

Development of Efficient Inelastic Scattering in Atomistic Tight Binding

Master's Defense

James Charles

PURDUE UNIVERSITY

Network for Computational Nanotechnology (NCN) Electrical and Computer Engineering

charlesj@purdue.edu

- 1. Motivation
- 2. Acoustic and Optical Phonon Scattering Verification
- 3. Effect of scattering on MOSFETs
- 4. Effect of scattering on TFETs
- 5. Why does scattering increase tunneling current?
- 6. Numerical Details
- 7. Conclusions/Future Work

1) Motivation

- 2) Acoustic and Optical Phonon Scattering Verification
- 3) Effect of scattering on MOSFETs
- 4) Effect of scattering on TFETs
- 5) Why does scattering increase tunneling current?
- 6) Numerical details
- 7) Conclusions/Future Work

Length Downscaling

Figure courtesy of Tarek Ameen

Length continues to scale smoothly

Voltage Downscaling

Importance of Scattering

"that the **reduction [compared to ballistic]** of the device drain current, ...is more important in the ON-state than in the OFF-state of the transistor"

NEM@5

3 nm circular silicon nanowire, $V_{ds} = 0.6V$ sp³d⁵s^{*} tight binding basis confined phonon model

ballistic yields an **underestimation** of the subthreshold current up to 20%

Data from A. Esposito, M. Frey, et. al. JCEL vol. 8 (2009).

Conflicting trends for subthreshold current in literature. How to resolve this?

Critical Questions:

- 1) How to increase electrostatic gate control?
- 2) What is the limit of gate length scaling?
- 3) How to continue supply voltage scaling?
- 4) What is the importance of scattering in gate length and supply voltage scaling?

Critical Questions:

- 1) How to increase electrostatic gate control?
- 2) What is the limit of gate length scaling?
- 3) How to continue supply voltage scaling?
- 4) What is the importance of scattering in gate length and supply voltage scaling?

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 4, APRIL 2003 PURDUE

Capacitance for Better Gate Control

Nanowire Performance Comparison

J. Xiang Nature Vol. 441 (2006).

p-MOSFET data from Chau, R. et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. *IEEE Trans. Nanotechnol.* **4**, 153–158 (2005).

Experimental Evidence of Excellent Nanowire Performance

Experimental evidence of nearly perfect S.S achieved for nanowires

Peide Ye IEDM 2015

nanowires have excellent gate control

Critical Questions:

- 1) How to increase electrostatic gate control?
- 2) What is the limit of gate length scaling?
- 3) How to continue supply voltage scaling?
- 4) What is the importance of scattering in gate length and supply voltage scaling?

Gate Length Scaling Limits

ITRS demands scaling of gate length

J. Wang, M. Lundstrom, IEDM 2002: "The results show that source-to-drain tunneling does set an ultimate scaling limit

Critical Questions:

- 1) How to increase electrostatic gate control?
- 2) What is the limit of gate length scaling?
- 3) How to continue supply voltage scaling?
- 4) What is the importance of scattering in gate length and supply voltage scaling?

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 4, APRIL 2003

NEM@

Physical Limitation of Subthreshold Slope

Typical MOSFETs : Barrier controlled device

Barrier lowered more electrons

Vg

- Sub-threshold slope: fundamental limit of how fast the device can turn on
- This is limited by the Fermi band-tail

$$S.S = \ln(10)\frac{kT}{q}\left(1 + \frac{C_{ch}}{C_{ox}}\right)$$
$$\min(S.S) = 60 \ mV/dec$$

How can we overcome this limit?

The Need for Tunneling Dominated Transistors

Spectral current for InAs TFET

Nanowire Potential Candidate for TFETs

Gate-all-around (GAA) nanowire TFET

- 1. Excellent Gate Control I_{on} increases with steeper source to channel transition (decreased tunneling distance λ_{tunn})
- 2. Best subthreshold-slope compared to MOSFET

Critical Questions:

- 1) How to increase electrostatic gate control?
- 2) What is the limit of gate length scaling?
- 3) How to continue supply voltage scaling?
- 4) What is the importance of scattering in gate length and supply voltage scaling?

