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ABSTRACT

Hegde, Ganesh Krishna M.S.E.C.E., Purdue University, May 2010. Generation and
optimization of Tight Binding (TB) parameters using Genetic Algorithms and their
validation using NEMO3D. Major Professor: Gerhard Klimeck.

It is often the case in engineering problems that a desired output from a particular

process is known, but the inputs that are fed into the process to get this output are

not. Optimization, commonly referred to as fitting, reverse engineering, or mathe-

matical programming is a well developed class of problem solving techniques that is

used to tackle the above scenario. This thesis intends to discuss the application of

one such scheme, the Genetic Algorithm, to specific problems in nano-electronics.

We initially intend to motivate the thesis by outlining the main problem at hand:

The Tight Binding (TB) parametrization of materials at low temperature (LT). We

then show why the Genetic Algorithm is well suited to tackle this non-trivial problem

effectively and discuss some of the unique features of Genetic Algorithms. Finally,

we describe in detail the procedure used to generate, optimize and validate TB pa-

rameters and discuss some results we have for materials like InAs and GaAs. We also

include a description of some of the attempts to create a general purpose optimization

engine for the nanoHUB (www.nanoHUB.org)
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1. THE NEED FOR OPTIMIZATION

In this chapter, we shall illustrate, through a scenario typically encountered in real-life

engineering situations, the need for optimization.We shall elaborate on this example

and successively simplify our engineering problem to its bare essentials until it leads

to the actual problem we wish to solve. Since this chapter is of an introductory

nature, the use of equations will be kept to a bare minimum and general references

will be provided to papers and documents that discuss details.

1.1 A common engineering scenario

Semiconductor lasers (also called laser diodes) are ubiquitous nowadays. They

can be found in everyday consumer electronic items such as laser pointers, bar code

readers, laser printers and CD-ROM read drives to industrial applications like high

power welding. Laser diodes emitting coherent light throughout the visible spectrum

can be produced these days [1].

Imagine a scenario where one is asked to find a material/s for a laser diode that

will operate at a peak wavelength ‘x nm’ in the visible spectrum. How would we go

about finding a solution to this problem?

1.2 Initial Questions

We would initially go about asking some very general and obvious questions that

illuminate the problem better on the following lines:

How does a semiconductor laser work?

What decides the wavelength?



2

Energy (eV)
0 1 2 3 4

Ab
so

rp
tio

n 
(a

rb
 u

ni
ts

)

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

Fig. 1.1. Optical absorption plot with maximum absorption at 2.1
eV. Image obtained from [2]

1.3 Clues from Physics

From basic semiconductor laser theory [3], one knows that the wavelength of light

emitted from a semiconductor laser depends upon the band gap of the material used.

Fig 1.2 below indicates this from an elementary, discrete level perspective. Our initial

questions would now be appropriately modified to the following: What material has

a band gap of ‘z eV’ (that corresponds to the peak wavelength)?

One might think that the first question can easily be answered by looking up a

standard materials handbook and finding a material with the required band gap. But

what if the peak wavelength did not correspond to any of the standard band gaps?
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Fig. 1.2. A toy model for allowed transitions in a laser obtained
from [4]. The wavelength is λ = c

ν
where ν = (E2−E1)

h

(e.g. What if we require a band gap of 1.46 eV for our laser and the semiconductor

that has the closest band gap of 1.424 eV at room temperature is GaAs?). It is a

well known fact that limited straining of a semiconductor modifies the band gap of

the semiconductor [5]. We then further modify our question to the following: Given

the closest suitable material is GaAs, how do we strain GaAs to give us a band gap

of 1.46 eV?

