enhanced electrostatic control provided by the 3-D geometry. 

Recently several groups have demonstrated nanowire field-effect transistors (FETs) 

fabricated from pure elemental or compound semiconductors like Si [93], Ge [94], and 

GaAs [95] as well as semiconductor alloys like SiGe [95], and their III-V counterparts. 

Semiconductor alloy nanowires have local atomic and inhomogeneous strain disorder due 

to random distribution of atoms in the semiconductor lattice. As the nanowire dimension 

shrinks to below around 5 nm, the effective mass approximation breaks down even for 

pure elemental semiconductor nanowires [28] and an atomistic representation of the 

material is needed for transport calculations. Here, the nearest neighbor sp
3
d

5
s

*
 

semiempirical tight-binding technique is employed to model the electronic structure and 

the transport in semiconductor alloy nanowires. The tight-binding technique is readily 

suited for modeling atomic scale alloy disorders because of its atomistic nature of the 

Hamiltonian.  

The tight-binding electronic structure calculations are typically performed within the 

virtual crystal approximation (VCA) that averages the tight-binding parameters according 

to the alloy composition. The VCA method can not reproduce the experimental band-

gaps and effective masses even for the bulk alloys like AlGaAs [22]. This is because the 
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VCA method can not model the effect of random placement of atoms in the alloy. Such 

effects become more important in the nanoscale regime as they lead to the formation of 

localized states in the nanostructures. Therefore more rigorous models are required to 

study the electronic transport in alloy nanowires. This work employs the supercell 

approach, which allows us to relate features in the transport and bandstructure results in 

greater detail than previously possible. A unified picture of alloy nanowires emerges, in 

which the nanodevice (transmission) and nanomaterials (bandstructure) viewpoints 

complement each other and illuminate the physics of these interesting structures. 

AlGaAs and SiGe systems are used to illustrate the influence of random-alloy disorder 

on the electronic structure and transport. Section 6.2 describes nanowire geometries  and 

methods used to calculate bandstructure and transport characteristics. In section 6.3, the 

AlGaAs system is presented first because of its attraction from a theoretical point-of-

view: nearly identical AlAs and GaAs bond lengths, so that disorder appears as the 

random cation distribution. Transport properties of SiGe nanowires that include random 

atom distribution and inhomogeneous strain due to different Si-Si and Ge-Ge bond 

lengths are described in section 6.4. Finally section 6.5 concludes the chapter. 

6.2. Method 

This section describes the nanowire geometries and methods used to model the 

electronic transport. Specifically, the virtual crystal approximation (VCA), local 

bandstructure, and zone-unfolding method are described. The electronic structure, and the 

transport calculations are performed on the whole nanowire in free standing configuration 

and substrate is not taken into account. 

6.2.1. Nanowire geometries 

The AlGaAs and SiGe alloy nanowires studied here have a square cross section, are 

oriented along [100] direction and have surfaces along x-y and x-z planes. The AlGaAs 

random alloy nanowire is shown in the atomistic representation in Figure 6.1. The 

nanowire geometry is specified in terms of conventional Zincblende (cubic) unit cells as 
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nx×ny×nz where nα is the number of cubes in direction-α. Thus the nanowire dimension in 

direction α is given by nαa, where a is the lattice constant of the material. The nanowire 

supercell is periodic in the transport (x-direction) and the wire mantle surfaces are 

passivated to push the surface states out of the bandgap. The prescription of [96], where 

dangling bonds oriented along sp
3
-hybridization directions are raised in energy (by 30eV) 

is used for surface passivation. The unit cell or small cell of such a nanowire is a 1×ny×nz 

slab consisting of two anion-cation planes each.  

The same nanowires geometries are used in both bandstructure and transmission 

calculations. The only difference in the two calculations is boundary conditions along x-

direction. Periodic boundary conditions are applied in supercell bandstructure 

calculations while open boundary conditions [97] are applied in transport calculations. 

6.2.2. The virtual crystal approximation (VCA) 

The virtual crystal approximation (VCA) treats the alloy as a pseudo-material. For 

AlxGa1-xAs alloy, a pseudo-material in which all anions are the same (here, As), as are all 

cations (here AlxGa1−x pseudo-atoms). The AlxGa1−xAs VCA parameters are calculated in 

the usual manner,  

( ) GaAsAlAsAlGaAs PxxPxP −+= 1)(   (6.1) 

where P is a tight-binding parameter (either onsite or nearest-neighbor). Thus, the VCA 

 

Figure 6.1. 22×3.3×3.3nm Al0.15Ga0.85As random alloy nanowire. Nanowire is 40 fcc unit 

cells long in x-direction and 6 fcc unit cells long in both y- and z-directions. 
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does not incorporate randomness at an atomistic level, unlike the supercell calculation 

which is used here for approximate bandstructure calculation. The VCA parameters for 

SixGe1-x alloy are calculated in the similar manner as  

( ) GeSiSiGe PxxPxP −+= 1)(  (6.2) 

6.2.3. Local bandstructure 

Figure 6.2(a) depicts a sliver cut through the center of the 40×4×4 Si0.8Ge0.2 nanowire, 

indicating the atomistically resolved disorder of the wire. This nanowire is made of 40 

1×4×4 slabs consisting of two anion-cation planes each. The so called local bandstructure 

of each slab is calculated assuming that each slab repeats infinitely along the nanowire. 

The bandstructure of the first slab is shown in Figure 6.2(b). Due to variations in atomic 

arrangements along the nanowire length one expects to see the different bandstructures 

for each slab. Figure 6.2(c) shows the conduction band-edge minima along the nanowire 

length. Fluctuations in the conduction band-edge minima cause reflections which lead to 

the formation of the localized states and peaks in transmission plots. 

 

Figure 6.2. (a) Two equivalent representations of a [100] Si0.8Ge0.2 40×4×4 nanowire. 

Small cell representation (dotted lines) in which a wire is made up of a smallest repeating 

unit i.e. 4 atomic planes thick slab. Supercell representation (solid lines) in which a 

repeating unit consists of integer number of small cells. (b) Conduction bandstructure of 

the first slab. ∆4 valleys are split into four separate bands due to alloy disorder. ∆2 valley 

bands are doubly degenerate. (c) Bandedge minima of lowest energy ∆4 and ∆2 valleys 

along length of the nanowire. 
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6.2.4. Bandstructure using zone-unfolding 

The translational symmetry is broken in semiconductor alloy nanowires due to random 

placement of atoms and inhomogeneous strain. Figure 6.2(a) shows such disorder in a 

sliver cut through the center of the 40×4×4 Si0.8Ge0.2 nanowire. Thus one runs into the 

problem of choosing a unit cell for the bandstructure calculation. Due to the loss of the 

translational symmetry the concept of bandstructure can only be considered in an 

approximate sense. One way to take alloy disorder into account is to work with longer 

supercells (Figure 6.2(a)) as basic repeating units. The nanowire bandstructure obtained 

from the supercell calculation is folded due to which effective masses and energies of the 

off-zone center valleys can not be determined. The one dimensional version of the zone-

unfolding method [42] described in chapter 5 is used to project out the approximate 

eigenspectrum of the nanowire supercell on the small cell Brillouin-Zone. The Projected 

probabilities are then used to extract the bandstructure of the alloy nanowire according 

the probability sum rule for band counting [22]. The small cell bandstructure thus 

obtained captures the effect of alloy disorder on the electronic structure. This 

approximate band structure is representative of the overall transport capabilities of the 

wire and correlates well to NEGF transport simulations. From this approximate 

dispersions, one can derive critical device parameters such as band gap and effective 

masses (along the transport direction), which can be used in an approximate top-of-the-

barrier-model to predict device performance [98]. 