Method:

Non-equilibrium Green's Function (NEGF) + scattering in the Self-consistent Born Approximation (SCBA)

Atomistic Resolution with Semi-empirical tight binding

Schematic of Gate All Around (GAA) Nanowire

What is a scattering self-energy?

- Contribution to particle's energy due to interaction with the system.
- Complex matrix Real Part Σ^R ~ ΔE Imaginary Part Σ^R ~ related to lifetime of particle.

What is self-consistent Born?

- Interactions treated as (weak) perturbations
- Leads to self-consistent loop to stabilize charge/current

Why include scattering?

Three Major Effects from scattering :

- Resistive (decreases on-current)
- Increases tunneling current
- Broadens/fills resonant states

Tunneling mechanisms for TFET

(0) Direct, coherent tunneling(1) Thermally excited carriers tunneling(2) Tunneling via channel band-tails

- 1) Motivation
- 2) Acoustic and Optical Phonon Scattering Verification
- 3) Effect of scattering on MOSFETs
- 4) Effect of scattering on TFETs
- 5) Why does scattering increase tunneling current?
- 6) Numerical Details
- 7) Conclusions/Future Work

Acoustic Perturbing Potential

 With bulk phonons, the perturbing potential (electronphonon interaction strength) is solved analytically

• Assume:

o linear dispersion

bulk phonons in equilibrium
elastic

o high temperature

Scattering Parameters:

- ion mass density
- sound velocity
- deformation potential

Optical Perturbing Potential

- With bulk phonons, the perturbing potential (electronphonon interaction strength) is solved analytically
- Assume:
 - o flat dispersiono bulk phonons in equilibrium
 - \circ inelastic

Optical phonon

Scattering Parameters:

- ion mass density
- phonon frequency
- optical deformation constant

Acoustic and Optical Scattering Rate Verification

Both can be verified against analytical expressions for scattering rate

$$\Gamma_{NEGF}(E) = -\frac{2}{\hbar} Im\{\Sigma_{\text{scatt}}^{R}(E)\}$$

Bulk GaAs Material Parameters*:

- Deformation potential $D_{ac} = 8.8$
- Sound velocity $v_s = 4726$ m/s
- Material density $\rho = 5317 \text{ kg/m}^3$
- Phonon energy $E_0 = 35 \text{ meV}$
- Optical Coupling constant $D_{op} = 110 \text{ eV/nm}$

Extracted Resistivity

Device: homogeneous silicon bar in effective mass Steps:

- 1. Calculate current of differer lengths with small applied potential (5 meV)
- 2. Calculate slope of resistance vs. length

Deviation due to neglect of electronelectron and impurity scattering

- 1) Motivation
- 2) Acoustic and Optical Phonon Scattering Verification
- 3) Effect of scattering on MOSFETs
- 4) Effect of scattering on TFETs
- 5) Why does scattering increase tunneling current?
- 6) Numerical Details
- 7) Conclusions/Future Work

NEM

- 1) Motivation
- 2) Acoustic and Optical Phonon Scattering Verification
- 3) Effect of scattering on MOSFETs
- 4) Effect of scattering on TFETs
- 5) Why does scattering increase tunneling current?
- 6) Numerical Details
- 7) Conclusions/Future Work

TFET Scattering in NEMO5

Question:

What is the impact of scattering on TFETs?

Circular Si TFET 3nm cross section

1nm thick oxide covers entire device (not shown) $V_{ds} = 1.0V$

Deformation potential phonons included: Elastic acoustic and inelastic optical phonon self-energies

Silicon TFET with scattering

TFET IV characteristics

Impact of incoherent scattering:

- Increase and shift of band tails
- Increase of tunneling current by ~4x

Realistic TFET performance prediction questionable without scattering

Question:

What is the impact of scattering on a III-V resonant TFET?

Dominant scattering in III-Vs is polar optical phonon (POP) scattering

Assumptions:

Treat POP scattering as diagonal (non-polar optical) with increased scattering strength. Why? It is numerically feasible but loses nonlocality information.