The answer to this question lies in a detailed study of the electronic band structure

of GaAs under strain. The electronic structure of a crystalline material is a detailed

description of the allowed energies that an electron takes in a material versus the

electron’s momentum. By studying the band structure of GaAs and the effect of

strain on it, we can not only observe how the band gap changes, but also obtain

directly the density of states of the material, which affect performance characteristics

such as intensity of the laser.
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Having gained some insight into the deciding factors for wavelength, we now have

a problem that essentially requires determination of band structure of a material

under various strain conditions and examining the gap variation with strain.

1.4 Determination of Electronic Structure and it’s variation with strain

The determination of electronic band structure of materials is a well developed

sub-field in condensed matter physics. The central problem of electronic structure

determination is the solving the Schrodinger equation for realistic systems [6].The

time-independent Schrodinger Equation essentially equates to an eigenvalue equation

[H]ψ = Eψ (1.1)

Here [H] is a matrix called the Hamiltonian and E represents the eigenvalues of [H],

i.e. the allowed energy levels that an electron can occupy in a material. ψ is a vector

called the wave function of the electron and it has definite physical connotations

(See [7], for a detailed explanation). For realistic devices like the laser diode under

consideration, the Hamiltonian can be larger than 1×106 times 1×106 elements in

size. Electronic structure methods essentially differ in the approximations involved

in constructing [H]. While solving the Schrodinger equation for devices such as the

laser diode, additional complexities including strain effects, defects, alloying, hetero-

structure effects, a lack of crystal periodicity besides the aforementioned size of the

Hamiltonian come into play and this complicates the solution further.

There are several competing electronic structure methods and each of these has its

own merits (and demerits). The introductory nature of this chapter prevents us from

going into details at this stage. One finds excellent descriptions in books devoted

to electronic structure calculations [8] [9] [6]. Broadly speaking, however, the choice

of a particular electronic structure calculation method generally comes down to an

optimization of the following factors:

a) Speed of operation: Modeling realistic devices with strain, non-periodic structures

in reasonable time is generally a prime consideration.
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b) Accuracy: While time is critical, getting physically feasible results that match

relevant experiments is another deciding factor.

The most well developed and accurate electronic structure calculations found in

commercial quantum chemistry software are a category of methods called the ab-

initio. As the name suggests, these methods try to adopt a ‘first-principles’ approach,

i.e. no assumptions (in practice very few assumptions) are made while solving the

Schrodinger equation. The Hamiltonian matrix elements are obtained by actually

evaluating integrals representing these elements in real-space. The accuracy of these

methods is offset, however, by their disadvantages. Commercial quantum chemistry

codes can typically handle bulk crystalline materials well. However, they become

prohibitively time consuming in case of real devices having millions of atoms and

defects (see [10] for an explanation of the reasons). Other methods, such as semi-

empirical methods and perturbation theory based methods [6], are usually preferred

for applications such as the one we intend to study due to an acceptable tradeoff

between the above deciding factors.

1.5 Focus of this thesis

This thesis will focus on the semi-empirical Tight Binding (TB) Method of elec-

tronic structure calculations [8]. A single line description of the TB method is that it

treats Hamiltonian elements as unknown parameters that are fit to known experimen-

tal/theoretical solutions. Various theoretical and experimental methods are used to

calculate energies and carrier effective masses of materials at certain critical points in

the band structure. This knowledge is in turn used to determine the matrix elements

that give rise to a band structure that matches these values. No attempt is made to

match the band structure point by point against detailed calculations.

This implies that we can reformulate our laser diode optimization problem as a TB

parameterization optimization problem. A little thought helps us understand better

the details of this optimization problem. Since the Hamiltonian matrix is of the order
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1×106 times 1×106, it would imply that we need to find this many unknowns. Here,

physical insight comes to our rescue; we restrict the range of these unknowns to values

that are physically realistic.