6.2.5. Transmission using NEGF formalism 

The transmission coefficients through the nanowire are computed by using a hybrid 

method combining a recursive Non-Equilibrium Greens Function (NEGF) and a 

wavefunction method [97]. The scattering boundary method is used to calculate the open 

boundary conditions and the surface Green’s function from the bandstructure of a 

reservoir. In these calculations the semi-infinite source (drain) region is assumed to be 

identical to the first (last) slab of the nanowire. That is the same atomic disorder as the 

first (last) slab is assumed to repeat throughout the semi-infinite source (drain) region so 
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that the bandstructure of the source (drain) region is same as that of the first (last) slab. 

The tight-binding model in which atom and strain disorders are automatically 

incorporated by the atomistic nature of the Hamiltonian is used. 

6.3. Transport characteristics of AlGaAs random alloy nanowires 

AlGaAs nanowires have atom disorder due to random placement of Al atoms in GaAs 

lattice. Both GaAs and AlAs have almost same lattice constants hence AlGaAs nanowires 

do not have any inhomogeneous strain disorder. Atom disorder is automatically taken 

into account in supercell tight-binding calculations because of atomistic nature of the 

Hamiltonian. Figure 6.3(a) shows bandstructures of an Al0.15Ga0.85As random alloy 

nanowire calculated using conventional VCA method and unfolding 40×6×6 supercell 

eigenspectrum. The random alloy calculation results in significantly lower conduction 

band minima than VCA calculation. Transmission coefficients through the same 

nanowire supercell are shown in Figure 6.3(b). The VCA transmission shows an ideal 

 

Figure 6.3. (a) Conduction bands of the 40×6×6 Al0.15Ga0.85As nanowire as calculated 

with the VCA (small solid symbols) and as projected out of random-alloy supercell 

eigenstates (large, open symbols with error bars). Note in particular that the random alloy 

calculation gives a significantly lower minimum at k = 0. (b) Transmission 

characteristics. Dotted line: VCA nanowire; this nanowire is effectively a pure nanowire 

made of a pseudo-material, and shows step-like transmission. Solid line: random-alloy 

nanowire. 
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step like behavior, however, the transmission coefficient from random alloy calculations 

shows a noisy behavior as a consequence of random placement of Al atoms in AlGaAs 

nanowire. Features in transmission are related to the approximate bandstructure and vice 

versa. Each band corresponds to two transmission channels for up and down spins. The 

lowest approximate band at k=0 produces a   transmission turn on near 1.92 eV. More 

channels turn on at about 1.97 eV due to approximate bands near the Brillouin zone 

boundary π/a0. 

Figure 6.4(a) shows the local conduction band minima for each slab (1×6×6 cell) and a 

density of states (DOS) of the same 40×6×6 AlGaAs nanowire. The transmission spike at 

about 1.92 eV in Figure 6.4(b) corresponds to a localized density of states seen in Figure 

6.4(a). In summary, the approximate bandstructures from random alloy supercell 

calculations and atomistic NEGF transport calculations are complimentary and mutually 

supporting. Both methods provide better insight into the disordered nanowire device 

physics [23]. 

6.4. Transport characteristics of SiGe nanowires 

The free standing square cross section Si0.8Ge0.2 alloy nanowires studied here have two 

types of disorders: random atom disorder due to alloying and inhomogeneous strain 

 

Figure 6.4. (a) Logarithm of the DOS (shaded region) neglecting spin, for the random-

alloy nanowire superimposed over the wire conduction-band edge profile (thick line). (b) 

Transmission coefficient. The injected state is spin-up. The concentration of the DOS 

corresponds to the resonance peak in the transmission coefficient. 
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disorder due to different Si-Si, Ge-Ge, and Si-Ge bond lengths.  Square nanowire cross-

sections ranging from 2 to 7nm are simulated to study the effect of disorder. All 

electronic structure and transport calculations have been done in sp
3
d

5
s

*
 tight-binding 

model. Relaxed wire geometries are calculated in NEMO-3D [39, 40, 77] from Valance 

Force Field approach [78]. The bulk and strain Si and Ge parameters are taken from [76] 

and [79]. 

The smaller wire (Figure 6.5) has the dimensions of 40×6×6 (22.3×3.3×3.3nm) i.e. it 

is constructed from 40 1×6×6 slabs along [100] crystallographic direction. Electronic 

structure of this nanowire is calculated with NEMO-3D in 3 different formulations in 

Figure 6.5(a). The first approach is the so called local bandstructure approach in which 

the bandstructure of each slab is calculated assuming that this slab repeats infinitely along 

the nanowire. Due to fluctuations in atomic arrangements along the nanowire length one 

expects to see the different bandstructures for each slab as shown in Figure 6.5(a). This 

local bandstructure approach does not deliver a meaningful overall band edge of the wire 

or a meaningful effective mass. The second approach is the conventional VCA approach 

which averages the atom potentials according to the atomic composition of the material. 

This results in a homogeneous wire without any disorder. The bandstructure might then 

as well be represented by a single slab. In the third approach eigenspectrum of the whole 

 

Figure 6.5. (a) Bandstructures of 40×6×6 Si0.8Ge0.2 alloy nanowire in local bandstructure 

(grey), VCA (black) and zone-unfolding (blue) formulations. (b) Transmission 

coefficient.  Steps in transmission are identified as resulting from new bands appearing in 

projected bandstructure. (c) Local band-edge of lowest energy ∆4 and ∆2 valley minima 

along wire length and density of states (on a log scale). Peaks in the transmission arising 

from ∆4 valley localized states have dominant DOS contributions coming from 

|py|
2
+|pz|

2
 while ∆2 valley peaks have dominant |px|

2
 contribution. 
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nanowire supercell is unfolded to obtain the bandstructure of the best translationally 

symmetric nanowire small cell.  

Figure 6.5(b) shows the transmission coefficient through this wire computed using 

coupled open boundary conditions and atomistic NEGF approach. Transmission 

coefficient shows the noisy behavior because of random SiGe alloy disorder and 

inhomogeneous strain disorder in the wire, which cause reflections along the nanowire 

direction. Steps in the transmission plot can be roughly related to the unfolded 

bandstructure (Figure 6.5(a)) from supercell calculations. Four separate ∆4 valley bands 

appear as a single band with a finite energy spread in the projected bandstructure. These 

four bands turn on near 1.44 eV which corresponds to the conduction band transmission 

turn on. Two ∆2 valley bands turn on near 1.47 eV which leads to a step in the 

transmission. Four more channels due to higher ∆4 valley sub-bands turn on near 1.57eV. 

These transmission features can not be related to the conventional VCA bandstructure 

shown in Figure 6.5(a). 

Peaks in the transmission plot can be related to the resonant transport through 

localized states in the wire. Local band-edge plots of the lowest ∆4 and ∆2 valley minima 

are shown in Figure 6.5(c). Variation of band-edges along the nanowire length cause 

reflections which lead to the formation of the localized states and peaks in transmission 

as seen in the density of states and transmission plots. Note that the presence of the peaks 

in the transmission can not be predicted from the unfolded bandstructure because the 

 

Figure 6.6. (a) Bandstructures of 60×13×13 Si0.8Ge0.2 alloy nanowire in local 

bandstructure (grey), VCA (black) and zone-unfolding (blue) formulations. (b) 

Transmission characteristics of the wire. (c) Local band-edge of lowest energy ∆4 and ∆2 

valley minima along wire length and density of states (on a log scale). Transport 

characteristics show migration towards ideal 1D like transport. 
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unfolded bandstructure is an eigenspectrum of the best possible translationally symmetric 

Hamiltonian through the nanowire. 