TFET design by Pengyu Long, et. al. DRC (2016).

subthreshold slope [mV/dec]

6

ballistic

acoustic

Scattering Effective on Resonance TFET

Optical phonon energy 35 meV

	Strength
ballistic	
Optical A	Optical C * 4
Optical B	Optical C * 1.85
Optical C	Si non-polar def. const.
acoustic	Bulk GaAs parameters

Increased

B

А

Ċ

simulation

Simulations ran by Devin Verrick

slope

Inelastic scattering increases:

DUL

NEMØ5

- (1) Tunneling below band edge
- (2) Penetration of resonance state into bandgap
- (3) Coupling of source hole states to resonance states

NSF

- 1) Motivation
- 2) Acoustic and Optical Phonon Scattering Verification
- 3) Effect of scattering on MOSFETs
- 4) Effect of scattering on TFETs
- 5) Why does scattering increase tunneling current?
- 6) Numerical Details
- 7) Conclusions/Future Work

Approximation I: Neglect $Re{\Sigma^R}$ completely. Solve $\Sigma^>$ and $\Sigma^<$

 $\Sigma^R \cong \frac{1}{2}(\Sigma^> - \Sigma^<)$ then neglecting the principal value integral.

broadening only

Approximation II: Keep part of $Re{\Sigma^R}$ by solving Σ^R and $\Sigma^<$ then neglecting the (partial) principal value integral.

broadening + part of energy shift

Full: Solve principal value integral

broadening + energy shift

Using Approximation II is a compromise between efficiency and accuracy

Comparing Results from Literature

Approximation I

M. Luisier and G. Klimeck Phys. Rev. B 80, 155430 (2009).

3 nm circular silicon nanowire, $V_{ds} = 0.6V$ sp³d⁵s^{*} tight binding basis confined phonon model

Approximation II

Data from A. Esposito, M. Frey, et. al. JCEL vol. 8 (2009).

bulk phonon model

Maybe the difference in approximations made lead to conflicting trends?

DOS comparison

- 1) Motivation
- 2) Acoustic and Optical Phonon Scattering Verification
- 3) Effect of scattering on MOSFETs
- 4) Effect of scattering on TFETs
- 5) Why does scattering increase tunneling current?
- 6) Numerical Details
- 7) Conclusions/Future Work

Strong Scaling Results

Device: Si TFET used for IV

Scattering self-energies requires energies that can be on different MPI processes:

$$\Sigma^{<}(E) = \frac{\hbar}{2\rho\omega_o} \delta(\overrightarrow{x_3} - \overrightarrow{x_4}) \left[N_{op} G^{<} (E - E_{op}) + (N_{op} + 1) G^{<} (E + E_{op}) \right]$$

Requires communication of diagonal matrices

Note: for UTB simulations there is an additional wave-vector k integral that increases communication

Reasonable scaling despite complex communication

- Stabilized Recursive Green's Function algorithm
- Improved Poisson convergence with improved Jacobian
- Interpolated scattering self-energies to decrease number of scattering iterations needed and improve current conservation
- Implemented dynamical convergence to decrease number of scattering iterations needed
- Current conservation in optical phonon scattering with inhomogeneous energy grid
- Improved resonance mesh suitable for resonant devices

46

NEMØ5	Stabilized Recursive Green's Function algorithm
Objective: Efficient implementation of recursive Green' function (RGF) algorithm suitable for scattering Problem: Initial implementation of RGF in NEMO5 following OMEN was unstable when scattering was included.	 Approach: Systematic analysis of RGF equations to find source of instability. Remove assumptions of symmetries only valid with infinite precision Preserve symmetry of equations in each recursive iteration
Results/Impact:	

Found instabilities and improved RGF algorithm to allow scattering simulations. Roforo.

$$G_{i,i}^{<} = g_{i,i}^{<} + g_{i,i}^{R} H_{i,i+1} G_{i+1,i+1}^{<} H_{i+1,i} g_{i,i}^{A} + g_{i,i}^{R} H_{i,i+1} G_{i+1,i+1}^{R} H_{i+1,i} g_{i,i}^{<} - (g_{i,i}^{R} H_{i,i+1} G_{i+1,i+1}^{R} H_{i+1,i} g_{i,i}^{<})^{\dagger} \\ After:$$

$$G_{i,i}^{<} = g_{i,i}^{<} + g_{i,i}^{R} H_{i,i+1} G_{i+1,i+1}^{<} H_{i+1,i} g_{i,i}^{A} + g_{i,i}^{R} H_{i,i+1} G_{i+1,i+1}^{R} H_{i+1,i} g_{i,i}^{<} \\ + (g_{i,i}^{R} H_{i,i+1} G_{i+1,i+1}^{R} H_{i+1,i} (g_{i,i}^{<})^{\dagger})^{\dagger} \\ Additionally: \quad G_{i,i}^{<} \text{ is anti-symmetrized each iteration.}$$