Experimental and theoretical energies and carrier effective masses are the known

solutions to be fit by optimizing the matrix elements. The number of outputs and

to be fit and the applicability of the parameters depends chiefly upon the intended

application. For e.g. If we were studying the behavior of electrons in bulk GaAs

intended for use in transistors, we would fit masses obtained from the band structure

very tightly. The matrix elements could then be used to model electron transport

through GaAs. On the other hand, if we intended to use GaAs for opto-electronic

applications, we would fit energies at high symmetry points very tightly since energies

and their relative difference are of chief importance in such applications. In the laser

applications, one would also need to consider the variation of these energies with

strain and that would increase the constraints on our optimization problem.

The vague initial problem statement that we had has now been transformed into a

definite optimization problem as follows: Parameterize Hamiltonian matrix elements

for use in optical applications given a certain set of known physical quantities such

as energies and their variation with strain, effective masses, etc given the constraints

of time and accuracy. In order to solve this optimization problem we need to find a

suitable solution method and this shall be the focus of the next chapter.
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2. SELECTING AN OPIMIZATION TECHNIQUE

Having defined our problem in the previous chapter, we shall discuss some of its

salient features in this chapter. We shall see how these features help us choose a

between a variety of optimization techniques that shall be qualitatively described.

2.1 Salient Features of the Tight Binding (TB) parametrization problem

The Tight Binding problem discussed briefly in the preceding chapter has the

following salient features [8].

1) It is a linear algebraic problem that involves finding the eigenvalues of a matrix

called the Hamiltonian [H].

2) The elements of H correspond to energies of overlap of different orbitals. This

restricts the range of values that they can assume.

3) The elements of H are treated as unknown parameters to be fitted to experimental

(and theoretical) energies, gaps and effective masses.

4) The size of H and its nature depend on the system under consideration. The

number of unknown parameters in H depends on the TB model under consideration.

5) The elements of H are not unique. They are ‘correct’ insofar as they are fit as

closely as possible to the energies and masses of interest.

2.2 Implications from an optimization perspective

Nature of optimization problem: The problem is constructed to be a global min-

imization problem. The inputs that minimize the difference between the calculated

and desired outputs are to be obtained.

Nature of optimization landscape: The optimization landscape is discontinuous. There
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may be combinations of inputs that give completely unphysical results.

Relation between input and output values: There is no direct relation between the

input and the outputs. The outputs are derived from the band structure which is

calculated by solving for eigenvalues of the Hamiltonian which has the unknown pa-

rameters as its elements.

Dimensionality of search space: Depending on the TB model used, the dimensionality

of the search space changes. e.g. the number of unknowns is 10 in the sp3s* model

but is 35 in the sp3d5s* model.

Range of input values: This is restricted by the physical interpretation of the matrix

elements as overlap energies between orbitals. These energies are expectedly finite

and are negative since bound electrons in solids must have negative energies. The

search space is real and finite.

Number of output values: This is limited only by the number of experimental (or

theoretical values when experimental values are not available) values available for a

given semiconductor.

Output values like band energies and effective masses have a limited ranges of valid-

ity. e.g. From experiment, one knows that the band gap of unstrained bulk GaAs

at 300K is 1.424 eV. Any input combination that gives us a gap of 6 eV is obviously

incorrect since it gives us a result far from what is expected in reality. Restricting

the output values in such a manner makes the search space discontinuous and places

constraints on the search space and the type of optimization algorithm.

Fig 2.1 illustrates the essential features of the problem we wish to solve. Having

broadly defined the features of our optimization problem, we now discuss some ap-

proaches that may be used to find a solution to our problem. We shall discuss their

relative merits and demerits and zero in on a solution approach that handles all of

the above constraints acceptably. A detailed discussion of these methods is beyond

the scope of this thesis and references for detailed reading will be provided.
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Fig. 2.1. TB optimization challeges - Multidimensional optimization

2.3 Optimization Techniques: A bird’s eye view

2.3.1 Intuitive approaches

The most intuitive method one can think of is a brute force approach. One might

be tempted to test all possible input combinations and find a particular combination

that minimizes the output. As mentioned previously, the search space is real and

to find combinations of 10 -100 real numbers fitting 100+ outputs is not a feasible

task. One runs into problems with other intuitive approaches such as trial and error

approaches and random sampling of search spaces due to the sheer size of the search

space and the number of possible combinations of inputs. As we will see later, random

searches are often combined with other techniques to solve optimization problems.