As the nanowire cross section increases random distribution of Ge atoms is expected 

to have less influence on the transport characteristic of the SiGe nanowires. The local 

bandstructure variations along the length of the nanowire decrease which reduce the 

number of localized states. The bandstructure and the transmission characteristics of a 

60×13×13 (32.5×7.1×7.1nm) Si0.8Ge0.2 wire are shown in Figure 6.6. Error bars on the 

approximate bandstructure are smaller compared to smaller cross section nanowire of 

Figure 6.5. The transmission coefficient also shows smoother step like behavior 

compared to the smaller nanowire. The transmission behavior of the nanowire can not be 

predicted from the VCA bandstructure because the transmission turns on at 1.28eV 

before the first VCA band which only starts at 1.29eV. 

It is important to point out here that the bandstructure calculation and the transport 

calculation use different boundary conditions. In the bandstructure calculation the wire is 

repeated infinitely with disorder, while the transport calculation assumes a homogeneous 

ordered alloy at the band edges as injectors. Therefore transmission turn on occurs at 

higher energies than predicted by the unfolded bandstructure because the local 

conduction band minima near the left reservoir (also the source of injected waves) are 

higher in energy which prevent propagation waves with energies lower than 1.28eV. 

Extracted band parameters such as conduction band minima, effective masses and 

average band uncertainties are plotted as a function of the nanowire size in Figure 6.7. 

The approximate bandstructure predicts a smaller ∆2 band minimum than the VCA 

 

Figure 6.7. (a) Direct (∆4 valleys) and indirect (∆2 valleys) conduction band minima 

obtained form VCA and zone-unfolded bandstructures. (b) Effective masses of ∆4 and ∆2 

valleys. (c) Energy uncertainties of ∆4 and ∆2 bands. 
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similar to AlGaAs nanowires [23] studied in section 3 and AlGaAs bulk [22].  The direct 

(∆4) and indirect (∆2) valley-band gaps show an interesting cross-over for wires with sizes 

larger than 4nm, which will significantly increase the density of states at the conduction 

band edge and influence device performance; the VCA assumption does not result in 

such a cross-over. The VCA and unfolded bandstructure effective masses are slightly 

different (Figure 6.7(b)). Unfolded bandstructure effective masses compare closely to the 

bulk Si0.8Ge0.2 Γ- and Χ-valley effective masses (0.92·m0 and 0.19·m0 respectively) for 

nanowires with larger diameters. 

Since the unfolded supercell bandstructure is approximate it has an error bar 

associated with each energy and wavevector in the dispersion. These energy uncertainties 

can be used to calculate the scattering time of the state according to the prescription of 

[92]. As the nanowire cross-section increases the error bars become smaller (Figure 

6.7(c)) and the system becomes more bulk like [25]. 

6.5. Conclusion 

The electronic structure and the transport characteristics of random AlGaAs and SiGe 

alloy nanowires indicate the critical importance of the treatment of atomistic disorder. 

Typical approaches of a smoothed out material (VCA) or considerations of bandstructure 

in just individual slices clearly fail to represent the disordered nanowire physics 

especially for very narrow cross section nanowires. Unfolded bandstructures from zone-

unfolding of the supercell eigenspectrum and transmission characteristics combined are 

found to explain the relevant physics in these disordered systems. As the nanowire cross-

section increases the transport behavior migrates from resonance dominated regime to 

smoother ideal 1D transport regime. 
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7.  MULTISCALE MODELING AND PERFORMANCE ANALYSIS 

OF ULTRA-SCALED INAS QWFETS 

7.1. Introduction 

As the Si CMOS technology approaches the end of the ITRS roadmap, the 

semiconductor industry faces a formidable challenge to continue transistor scaling 

according to Moore’s law [1]. Several industry and academic research groups have 

recently demonstrated high mobility III-V quantum well field effect transistors 

(QWFETs) that provide the possibility of achieving high speed operation at lower supply 

voltage for applications beyond Si CMOS technology [6-11, 99, 100]. In particular, 

InGaAs and InAs channel QWFETs show a great promise as their superior performance 

compared to Si MOSFETs and heterogenous integration on Si substrate have already 

been demonstrated [7, 8, 11]. 

Classical approximations such as the drift-diffusion model cannot capture the 

quantization of the energy levels resulting from the strong confinemnt of the electrons in 

a quantum well  and the tunneling currents in nano-scale devices.  To address these 

limitations quantum mechanical  approaches  based on the effective mass approximation 

[101]  and on the  tight-binding method [62] have already been proposed. While both 

approaches agree well with experimental data above threshold,  they are not able to 

reproduce the OFF-current region where gate leakage dominates. The absence of a real 

dielectric layer between the channel and the gate contact, as in MOSFETs, makes the III-

V QWFETs very sensitive to the gate leakage currents.  Here, we use a two-dimensional 

(2-D), real-space Schrödinger-Poisson solver based on the effective mass approximation 

and accounting for gate leakage currents [102] to investigate the logic performances of 

InAs QWFETs. The transport and confinement effective masses are extracted from an 

atomistic sp
3
d
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*
 tight-binding calculation that includes strain and non-parabolic effects. 
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Strain is computed in the system with a Valence-Force-Field method [39, 40, 77]. The 

tight-binding parameters [80] have been validated against experimentally very different 

structures such as strained InAs quantum dots [90] and QWFETs [62].  

This chapter is organized as follows: In section 7.2, we describe the 2-D real-space 

Schrödinger-Poisson solver based on the effective mass approximation, the tight-binding 

technique used to calculate the channel effective masses, and the Newton scheme used to 

calibrate the simulator to the experimental data. The approach is applied to calibrate the 

simulator to the experimental data on InAs QWFETs with gate lengths ranging from 30 

to 50 nm, where a good quantitative match is obtained in both the OFF- and ON-state 

current regions. In section 7.3, the calibrated simulator is subsequently used to investigate 

the logic performance optimizations for the 20 nm InAs QWFET. It is shown that the best 

performance is achieved in thin InAs channel devices by reducing the insulator thickness 

and maintaining a flat gate geometry to improve the gate control and increasing the gate 

metal work function to suppress the gate leakage current. Finally, we present the 

conclusion and outlook of our work in section 7.4. 

7.2. Approach 

A three step multiscale modeling approach is adopted. First the strain is computed in 

an atomistic valence-force-field, secondly an atomistic tight-binding method is used to 

compute the electron dispersion in the quantum well channel and the corresponding 

electron effective masses. In a third step these effective masses are used in an effective 

mass based quantum transport simulator to obtain current-voltage characteristics of a 

QWFET which includes quantization effects and three-terminal effects such as gate 

tunneling. 

7.2.1. Device structure 

The InAs channel QWFET [8] is schematically shown in Figure 7.1. The channel 

region is composed of a 10 nm composite In0.53Ga0.47As/InAs/In0.53Ga0.47As (2/3/5 nm, 

from top to bottom) multi-quantum-well grown on 500 nm thick In0.52Al0.48As layer 
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lattice matched to InP substrate. The In0.52Al0.48As layer between the multi-quantum-well 

channel and the gate contact acts as an insulator. The channel conduction electrons are 

supplied by the Si δ-doped layer placed just below the gate. The source/drain contacts are 

located on the top of the device almost 1 µm away from the gate contact. To reduce the 

computational burden we restrict the intrinsic device simulation domain to the gate 

contact and an extension Lside of 50 nm on each side. The extrinsic source/drain contacts 

are modeled via two series resistances RS and RD
 
[103]. Due to this idealized contact 

assumption the phenomena such as “source starvation” that arise due to non-equilibrium 

contacts are not included in our simulations [104]. Two gate contact geometries, curved 

and flat which are a result of different gate-stack fabrication processes are considered. 

Edges of the curved gate contact are quarter circles with the radius of curvature equal to 

tInAlAs-tins, where, tInAlAs is the total thickness of InAlAs layer and and tins is the thickness 

of InAlAs layer between the gate contact and multi-quantum-well channel. Such curved 

gate contact geometries are a result of isotropic chemical etching techniques [8, 9]. 