Improved Convergence with improved Jacobian

Objective:

Convergence of NEGF-Poisson equations with minimum number of iterations

Problem:

Ballistic Jacobian typically used in NEMO5 is not suitable for scattering

Approach:

- Balance between number of iterations needed and calculation time of Jacobian
- Found best balance is to use a mixture of ballistic Jacobian (extra NEGF solution) and approximate scattering Jacobian

Si circular nanowire TFET

Results/Impact:

Convergence achieved for previously not converging simulations.

Jacobian where λ is a mixing parameter

$$J(\vec{x}) = \Im\left\{\lambda \int G_{ballistic}^{<}\left(\vec{x}, E, \frac{\partial f_{S,D}}{\partial E}\right)dE + \int (1-\lambda)G_{scattered}^{<}\left(\vec{x}, E, f_{S,D}\right)dE\right\}$$

NEMØ5

Interpolate Scattering Self-energy

Objective:

Minimum number of self-consistent Born approximation (SCBA) iterations to reach converged result

Problem:

Typically for current conservation, self-consistent Born needs 20-40 computationally expensive iterations

Results/Impact:

- Discovered that when Poisson-NEGF loop is close to convergence previously scattered results can be interpolated on to the updated energy mesh
- Reduced number of SCBA iterations by about 3

Approach:

 Reuse previously converged SCBA results to accelerate convergence of updated Poisson potentials

Dynamical Convergence Criterion for Self-consistent Born Loop

Objective:

Minimum number of self-consistent Born approximation (SCBA) iterations to reach converged result.

Problem:

Typically for current conservation, self-consistent Born needs 20-40 computationally expensive iterations

Results/Impact:

Reduced number of SCBA iterations by approximately half

Approach:

 Reduce the number of SCBA iterations without making additional approximations

Current conservation in optical phonon scattering with inhomogeneous energy grid

Objective:

Current conservation criterion for converged self-consistent Born results **Problem:**

For efficient simulations, an inhomogeneous energy mesh must be used but the energy mesh will not be commensurate with phonon energies, thus current conservation is not trivial.

Approach:

 Ensure detailed balance is always met and use this constraint to form constraints on interpretation of scattering self-energies

 $\int \left(\Sigma^{<}(E)G^{>}(E) - G^{<}(E)\Sigma^{>}(E)\right)dE = 0$

"in-scattering must balance out-scattering"

Results/Impact:

Current Conservation with general energy mesh

Improved Convergence with improved Jacobian

Objective:

Convergence of NEGF-Poisson equations with minimum number of iterations

Problem:

Scattering introduces resonance shifts that must be properly resolved

Approach:

- Use device information in order to resolve resonances due to scattering
- Adapt energies to shifts in resonances

Results/Impact:

- Improved convergence of NEGF-Poisson loop.
- Resonances due to scattering are properly resolved

- 1) Motivation
- 2) Acoustic and Optical Phonon Scattering Verification
- 3) Effect of scattering on MOSFETs
- 4) Effect of scattering on TFETs
- 5) Why does scattering increase tunneling current?
- 6) Conclusions/Future Work

- Efficient implementation of scattering introduced
- Verification of implementation with comparison to Fermi's golden rule and to experimental resistivity

• Effect of certain approximations made in literature assessed

54

Conclusions cont.

MOSFET IV results with and without scattering

• TFET IV results with and without scattering compared

- Further assessment of approximations made e.g. local POP, bulk phonons.
- Comparison to heuristic models e.g. Klimeck's 1994 model "equilibrium-nonequilibrium" model
- Include other scattering mechanisms as scattering self-energies (e.g. roughness)
- Scattering model (phonons, roughness etc.) suitable for 2D materials e.g. TMDs

56

Acknowledgements/Questions

Thanks to:

my committee members: Professors Gerhard Klimeck, Supriyo Datta, Tillmann Kubis Administrative Staff

My groupmates and friends

Questions?