2.3.2 Gradient based approaches

Gradient based approaches attempt to find the minimum value of a smooth func-

tion, by calculating the gradient of the function with respect to the variables that

constitute the function. Quoting from [11], we see how such an optimmization pro-
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cedure might work:

Consider the minimization of a function J(x) where x is an n dimensional vector.

Suppose that J(x) is a smooth function with first and second derivations defined by

the gradient

gi(x) =
∂J

∂xi

(2.1)

and the Hessian matrix

Aij(x) =
∂2J

∂xi∂xj

(2.2)

Generally it pays to take advantage of the smooth dependence of J on x by using the

available information on g and A. Suppose that there is a minimum at x∗ with the

value J∗ = J(x∗). Then

g(x∗) = 0 (2.3)

and in the neighborhood of x∗, J can be approximated by the leading terms of a

Taylor expansion as a quadratic form

J(x) = J ∗+
1

2
(x− x∗)TA(x− x∗) (2.4)

where A is evaluated at x∗. The minimum could be approached by a sequence of

steps in the negative gradient direction

xn+1 = xn − βngn (2.5)

where βn is chosen small enough to assure a decrease in J , or may be chosen by

minimizing J with a line search in the direction defined by gn.

One may however, reject this solution method on the basis of the fact that our

optimization landscape is discontinuous and gradient based methods work for contin-

uous spaces. One might still adapt the technique to work for discontinuous spaces by

assigning arbitrarily high gradient values to points in the space where the outputs are

undefined. Even so, this method suffers from a debilitating drawback - it is a local

search technique. Successive evaluations of the gradient that may lead us to a local
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minimum depend upon the proximity of the initial solution to the local minimum.

Also, there is no guarantee that this local minimum is indeed the global minimum

that we are looking for. Fig 2.2 shows an example of a function having several lo-

cal minima. A local search technique starting at x = 2 would converge to a local

minimum, not a global minimum.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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)s
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(8
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Fig. 2.2. Sample smooth function having several local optima

In order to be a global technique, a more elaborate scheme must be devised in

which one divides the search space into smaller sub spaces, evaluates minima in these

sub-spaces and compares them in order to obtain a global minimum. Besides the

additional computational cost involved, this method is not, in general advisable for

rapidly undulating optimization landscapes since sub-dividing the search space may

lead to sub-spaces having several local minima ad infinitum. Another difficulty with

this approach is the fact that it is iterative. Successive solutions depend on the quality

of the initial solution. This slows the optimization process by limiting the region of

search space that can be sampled. Gradient based approaches are not without their

advantages. They are a preferred technique in certain convex optimization problems

where the optimization landscape is smooth and solutions converge to global minima

in a matter of a few gradient evaluations. [11]
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2.3.3 Non-linear least squares optimization techniques

This set of techniques aim to find a solution that minimizes the square of the er-

ror between desired outputs and the calculated outputs. The Levenberg-Marquardt

Algorithm [12] and the Gauss-Newton Algorithm [13] are examples of this class of

optimization techniques. Imagine a parameter space consisting of n independent vari-

ables xi and dependent variables yi. Assume that yi are only known by measurement.

The optimization then consists of finding a set of m parameters βj such that the

residual error S shown in the equation below is minimized

S =
n

∑

i=1

ri2 (2.6)

where ri = yi − f(xi, β) While there is no closed form solution to the non-linear least

squares minimization problem, numerical algorithms to find βs that minimize S are

used. An initial set of βs is assumed. Subsequent sets are found iteratively.