      

Figure 7.1. Schematic view of the InAs QWFET. The channel region is composed of a 10 

nm InGaAs/InAs/InGaAs multi-quantum-well grown on a thick In0.52Al0.48As layer 

lattice-matched to the InP substrate (not shown). The In0.52Al0.48As layer between the gate 

contact and the multi-quantum-well-channel acts as an insulator. The black dash dotted 

line represents the Si δ-doped layer of concentration ND = 3×10
12

 cm
-2

. The dashed black 

rectangle encloses the quantum transport simulation domain, which is restricted to the 

gate contact region and the extension of Lside = 50 nm on source/drain sides. White 

arrows depict the direction of electron injection from contacts into the simulation domain. 

The source/drain extensions beyond virtual contacts are modeled by two series 

resistances RS and RD, respectively. Two gate contact geometries curved (black) and flat 

(dotted black) are investigated. 
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7.2.2. Channel effective masses 

An accurate determination of the channel effective mass is crucial in devices subject to 

strain and strong material non-parabolicities. The effective mass determines channel 

properties such as injection velocity, source to drain tunneling, quantum capacitance, and 

density of states [98]. Effective masses are extracted from the sp
3
d

5
s

*
 tight-binding 

bandstructure of the multi-quantum-well channel calculated using the general purpose 

electronic structure simulator NEMO-3D [39, 40, 77]. 

The compositions of InGaAs and InAlAs layers are chosen such that they are lattice 

matched to the InP substrate which has a lattice constant aInP = 0.58688 nm. The InP 

lattice constant is smaller than the lattice constant of InAs (aInAs = 0.60583 nm) which 

causes 3.2 % lattice mismatch and a biaxial compressive strain at the InAs-InGaAs 

      

Figure 7.2. Strain modeling of the channel. InAs QWFET is fabricated in the 

heterostructure shown in (a). All layers except InAs are lattice matched to the InP 

substrate (not shown). The in-plane dimensions of the simulation domain are Lx = Lz = 

3.5 nm, which are sufficiently large to model the random placement of cations in the 

InGaAs and InAlAs layers. The relaxed atom positions are calculated from the valance-

force-field method. As shown in Figure (b), the in-plane lattice constant (ax, az) is smaller 

than the unstrained lattice constant of InAs. Due to the resulting biaxial compressive 

strain the lattice constant along growth direction (ay) expands in the InAs quantum well 

region. The electronic structure calculation domain (enclosed in dotted black rectangle) 

has the same lateral dimensions as the strain relaxation domain and it includes 2 nm 

InAlAs around the InGaAs/InAs/InGaAs multi-quantum-well to capture the effect of 

wavefunction leakage into the InAlAs layers. 
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interface. The valance-force-field (VFF) method with Keating potential is used to 

compute the relaxed atom positions in the strained heterostructure [39, 77, 78]. The in-

plane dimensions of the strain relaxation domain are Lx = Lz = 3.5 nm, which are 

sufficiently large to model the random placement of cations in InGaAs and InAlAs [40]. 

We remind the reader here that InGaAs shows a bimodal In-As and Ga-As bond 

distribution [105] which is quite important in quantum wells [90]. 11 nm thick InAlAs 

layer above and 40 nm thick InAlAs layer below the multi-quantum-well channel are 

included and InP lattice constant is imposed as the boundary condition at the bottom 

(Figure 7.2(a)).  

      

Figure 7.3. (a) Bandstructure (at kz=0) obtained from the sp
3
d

5
s

*
 tight-binding calculation 

on the electronic structure domain shown in Figure 7.2(a). The effect of random 

placement of cations in InGaAs and InAlAs layers, strain, and quantization due to band 

discontinuities at various heterostructure interfaces are included. The transport effective 

mass is extracted by fitting a parabola to the lowest conduction sub-band. The 

confinement effective mass is fitted to replicate the energy difference between first two 

sub-bands in the tight-binding bandstructure. (b) The transport and confinement effective 

masses extracted from the tight-binding bandstructure are significantly higher than the 

bulk InAs effective mass, m*InAs = 0.023·m0. The effective mass is higher in thinner InAs 

quantum wells due to stronger confinement and a high degree of InAs non-parabolicity. 
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The lattice mismatch at the InAs/InGaAs interface causes biaxial compressive strain in 

InAs quantum well. The in-plane lattice constant along the center of InAs quantum well 

is labeled as (ax,az) in Figure 7.2(b). Its value is same as the lattice constant of InP 

substrate. This causes in-plane biaxial compressive strain of ε|| = ax/aInAs - 1 = -0.031 in 

InAs quantum well. The lattice constant along the orthogonal direction (ay) extends to 

0.6207 nm (from bulk value of aInAs = 0.60583 nm) in the InAs quantum well region 

which corresponds to orthogonal strain of ε⊥ = 0.025. Fluctuations in the lattice constant 

in InGaAs and InAlAs alloy regions arise from the local bond length variation due to 

random placement of cations. 

The electronic structure calculation domain (dotted black rectangle in Figure 7.2(a)) is 

smaller than the strain relaxation domain. Only 2 nm thick InAlAs layers on the top and 

the bottom of the multi-quantum-well channel are included because the wavefunction 

leakage beyond this domain is negligible. The sp
3
d

5
s

*
 tight-binding bandstructure of the 

multi-quantum-well with 5 nm thick InAs layer is shown in Figure 7.3(a). The effect of 

strain and quantization due to band discontinuities at InAs/InGaAs and InGaAs/InAlAs 

heterostructure interfaces are automatically included due to atomistic nature of the tight-

binding Hamiltonian. The tight-binding parameters [80] were designed as transferable 

bulk parameters and have previously been benchmarked against complex experimental 

devices such as InAs/InGaAs/InAlAs quantum dots [90] and InAs QWFETs [62]. The 

transport effective mass is extracted by fitting a parabola to the lowest conduction sub-

band. The confinement effective mass is fitted to replicate the energy difference between 

first two sub-bands in the tight-binding bandstructure. The transport and confinement 

effective masses in the InAs quantum well are raised from their bulk value (m*InAs = 

0.023·m0) due to quantum confinement provided by InGaAs and InAlAs buffer layers. 

The effective masses become heavier as the quantum well thickness is reduced indicating 

a strong non-parabolic dispersion in InAs. 
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7.2.3. 2-D Schrödinger-Poisson solver 

Real-space Schrödinger and Poisson equations are solved self-consistently using the 

effective mass approximation and a 2-D finite-difference grid [102]. The grid is uniform 

and spacing along x and y-directions are ∆x = 0.25 nm and ∆y = 0.2 nm respectively. The 

device and the gate contact are treated as a single entity on a quantum mechanical level. 

Neumann boundary conditions are applied everywhere to the Poisson domain except at 

the gate contact where Dirichlet boundary conditions are applied. In the ballistic transport 

model used here, electrons are injected into the device at different wave-vector and 

energy values and the resulting contributions are summed up to give carrier and current 

densities. 

7.2.4. Influence of the gate shape 

The gate contact geometry plays an important role in determining the gate leakage 

current. The shape of the gate contact varies with the fabrication technique used to thin 

down the gate insulator before deposition of the metal gate stack. Anisotropic etching and 

     

Figure 7.4. Intrinsic Id-Vgs and Ig-Vgs characteristics of the Lg = 51nm InAs QWFETs with 

flat (dashed lines) and curved (solid lines) gate-insulator interface. Both devices perform 

similarly in the ON-state regime, however, the flat gate device exhibits higher gate-

leakage current. Flat gate device exhibits superior gate control compared to the curved 

gate device. The flat gate device has subthreshold slope and DIBL of SS = 83.5 mV/dec, 

DIBL = 85.6 mV/dec while the curved gate device shows SS = 89.7 mV/dec, DIBL = 

96.2 mV/dec. 
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metal gate sinking ideally leads to a flat gate contact while isotropic etching leads to a 

curved gate contact (Figure 7.1). Flat or curved gate contact geometries act differently on 

the current magnitude as illustrated in Figure 7.4. Both devices perform similarly in the 

high Vgs regime, however, their drain currents differ significantly at low Vgs. The flat gate 

leads to lower subthreshold slope SS = 83.5 mV/dec compared to the curved gate device 

with SS = 89.7 mV/dec but has high gate leakage by a factor of 2. 