Backup Slides

Neglecting $Re{\Sigma^R}$ leads to underestimation of off-current. NEMO5 uses Approx. II

Esposito, Frey J.Comput Electron (2009).

Qualitative comparison to literature

Si Nanowire in effective mass Lc = 15 nm, D = 3.26 nm

NP – ballistic nonparabolic EM NPSC – Nonparabolic EM + Approx II $Re{\Sigma^R} \cong 0$ But neglect PVI

Same trend as seen in NEMO5!

Esposito, Frey J.Comput Electron (2009).

$$\Sigma_{ac}^{<}(\alpha,\beta,E) = \frac{D^2 k_b T}{\rho v_s^2} \delta_{\alpha,\beta} G^{<}(\alpha,\beta,E)$$

*"Quantum Transport in Semiconductor Nanostructures", T. Kubis PhD thesis (2009).

 N_{op} is independent of q (flat optical phonon band) Long wavelength limit $q \rightarrow 0$ Discrete energies for emission and absorption ($E \pm E_{op}$) where $E_{op} = \hbar \omega_o$

$$\Sigma^{<}(E) = \frac{\hbar}{2\rho\omega_o} \delta(\vec{x_3} - \vec{x_4}) \left[N_{op}G^{<} \left(E - E_{op} \right) + \left(N_{op} + 1 \right) G^{<} \left(E + E_{op} \right) \right]$$

$$\Sigma^{R}(E) = \frac{\hbar}{2\rho\omega_{o}} \delta(\vec{x_{3}} - \vec{x_{4}}) \left[N_{op} G^{R} \left(E + E_{op} \right) + (N_{op} + 1) G^{<}(E - E_{ac}) \right. \\ \left. + \frac{1}{2} G^{<}(E - E_{ac}) - \frac{1}{2} G^{<}(E + E_{ac}) \right]$$

Neglecting principal value integral

*"Quantum Transport in Semiconductor Nanostructures", T. Kubis PhD thesis (2009).

NEM Spproximations for Scattering Real/Imag. Part

Approximation I:

$$\Sigma^{R}(E) = \frac{1}{2} \left(\Sigma^{>}(E) - \Sigma^{<}(E) \right) + iP \int \frac{dE'}{2\pi} \frac{\left(\Sigma^{>}(E') - \Sigma^{<}(E') \right)}{E - E'}$$
emission absorption
Approximation II:

$$\Sigma^{<}(E) = \frac{\hbar}{2\rho\omega_{o}} \delta(\overrightarrow{x_{3}} - \overrightarrow{x_{4}}) \left[N_{op}G^{<} \left(E - E_{op} \right) + \left(N_{op} + 1 \right) G^{<} \left(E + E_{op} \right) \right]$$

$$\Sigma^{R}(E) = \frac{\hbar}{2\rho\omega_{o}} \delta(\overrightarrow{x_{3}} - \overrightarrow{x_{4}}) \left[N_{op}G^{R} \left(E + E_{op} \right) + \left(N_{op} + 1 \right) G^{<} \left(E - E_{ac} \right) \right]$$

$$+ \frac{1}{2}G^{<} \left(E - E_{ac} \right) - \frac{1}{2}G^{<} \left(E + E_{ac} \right) \right]$$

$$+ iP \int \frac{dE'}{2\pi} \left(\frac{G^{<} \left(E - E' \right)}{E' - \hbar\omega_{o}} - \frac{G^{<} \left(E - E' \right)}{E' - \hbar\omega_{o}} \right)$$
neglect

*"Quantum Transport in Semiconductor Nanostructures", T. Kubis PhD thesis (2009).

Region-Material	Length [nm]	Doping [cm-3]
1 - AISb	4.57	3x10 ¹⁹
2 - Al _{0.5} Ga _{0.5} Sb	1.2	6x10 ¹⁹
3 - GaSb	3.2	5x10 ¹⁹
4 - InAs	3.4	1x10 ¹⁵
5 - AllnAsSb	27.1	1x10 ¹⁵
6 - AllnAsSb	17.3	5x10 ¹⁹

Mobility calculations

Simulations and figures by Devin Verrick