βk+1
j = βk

j +∆βj (2.7)

where k is the iteration number. The essence of the technique, then, is estimating

successive solutions by finding linear extrapolations from the current solution subject

to the conditions of the equations above. This method is widely used as a form

of curve-fitting. It’s usage in the problem we have defined is limited because it

involves an additional set of matrix manipulations after our initial matrix-eigenvalue-

band structure solution. This method is also iterative and though refinements to the

original technique of Gauss have been created [13] to overcome dependence of the

final solution on the initial solution, the method is still serial in nature.

2.3.4 Simulated Annealing (SA) and variants

SA is a name given to variants of a global optimization heuristic technique [14].

The technique aims to replicate algorithmically the process of annealing in metal-

lurgy, a technique involving heating and controlled cooling of a material to improve
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crystallization and reduce defects. The heat causes the atoms to become unstuck

from their initial positions (a local minimum of the internal energy) and wander ran-

domly through states of higher energy; the slow cooling gives them more chances of

finding configurations with lower internal energy than the initial one. By analogy

with this physical process, each step of the SA algorithm replaces the current solu-

tion by a random ”nearby” solution, chosen with a probability that depends on the

difference between the corresponding function values and on a global parameter T

(called the temperature), that is gradually decreased during the process. The depen-

dency is such that the current solution changes almost randomly when T is large,

but increasingly ”downhill” as T goes to zero. The allowance for ”uphill” moves

saves the method from becoming stuck at local minimawhich are the bane of greedier

methods. This technique has been previously used in studying the electronic prop-

erties of atomic clusters with moderate success [15]. Parallel Simulated Annealing

has been attempted by some groups [16] [17] by dividing the search space into multi-

ple sub-spaces as mentioned before and facilitating information interchange between

the multiple solutions so obtained. A variation of the thermal annealing technique

is called quantum annealing [18]. Here, a solution can move through a classically

forbidden area, such as a potential energy barrier and the resulting tunneling process

can sample different areas of the search space instead of being stuck at local minima.

2.3.5 Evolutionary Algorithms and bio-inspired algorithms

Like Simulated Annealing, Evolutionary algorithms are heuristics. They aim to

solve optimization problems by mimicking processes seen in nature. Their explo-

ration of the search space is non-mathematical, i.e. they are void of gradients and

simply rely on evaluation of fitness at different parts of the search space. Due to this

feature, these algorithms lend themselves easily to a parallel implementation, which

speeds up the search for an optimal solution. An introduction has been provided

to two such schemes, while a detailed description of the third is given in the next
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chapter. Heuristics often overcome potential problems with more mathematical tech-

niques. They can work on real and discrete spaces, they are global in nature, they are

parallel as mentioned before. Several of these techniques employ an initial stage of

randomness in order to sample the search space effectively followed by the specifics of

the algorithm. the dimensionality of the search space affects this initial sampling, but

subject to constraints of memory, if well distributed initial samples can be obtained,

then these techniques are essentially independent of the dimensionality of the search

space.

Particle Swarm optimization (PSO)

The essential premise of PSO is that potential solutions in the search space must

exchange information in order to converge quickly to global optima. This procedure

is designed to mimic social-interaction between living beings, where a better solution

to a problem found by one person/being is quickly adopted by other beings. A more

detailed exposition can be found in [19].

Ant Colony optimization (ACO)

The behavior of ants in finding the shortest possible path to a source of food

is mimicked in this algorithm. It has been observed that ants, in their search for

food, leave a trail of pheromones along the path that they have traveled. Pheromones

evaporate with time. This implies that a short path to the food source is likely to have

a longer-lasting pheromone trail. As more and more ants traverse the path and leave

trails, the pheromone concentration increases. By exploring several such trails, the

entire population converges towards the shortest trail. [20] has a detailed description

of the ACO process and some of its applications.
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Genetic Algorithms