The difference between drain currents at low Vgs is a result of gate leakage (Ig) 

suppression in the curved gate contact device. The gate leakage current is concentrated at 

the edges due to lower tunneling barriers at the edges compared to the central region of 

the gate contact [63]. The edge-leakage mechanism of current crowding at the edges of 

the gate contact is explained in Figure 7.5. The current distribution in the gate leakage 

regime for both flat and curved gate contact devices is shown Figure 7.6. The curved gate 

device has a larger insulator thickness at the edges of the gate contact which leads to 

suppression of gate leakage current. Thus, an accurate description of the gate contact is 

crucial to reproduce the experimental Id-Vgs, especially in the subthreshold regime. A 

 
Figure 7.5. Gate leakage mechanism: (a) Band diagram along the vertical lines through 

the center and the drain side edge of the gate contact of a QWFET with Lg = 51 nm and a 

flat gate contact. As identified by the gray arrow, the gate leakage current arises due to 

the electron tunneling through the InAlAs insulator and InGaAs barrier layers between 

the gate contact and the InAs channel. Electrons at the edges of the gate contact 

encounter only the InAlAs tunnel barrier while the electrons at the center encounter an 

additional InGaAs tunnel barrier. Due to this gate-leakage current is concentrated at the 

edges of the gate contact. The high gate leakage paths are identified by the gray shaded 

rectangles in the band diagram along the channel direction in Figure (b). Bias conditions 

are Vgs = -0.4 V and Vds = 0.5 V. 
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curved gate geometry which resembles to the experimental devices is used in the 

benchmarking procedure. 

7.2.5. Benchmarking with experimental data 

The device dimensions and material parameter values reported in the experiments [8] 

are only accurate within certain measurement errors. To calibrate the simulator to the 

experimental data [8] we use a Levenberg-Marquardt curve fitting scheme [106] to 

minimize the squared difference between simulated and experimentally measured drain 

current. The gate leakage and the subthreshold (low Vgs) bias regime is chosen for 

optimization because transport in this regime is very sensitive to the device dimensions 

and material parameters as compared to the high gate bias regime (Figure 7.7). The drain 

current is parameterized as Id(Lg,tins,mins,mbuf,ФM). The notations used here are:  Lg – gate 

      

Figure 7.6. Influence of the gate geometry on the OFF-state current distribution - 

comparison of flat and curved gates. Same bias conditions (Vgs = -0.4 V and Vds = 0.5 V) 

are used in both simulations. The same color scheme is used in both contour plots and the 

magnitude of the current decreases from dark to light colors. OFF-state current is 

dominated by the gate leakage.  The electron tunneling from the gate contact into the 

channel gives rise to the leakage. The gate current is concentrated at the edges of the gate 

contact due to smaller tunneling barriers at the edges [63]. As seen in Figures (a) and (c), 

the leakage in the curved gate device is suppressed because of the thicker insulator layer 

at the edges compared to the flat gate device. Figures (b) and (d) show vector plots of 

current flow in the flat and the curved gate contact device respectively. 
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length, tins – thickness of InAlAs insulator layer between the multi-quantum-well channel 

and the gate contact, mins,mbuf – effective masses of InAlAs and InGaAs respectively, and 

ФM – gate metal work function. The thickness of the InAs channel and the InGaAs buffer 

are not included in the fitting procedure because these are determined by the Molecular 

beam epitaxy (MBE) growth which is a precise atomic layer deposition technique. Lg and 

tins, however, are determined by lithography and wet chemical etching techniques which 

are prone to process variability. Likewise ФM may vary slightly due to alloy compositions 

and subsequent high temperature fabrication processes after gate stack deposition. 

Effective masses of InGaAs and InAlAs (mbuf and mins respectively) are included in the 

fitting procedure as they affect the electron tunneling probability from gate into the InAs 

channel which determines the gate leakage current. The electron affinity of InAs channel 

(χ = 4.9 eV [107]) and the conduction band offsets at the heterostructure interfaces 

(∆EC,InGaAs/InAs = 0.4 eV and ∆EC,InGaAs/InAlAs = 0.5 eV [107, 108]) are not included in the 

variable parameter set because drain current is less sensitive to them and their values are 

well known from experimental measurements. 

      

Figure 7.7. Current distribution in Lg = 51 nm QWFET at (a) low gate bias (Vgs = -0.4 V 

and Vds = 0.5 V) and (b) high gate bias (Vgs = 0.3 V and Vds = 0.5 V) regimes. 
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The fitting procedure is summarized in the flow chart in Figure 7.8. In each iteration, 

the subthreshold Id-Vgs of the reference device is computed and compared with the 

experimental data. If the deviation from the experimental data is larger than the tolerance, 

then the next guess to the parameter vector is computed by using the Levenberg-

Marquardt scheme [106]. A closed form expression for the drain current in terms of the 

fitting parameters does not exist, hence, partial derivatives in the Jacobian matrix which 

are required by the iteration scheme are computed numerically. To compute a partial 

        

Figure 7.8. The flow chart of the parameter fitting procedure. To match the experimental 

Id-Vgs data, the drain current is parameterized as ( )
Mbufinsinsgd

mmtLI Φ,,,, . Here, Lg –   

gate length, tins –  thickness of InAlAs between multi-quantum-well channel and the 

metal gate, mins –  effective mass of InAlAs, mbuf –  effective mass of InGaAs buffer, and 

ФM –  metal work function. The simulated drain current in the leakage and the 

subthreshold region is fitted to the experimental data using Levenberg-Marquardt curve 

fitting scheme. 
gLi

d
I

δ,
 is the drain current of a device with the same parameters as the 

reference device except the gate length is changed to g
i
g LL δ+ . The numerical derivative 

of the drain curren with respect to Lg is given by 
g

i
d
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d

g
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L

II

L

I
g

δ

δ
−

=
∂

∂
,

. A similar 

procedure is used to compute all partial derivates in the Jacobian matrix. 
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derivative with respect to a parameter, Id-Vgs characteristics of a new device are simulated 

by slightly changing this parameter and keeping all other parameters same as the 

reference device. For example, the partial derivative with respect to the gate length is 

g

i
d

Li

d

g

d

L

II

L

I
g

δ

δ
−

=
∂

∂
,

 where, i  – iteration count, i
dI  – drain current of the reference device 

parameterized as ( )i
M

i
buf

i
ins

i
ins

i
g

i
d mmtLI Φ,,,, , gLδ  – change in the gate length of a new device 

from the reference device, and gLi

d
I

δ,
 – drain current of a new device parameterized as 

( )i
M

i
buf

i
ins

i
insg

i
g

Li

d mmtLLI g Φ+ ,,,,
,

δ
δ . The same procedure is repeated for calculating partial 

derivatives with respect to tins, mins, mbuf, and ФM. The parameter shifts used to compute 

the numerical derivatives are (δLg, δtins, δmins, δmbuf, δФM) = (0.5 nm, 0.2 nm, 0.005·m0, 

0.005·m0, 0.05 eV), where m0 is the free electron mass. Each Id-Vgs calculation requires 

typically 4 hours on 40 cores on a 2.5 GHz quad-core AMD 2380 processor. 

The results of the parameter fitting for devices with gate lengths ranging from 30 to 50 

nm are summarized in the table of Figure 7.9. Converged parameter values are close to 

the experimentally reported values which are used as an initial guess [8]. The effective 

masses are not allowed to vary among different devices because all devices are fabricated 

on similar heterostructure stacks. Converged effective mass values are within reported 

ranges in the literature which are 0.038·m0 – 0.044·m0 for In0.53Ga0.47As and 0.070·m0 – 

0.083·m0 for In0.52Al0.48As [107, 108]. Converged values of gate length and insulator 

thickness are within the expected process variability of the wet chemical etching step 

used to thin down the InAlAs insulator prior to gate metal deposition [8]. InAlAs 

      Parameter Initial Final parameter set 

  30 nm 40 nm 50 nm 

Lg [nm] 30, 40, 50 34.0 42 51.25 

t
ins

 [nm] 4 3.6 3.8 4.0 

m*
ins

 [m0] 0.075 0.0783 0.0783 0.0783 

m*
buf

 [m0] 0.041 0.0430 0.0430 0.0430 

Φ
M

 [eV] 4.7 4.6597 4.693 4.6779 

Figure 7.9. Device dimensions and material parameters obtained from the fitting 

procedure. Typically convergence is obtained in less than 15 iterations. Here, m0 is free 

electron effective mass. 
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insulator thickness and metal work function values automatically adjust to match 

different magnitude of gate leakage current in each device (Figure 7.9). Slightly different 

values of the gate metal work function are justified because the gate metal forms complex 

compounds at the semiconductor interface and the extent of this reaction is slightly 

different for each device. 

      

Figure 7.10. Comparison between the experimental [8] and simulated Id-Vgs 

characteristics of (a) 30 nm, (b) 40 nm, and (c) 50 nm and Id-Vds characteristics (d) 30 

nm, (e) 40 nm, and (f) 50 nm gate length InAs QWFETs. Parameters of Figure 7.9 are 

used in simulations. Simulated devices have curved gate contacts, which resemble closely 

to the gate contact geometries resulting from the wet chemical etching step in the gate 

stack fabrication process. The experimentally measured values of source/drain series 

resistance RS = 0.21 Ω·m and RD = 0.23 Ω·m are used in simulations. Deviation between 

simulated and experimental Id-Vgs is larger for high bias voltages where scattering may 

play an important role. 

 



 

 

 

82 

The experimental transfer characteristics Id-Vgs and output characteristics Id-Vds are 

compared to simulation results in Figure 7.10. The parameters given in Figure 7.9 are 

used in the simulations. The source and drain series resistance values are RS = 0.21 Ω·m 

and RD = 0.23 Ω·m respectively as determined in the experiment [8]. The transport and 

confinement effective masses of InAs channel are m*conf = 0.049·m0 and m*trans = 

0.096·m0 respectively (Figure 7.3). A very good quantitative agreement is enabled by 

consideration of a curved gate contact geometry, accurate estimation of channel effective 

masses, and parameter adjustments listed in Figure 7.9. Deviations in Id-Vds are larger at 

higher biases because scattering may play an important role in these biasing conditions. 

The performance parameters calculated from experimental and simulated Id-Vgs in Figure 

7.10 show a reasonable agreement as shown in the table of Figure 7.11. 

7.3. Ultra-Scaled QWFET Design Exploration 

After benchmarking our simulator to the “large” gate length experimental devices we 

explore the performance of a 20 nm gate length device. Since a flat gate contact provides 

superior gate control of the channel compared to a curved contact (Figure 7.4), we use 

this geometry for a 20 nm gate length device and propose that it should be used in ultra-

scaled devices. A flat gate contact can be “easily” realised by replacing isotropic wet 

chemical etching step used to thin down the InAlAs insulator layer by anisotropic etching 

or by a metal gate sinking technique.  

Here, we explore the effects of InAlAs insulator thickness, gate metal work function, 

and InAs channel thickness on the transistor logic performance. The effective masses of 

 

L
g
 [nm] S [mV/dec] DIBL [mV/V] ION/IOFF v

inj
 [cm/s] 

Expt. 106.9 168.9 0.47×10
3
  30 

Sim. 105.2 144.7 0.61×10
3
 3.0035x10

7
 

Expt. 90.9 126.0 1.38×10
3
  40 

Sim. 89.4 99.3 1.86×10
3
 3.1127x10

7
 

Expt. 85.1 97.2 1.80×10
3
  50 

Sim. 89.2 90.8 1.85×10
3
 3.1771x10

7
 

Figure 7.11. Device performance parameters from simulated and experimental [8] 

devices. The threshold voltage (VT) is defined as the Vgs that yields Id = 1 µA/µm. 
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the InAs channel, In0.53Ga0.47As and In0.52Al0.48As are taken from Figure 7.3 and Figure 

7.9 respectively. The conduction band offsets used in the simulations are ∆EC,InGaAs/InAs = 

0.4 eV and ∆EC,InGaAs/InAlAs = 0.5 eV and the electron affinity of InAs channel is χ = 4.9 

eV [107, 108]. The source and the drain resistance values of RS = 0.21 Ω·m and RD = 

0.23 Ω·m which are same as those for “large” gate length devices are used. In the device 

performance analysis, the threshold voltage (VT) is determined from linear extrapolation 

of Id-Vgs at the peak transconductance to zero Id (maximum-gm method) [109]. The ON-

state is defined to be Vg = VT + 2VDD/3, Vd = VDD, Vs = 0 while the OFF-state is defined 

to be Vg = VT - VDD/3, Vd = VDD, Vs = 0, where VDD = 0.5 V[3]. The capacitances are 

defined as (i) the gate capacitance: Cg = dQs/dVgs, (ii) the insulator capacitance: Cins = 

εins/tins, and (iii) the inversion layer capacitance: Cinv = dQs/dψs [110]. Here, Qs is the 

aerial charge density in the InGaAs/InAs/InGaAs composite channel, εins is the dielectric 

constant of InAlAs insulator, and ψs is the potential at the interface between the InAlAs 

insulator and the InGaAs/InAs/InGaAs composite channel. 

7.3.1. Insulator Thickness 

The effect of InAlAs insulator thickness (tins) is depicted in Figure 7.12 and Figure 

7.13. Performance metrics SS, DIBL, and ION/IOFF ratio of a device with the gate metal 

      

Figure 7.12. Transfer characteristics of a 20 nm InAs QWFET for InAlAs insulator 

thicknesses of 3.0, 3.4, 4.0, 4.4 and 5.0 nm. The gate leakage increases as the insulator 

thickness is reduced. Device dimensions are same as in Figure 7.1 with Lg = 20 nm. 

Metal work function is ΦM = 4.7 eV. 
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work function ФM = 4.7 eV improve as the insulator thickness is scaled until 3.4 nm 

because of stronger gate control of the channel in thinner insulator devices. However, due 

to excessive gate leakage, SS and ION/IOFF ratio of this device degrade when the insulator 

thickness is scaled below 3.4 nm. This degradation can be controlled by increasing ΦM to 

5.1 eV, which increases the tunneling barrier heights between the gate and the InAs 

channel, reduces the gate leakage, and therefore improves SS and ION/IOFF ratio, even with 

an InAlAs layer scaled down to 3 nm (Figure 7.13). 

The gate capacitance (Cg) of InAs QWFETs is significantly smaller than the InAlAs 

insulator capacitance (Cinv) due to small inversion layer capacitance (Cinv) of InAs 

channel. The small Cinv is a result of the low effective mass and the low density of states 

in the channel. Compared to Cins, Cg is significantly suppressed due to small Cinv of  the 

InGaAs/InAs/InGaAs multi-quantum-well channel and the improvement in Cg by down 

scaling the InAlAs insulator thickness is almost negligible (Figure 7.13(c)).  