Briefly, GA’s attempt to solve optimization problems by mimicking biological

genetic reproduction and consequent natural selection amongst members of a species

or across species. Genetic Algorithms share all of the features of heuristics discussed

above, making them an attractive choice for solving the non-trivial problem we have

posed i.e. they are global in nature, individual solutions are inherently independent of

each other facilitating parallelism, their dependence on input dimensionality is subject

to memory constraints while the number of outputs isn’t an issue, they can handle

real and discrete inputs, they can offer multiple solution choices to designers and their

execution in global multi-dimensional problems is order of magnitudes better than

local search techniques. [21] In addition to this, parallel implementations of the GA

using MPI like PGAPACK [22] have been around for quite some time, reducing the

development time for solutions considerably. The GA has been used to parametrize

materials like Si, GaAs, InAs at 300K [23] and was hence an automatic choice of

optimization technique.

It cannot be emphasized enough that our choice of GA is not unique. There

are several optimization methods that can tackle the problem we have posed, each

with their own merits and demerits. This chapter must therefore not be viewed as an

exhaustive review of pertinent techniques, but as a review of techniques we considered

while selecting a solution method. The fact that the GA clearly worked well in the

past for similar problems weighed heavily in favor of continuing to use the GA as an

approach. We shall explore the basic features of a GA in detail in the next chapter.
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3. THE GENETIC ALGORITHM(GA)

Having selected the GA for its supposed merits, we now wish to see how the GA oper-

ates and how it achieves its objective of solving optimization problems by mimicking

biological reproduction.

3.1 A brief biological background

In 1959, a naturalist named Charles Darwin published a document titled ‘On the

origin of species by means of natural selection, or the preservation of favoured races

in the struggle for life’ [24]. In this work, Darwin details how life-forms evolve and

adapt to the conditions around them and how this adaptation to local conditions

leads to specific features in creatures. Commonly referred to as ‘the survival of the

fittest’, the principle of natural selection explains the chances of survival of ‘strong’

or ‘fit’ individuals in a population and increased chances of them producing offspring

similar to themselves. The concept of biological inheritance in reproduction, first

proposed by Austrian scientist (and friar) Gregor Mendel in the 1860’s [25] received

experimental verification in the early 1900’s and a high-point was reached when the

molecular structure of DNA was discovered by Watson and Crick in 1958 [26]. In

order to understand the Genetic Algorithm, we need to first understand the biological

foundation on which it is based. In doing so we first describe the basic units of

reproduction in creatures, taken from [27]:

A gene is the basic unit of heredity in a living organism. All living things depend on

genes. Genes hold the information to build and maintain an organism’s cells and pass

genetic traits to offspring. A modern working definition of a gene is “a locatable region

of genomic sequence, corresponding to a unit of inheritance, which is associated with

regulatory regions, transcribed regions, and or other functional sequence regions.”
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The total complement of genes in an organism or cell is known as its genome, which

may be stored on one or more chromosomes; the region of the chromosome at which

a particular gene is located is called its locus. A chromosome consists of a single,

very long DNA helix on which thousands of genes are encoded. Figure 3.1 shows a

schematic picture of a biological chromosome and it’s component genes.

Fig. 3.1. Biological Chromosome and component genes

Simply (but somewhat incompletely) put, a gene is a strand of DNA representing

a physical trait in an organism. Genes are stacked side-by-side to form a chromosome

and thus chromosomes can be said to contain the sum total of all physical traits of

an organism, i.e. the blueprint of an organism. In natural selection, mating between

individuals puts into motion processes that combine chromosomes from each of the

two individuals and produce new chromosomes that on the whole retain certain char-

acteristics of the parent chromosomes through crossover while otherwise introducing

completely new information through mutation. Thus characteristics that enable an
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organism to survive in an environment are passed on to its offspring, while new char-

acteristics that enable the offspring to adapt to changes in environment are developed

in the process.