7.3.2. Gate metal work function 

The Id-Vgs and Ig-Vgs characteristics of devices with ФM of 4.7 and 5.1 eV are shown in 

Figure 7.14. Both devices have very thin InAlAs insulator (tins = 3 nm). Threshold 

voltages of the ФM = 4.7 eV device and the ФM = 5.1 eV device are -0.11 V and 0.29 V 

respectively. The positive shift in the threshold voltage is equal to the work function 

difference ∆ФM = 0.4 eV. desirable for CMOS logic applications. The positive threshold 

voltage value or the enhancement mode operation of the n-type FET is highly desirable 

for CMOS logic applications [7, 11]. In addition to a positive threshold voltage, the 

device with ФM = 5.1 eV shows 100× smaller gate leakage current (Ig) compared to a 

device with ФM = 4.7 eV resulting in much better logic performance. Suppression of the 

gate leakage results in the reduction of SS from 118 mV/dec for ФM = 4.7 eV device to 

91 mV/dec for ФM = 5.1 eV device (Figure 7.13. 10(a)). The ON current for both devices 

is almost the same, however, as a result of the steeper SS the OFF current of a device with 

ФM = 5.1 eV is reduced by a factor of 7 compared to a device with ФM = 4.7 eV which 

results in 7 times higher ION/IOFF ratio (Figure 7.13(b)) in a device with ФM = 5.1 eV.  
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The mechanism of the gate leakage suppression in high ФM devices is explained in 

Figure 7.15. In the Schottky gate FET considered here, the gate leakage current arises due 

      

Figure 7.13. InAlAs insulator thickness (tins) scaling: (a,b) For metal work function ΦM = 

4.7 eV, the subthreshold slope (SS) and ION/IOFF ratio improves as tins decreases till 3.4 

nm. Devices with thinner insulator suffer from excessive gate leakage which leads to high 

SS and low ION/IOFF. This degradation can be controlled by increasing the ΦM to 5.1 eV. 

DIBL improves as tins is reduced. (c) Gate capacitance (Cg) and inversion layer 

capacitance (Cinv) as a function of gate overdrive (Vgs-VT) for devices with fixed tInAs = 5 

nm and variable tins. Cinv is much lower than the insulator capacitance (Cins), due to which 

overall gate capacitance Cg is significantly reduced. Device dimensions are same as in 

Figure 7.1 with Lg = 20 nm. Metal work function is ΦM = 4.7 eV. 
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to the electron tunneling from the gate contact into the InAs channel through the InAlAs 

insulator and InGaAs barrier layers. To make a fair comparison we bias both devices at 

the same gate overdrive (Vgs – VT = -VDD/3)  and drain bias (Vds = VDD = 0.5 V) so that 

source to drain current is almost the same for both devices. The band diagram along the 

channel direction are shown in Figure 7.15(a,b). Same source/drain Fermi levels and 

similar band bending along channel direction ensure almost the same source to drain 

current in both devices. The gate Fermi levels in these devices are, however, separated by 

the gate metal work function difference of ∆ФM = 0.4 eV. The electrons injected from the 

gate terminal experience higher InAlAs and InGaAs energy barriers in a device with ФM 

= 5.1 eV compared to a device with ФM = 4.7 eV. The energy barriers along the 

transverse direction through the center and the drain edge of the gate contact for both 

devices are shown in Figure 7.15(c,d). the direction of electron tunneling is shown by 

grey arrows. The thickness of the arrows schematically shows that the tunneling current 

in ФM = 5.1 eV device is suppressed compared to ФM = 4.7 eV device. 

      

Figure 7.14. Gate leakage control by metal work function engineering: Id-Vgs and Ig-Vgs 

characteristics of a Lg = 20 nm, tins = 3 nm InAs QWFET with metal work function ΦM = 

4.7 eV and 5.1 eV. Higher ΦM significantly reduces the gate leakage current thereby 

improving sub-threshold slope and ION/IOFF ratio.  Device geometry is same as in Figure 

7.1. 
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The transfer characteristics of a 20 nm InAs QWFET for metal work function values 

ranginf from 4.7 eV to 5.1 eV are shown in Figure 7.16. Gate leakage current is 

suppressed is higher metal work function devices. Figure 7.17 shows that a higher metal 

work function linearly pushes the threshold voltage to positive values which is desirable 

for CMOS logic applications. Increased ФM also improves the ION/IOFF ratio in a 

     

Figure 7.15. Band diagrams along the horizontal lines (a,b) through the center of InAlAs 

insulator, top InGaAs barrier, and InAs channel layer of same devices as in Figure 7.14 

biased at the same gate overdrive Vgs – VT = -VDD/3 = -0.1667 V and Vds = 0.5 V. Same 

source/drain Fermi levels and similar band bending ensures almost the same source to 

drain current in both devices. The electrons tunneling from the gate terminal into the 

channel experience taller energy barriers (grey arrows) in ΦM = 5.1 eV device (b) 

compared ΦM = 4.7 eV device (a) because of the metal gate Fermi level offset equal to 

the work function difference (∆ΦM). The energy barriers along the transverse directions 

through the center and the drain side edge of the gate contact are shown for ΦM = 4.7 eV 

device in (c) and for ΦM = 5.1 eV device in (d). The thickness of arrows in (c,d) 

schematically shows the direction of the electron tunneling and that the gate leakage is 

higher in ΦM = 4.7 eV device compared to ΦM = 5.1 eV device. 
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nonlinear fashion as the gate leakage is suppressed. The effects of tins and ФM on the 

device performance are strongly correlated and both these parameters should be 

optimized together to improve the device performance. 

      

Figure 7.16. Transfer characteristics of a 20 nm InAs QWFET for metal work function 

values ranging from 4.7 eV to 5.1 eV in steps of 0.1 eV. The gate leakage decreases and 

the threshold voltage moves to positive values as the metal work function increases. 

Device dimensions are same as in Figure 7.1 with Lg = 20 nm and tins = 4 nm. 

 

 
Figure 7.17. Gate metal work-function (ΦM) engineering: Higher ΦM results in higher 

threshold voltage and high ION/IOFF ratio. Variation in ION with ΦM is negligible. The high 

ION/IOFF ratio is achieved mainly because IOFF is significantly suppressed in the devices 

with higher ΦM because of higher gate to channel tunneling barriers. Device dimensions 

are same as in Figure 7.1 with Lg = 20 nm and tins = 4 nm. 
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7.3.3. Channel thickness 

The effect of scaling down the InAs channel thickness (tInAs) on the logic performance 

can be analysed by noting that the QWFET is electrostatically very similar to the fully 

depleted silicon on insulator (FD-SOI) MOSFET[9]. In a QWFET, the InAs channel 

thickness plays a role similar to the role played by the Si body thickness to determine the 

scaling performance of the FD-SOI MOSFET. The effect of InAs channel thickness on 

transfer characteristic is depicted in Figure 7.18. Higher gate length to channel thickness 

ratio in thin InAs channel QWFETs result in stronger gate control which improves SS and 

DIBL (Figure 7.19(a)) similar to the ultra-thin Si body FD-SOI MOSFET [111]. The 

strong electrostatic confinement of electrons in thin InAs quantum well channel devices 

pushes channel conduction subbands higher in energy which subsequently results in 

higher threshold voltage in thinner InAs channel devices (Figure 7.19(b)). Similar 

threshold voltage enhancement due to scaling down the Si body thickness is observed in 

FD-SOI MOSFETs [112]. 

 

 

Figure 7.18. Transfer characteristics of a 20 nm InAs QWFET for InAs channel 

thicknesses of 2.2, 2.8, 3.4, 4.0, 5.0, and 6.2 nm. The threshold voltage moves to positive 

values in thin channel devices because stronger electron confinement raises energy levels 

in the channel. Device dimensions are same as in Figure 7.1 with Lg = 20 nm and tins = 4 

nm. Metal work function is ΦM = 4.7 eV 
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Figure 7.19. InAs quantum well thickness scaling: (a) SS and DIBL improve as the 

thickness of the InAs quantum well in the channel is reduced. The 2D electron gas in the 

channel is located closer to the gate in thinner quantum well devices which results in 

stronger gate control and improved short channel characteristics.  (b) Devices with 

thinner quantum well have higher VT as a result of the stronger quantum confinement in 

the channel. (c) Gate capacitance (Cg) and inversion layer capacitance (Cinv) as a function 

of gate overdrive (Vgs-VT) for devices with fixed tins = 4 nm and variable tInAs. Cinv is 

much lower than the insulator capacitance (Cins), due to which overall gate capacitance Cg 

is significantly reduced. Device dimensions except InAs channel thickness are same as in 

Fig. 1 with Lg = 20 nm and tins = 4 nm. Metal work function is ΦM = 4.7 eV. 
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The effect of InAs channel thickness on the gate capacitance is shown in Figure 7.19(c). 