3.2 The algorithm proper

The credit for explicitly formulating the principles of GA’s goes to John Holland,

who, in his 1975 work titled ‘Adaptation in Natural and Artificial Systems’ [28] in-

troduced a formal framework for predicting the quality of the successive generations

of possible solutions to a given optimization problem. We now describe in detail the

building blocks of a Genetic Algorithm. For the purpose of illustration, let us assume

that our optimization problem consists of trying to find the minimum of the following

function

z = f(x, y) = x exp−x2
−y2 where− 2 ≤ x, y ≤ 2 (3.1)
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Fig. 3.2. z = f(x,y) = xexp−x2
−y2 where− 2 ≤ x, y ≤ 2(3.3)
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3.2.1 The Gene

The algorithmic gene is an encoded representation of an input variable. We could

chose a floating point representation/real number representation for our problem, or

an integral representation or a binary representation. For the toy problem we are

considering, we use real encoding. We decide to encode each input variable as a real

number in our sample problem x = 0.123456, y = 0.17634.

3.2.2 The Chromosome

The algorithmic chromosome is a collection of encoded genes. It is therefore an

encoded representation of a potential solution to our optimization problem. Since in

an algorithmic representation, there isn’t any difference between an individual and a

chromosome, we shall use the term individual and chromosome interchangeably. In

our example, the real representation of X and Y collectively produces a chromosome

of the following type :

[x, y] = [0.123456, 0.17634]; (3.4)

3.2.3 Fitness of an individual

The fitness of an individual is an objective determination of how good a solution

is to a given problem. In single-objective implementations it is taken to be a single

number that indicates how close a potential solution is to the optimum. In the

above problem, the fitness is simply the value of z at each [x,y] tuple. Fig 3.4 shows

two chromosomes [x1,y1] = [0.1234,0.1425] and [x2,y2] = [0.1768, 0.1111]. The fitter

individual will be that combination of x and y for which z is minimum; in this case

[x1,y1] = [0.1234,0.1425] is the fitter individual of the two.

Having defined the building blocks of the algorithm, we now discuss the working of

a GA in discrete steps. For a more detailed exposition on the subject, please refer

to [29].
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Fig. 3.3. The initialization process

3.2.4 Initialization

In the first step, we randomly generate a number of individuals. This set of in-

dividuals is termed as the first generation. The random number distribution can be

uniform in case one has no idea about the possible location of a solution. Alter-

nately, from the knowledge of the problem, we can draw these random solutions from

a Gaussian distribution or a normal distribution in order to narrow down our search

space considerably. The second case is desirable for quicker convergence. The ini-

tialization step is essential to sample the search space broadly since the optimization

landscape for an n-dimensional problem is very complex. Conversely if the initializa-

tion is Gaussian, then it helps sample as many points close to the initial solution as

possible.
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3.2.5 Evaluation and Ranking

Here, the randomly generated individuals are evaluated for their fitness. A Fitness

evaluation usually involves running the actual math/physics functions that need to

be optimized and computing a number that represents the fitness of a chromosome.

The individuals are then ranked according to their fitness value.

3.2.6 Selection

a) Tournament Selection: Here the fittest ‘n’ individuals find representation in

subsequent generations. b) Proportional Selection: Here, the probability of an indi-

vidual making it to the next generation is proportional to its fitness. This method

does not guarantee that the fittest individual makes it to the next generation. Selected

Fig. 3.4. The fitness of an individual

individuals are termed ‘parents’ and are ‘mated’ and modified in subsequent steps to

form new populations. We shall discuss two primary mating operations, Crossover

and Mutation that are central to a standard GA.
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Fig. 3.5. The Mating process

3.2.7 Crossover

Parents selected from a previous population are mated to produce ‘children’. The

process is probabilistic (with the probability decided by the user depending on the

nature of the problem), analogous to natural reproduction where mating parents

may not necessarily produce children. However, this probability is not linked to the

fitness of individuals as it is in nature. The simplest form of crossover is a single

point crossover. Here, a gene is selected at random from a parent chromosome.