The smaller gate capacitance (Cg) compared to the InAlAs insulator capacitance (Cins) is 

a result of small inversion layer capacitance (Cinv) of InAs channel. Cinv can be increased 

by scaling down the InAs channel thickness (tInAs) because stronger confinement in 

thinner InAs channels increases the effective mass (Figure 7.3(b)) and the density of 

states which results in higher Cinv and  slightly higher Cg (Figure 7.19(b)) for the same 

insulator thickness.  

7.4. Conclusion 

Simulation tools and methodologies for the analysis and optimization of ultra-scaled 

InAs QWFETs are developed. The biaxial strain and quantum confinement provided by 

InGaAs and InAlAs barriers modify the channel effective masses. These effects are 

included in the atomistic supercell based strain relaxation and sp
3
d

5
s

*
 tight-binding 

electronic structure calculations. Gate tunneling is found to be critical in the device 

analysis and it is included in the 2-D Schrödinger-Poisson solver by injecting carriers 

from the gate contact in addition to source and drain contacts. The accurate description of 

the shape of the gate contact is crucial to replicate the experimental results. The 

simulation approach is first verified for experimental devices with gate lengths ranging 

from 30 to 50 nm where a good quantitative match between experimental and simulated 

current-voltage characteristics is obtained. The scaling study on 20 nm InAs HEMT 

suggests that (i) the logic performance improves as InAlAs insulator thickness is scaled 

down to a limiting value beyond which it degrades due to excessive gate leakage, (ii) the 

gate leakage can be reduced by increasing the gate metal work function, (iii) the insulator 

thickness of a high metal work function device can be scaled down more aggressively 

than a low metal work function device, (iv) thin InAs channel devices exhibit superior 

logic performance, and (v) the gate capacitance is limited by the small inversion layer 

capacitance of the low effective mass InAs channel, (vi) a very good short channel 

performance and enhancement-mode operation can be achieved in a 20 nm InAs QWFET 

if a thin InAlAs insulator (3 nm) is combined with a thin InAs channel (3.4 nm), and a 

high metal work function (5.1 eV). Performance parameters of this optimized device are 
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VT = 0.34 V, SS = 87 mV/dec, DIBL = 110 mV/V, ION/IOFF = 2.9×10
3
, Cg = 9.14 fF/µm

2
, 

and gm,max = 1.7 mS/µm. A simulation tool OMEN_FET that generates results presented 

in this paper is available on nanoHUB.org [113]. 
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8.  SUMMARY 

The objective of this thesis was to investigate the influence of disorder on the 

electronic structure and transport in nanoscale devices. The tight-binding method, which 

is ideally suited for modeling sharp variations on an atomic scale, was employed. The 

tight-binding calculations were performed in the supercell framework. Sufficiently large 

supercells were simulated to include random disorders such as inhomogeneous strain, 

surface roughness, and alloy disorder. The simulation domain contained several thousand 

to several million atoms depending on the size of the supercell. The electronic structure 

calculations were performed using NEMO-3D, while the transport calculations were 

performed using OMEN. 

The valley degeneracy of (111) Si quantum wells was investigated. Previous effective 

mass based theories predicted 6-fold valley degeneracy for (111) Si quantum wells. The 

experimental measurements, however, show lower 2-fold and higher 4-fold valley 

degeneracies. It was shown that, this discrepancy between theory and experiments is a 

consequence of a peculiar reconstruction on (111) Si surface, which results in the 

formation of staircase like geometries. The supercell electronic structure calculations that 

included staircase like features resolved the long lasting puzzle of degeneracy breaking in 

(111) Si quantum wells. 

Valley splitting is a critical design parameter in quantum computing devices because it 

controls decoherence time of a qubit. (001) Si quantum wells are of particular interest as 

several quantum computing architectures based on (001) SGe/Si/SiGe heterostructures 

have recently been proposed. Existing theories could not explain the linear magnetic field 

dependence and suppression of valley splitting in (001) SiGe/Si/SiGe heterostructures. It 

was shown that the suppression and the linear magnetic field dependence of valley 

splitting is associated with the fact that SiGe/Si/SiGe heterostructures were grown on 
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miscut (001) substrate as opposed to flat (001) substrate. It was found that the models that 

assume perfect miscut geometry under-estimate valley splitting. The supercell 

calculations that include step roughness at the miscut interface and SiGe alloy disorder 

were found to predict the experimentally observed valley splitting within variations 

induced by the presence of disorders. 

The supercell technique was used to calculate the electronic structure of alloy 

nanowires. Although the supercell calculation includes effect of disorders, it can only 

deliver the absolute band extrema. Important transport parameters such as effective mass 

and relative positions of valley minima can not be determined from supercell calculations 

alone. To solve this problem, the zone-unfolding method, which can unfold the supercell 

bandstructure to obtain an “approximate” bandstructure of the disordered system, was 

adopted. Electronic transport in AlGaAs and SiGe alloy nanowires was studied using the 

supercell technique and the zone-unfolding method. The “approximate” bandstructures 

were compared with the transmission coefficients through the same nanowires. It was 

found that, as opposed to smooth step-like transmission coefficients in ideal nanowires, 

the transmission coefficients in disordered nanowires are noisy and smaller in magnitude. 

The supercell approach provides a unified picture of alloy nanowires, in which the 

nanodevice (transmission) and nanomaterials (bandstructure) viewpoints complement 

each other and illuminate the interesting physics of these disordered nanostructures that 

otherwise can not be explained using the traditional averaging methods such as the virtual 

crystal approximation. 

The supercell approach to the bandstructure calculation was coupled with the effective 

mass based quantum transport model to develop a multiscale device modeling approach. 

The approach was used to investigate the scaling performance of composite 

InGaAs/InAs/InGaAs multi-quantum-well channel quantum well field effect transistors 

(QWFETs). The 2D real space effective mass based quantum transport simulator used 

here is capable of simulating the gate contact at the quantum mechanical level. The 

simulation methodology developed here was able to reproduce the experimental Id-Vgs 

characteristics in both the OFF- and ON-state as opposed to earlier approaches which 

could not match the OFF-state regime of Id-Vgs characteristics that is dominated by the 
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gate leakage. The simulation methodology was employed to explore the device design 

optimizations for 20 nm InAs QWFET. It was found that InAs QWFETs can be 

successfully scaled to 20 nm gate lengths and that the best performance can be achieved 

in thin InAs channel devices by reducing the insulator thickness to improve the gate 

control, increasing the gate work function to suppress the gate leakage, and maintaining a 

flat gate geometry. 

In general, the supercell tight-binding approach is a very useful tool to model atomic 

scale disorders such as surface roughness, inhomogeneous strain, and random alloy 

disorder. The supercell approach coupled with the zone-unfolding method provides an 

efficient way to compute the “approximate” bandstructure of disordered nanostructures. 

The transport parameters such as effective mass and relative locations of valley-minima, 

extracted from the “approximate” bandstructure include the effect of atomic scale 

disorders. The electronic structure parameters extracted from the “approximate” 

bandstructure can be used in simple models such as the top-of-the-barrier-model or more 

advanced effective mass based NEGF simulators to analyse device performance. 
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