The position of this gene in the chromosome is called the locus of crossover. Two

parent chromosomes are aligned at their respective locii and the information to the

right/left of each is swapped to form two new solutions. The essential power of the

GA is manifested in this step. Fig 3.6 shows a schematic picture of the crossover

process. Children solutions produced by crossover may or may not be fitter than

parent solutions (In Fig 3.6 C4 is fitter than C2). In case they are fitter, they find

representation in subsequent populations, while if they aren’t they are likely to be

weeded out by the selection step mentioned previously. It should be emphasized that

the notion of schemata [28] proposed by Holland as an explanation to the improvement

of fitness in a GA is disputed. It can be seen, however, that a crossover at worst
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Fig. 3.6. An example of crossover in a real-encoded chromosome

produces inferior offspring which are discarded in subsequent generations, and at

best produces superior offspring. Crossover is an exploitative operator, since it has a

chance of exploiting strengths of parents to form fit children. Several varieties of the

crossover operator exist and the reader is referred to [29] for details.

3.2.8 Mutation

When the above steps are repeated several times, one notices a certain homo-

geneity in the population owing to an improvement in average fitness. This leads

to a lack of diversity amongst solutions and a cessation of exploration of the search

space. In optimization parlance, the individuals are stuck at a local optimum that

may or may not be a global optimum. Frequently, an operator called the mutation

operator is used to remedy this situation by modifying a small number of individuals

in the population. This is akin to biological mutation where diversity is introduced

in the population by a mutation in a gene. While this mutation may or may not af-

fect fitness considerably, if it does, it produces a solution that is better than existing

solutions without crossover. If it degrades fitness it gets weeded out in subsequent

selection. In Fig 3.7 we see how mutation can improve the fitness of a chromosome.
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The x value of the chromosome is subtracted by 0.1 and it leads to a fitness that is

one order of magnitude better than the fitness of the original chromosome. From the

Fig. 3.7. An example of mutation in real-encoded chromosomes

above definition it can be seen that mutation is an exploratory operator.

When the above steps are repeated several times (to account for the probabilistic

nature of the algorithm), one converges rapidly towards acceptable solutions. It may

be argued (incorrectly) that random sampling of the search space produces similar

results. There may be a chance of this happening in an odd trial, but on an average

a GA always performs better than a random search. This is because a random search

has no information storage and processing like a GA does and consequently, has

no guarantee of improvement of fitness. The GA carries an implicit guarantee, if

implemented correctly, that fitness at best improves and at worst remains constant.

Before ending this chapter, it might be useful to note the following:

1) Individuals in a generation are independent of each other. Their fitness can be

evaluated independently of other individuals. Thus, a GA implicitly allows parallel

execution. Parallel execution implies that one can evaluate a large number of poten-

tial solutions in the same time that an iterative process would evaluate just one.

2) The evaluation step represents a clear delineation between the algorithm and the

physics/math of the problem. The calculation of the fitness is problem dependent.

3) The GA does not guarantee convergence, but it’s features do give acceptable solu-

tions in relatively short durations.

4) The operations enlisted form the Standard GA. This is the form that resembles
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natural selection. Our central objective is to find a suitable solution and the defini-

tions mentioned are not hard and fast rules. Several variations exist, but the essential

philosophy of the GA remains the same regardless of a particular implementation i.e:

‘Statistical Survival of fit individuals in a population and the increased probability of

them mating to produce fitter individuals’.

Having seen the features of the GA, we now discuss its application to TB param-

eterization in the next chapter.
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4. TB PARAMETERIZATION USING GA’S -

METHODOLOGY

Having seen the motivation behind the current work and the working of a GA, we

are now in a position to discuss the application of the GA to our main problem: i.e.

the TB parameterization of semiconductors. We briefly discuss the salient features of

TB that make it attractive to model nanoscale devices. The methodology followed is

essentially that mentioned in Klimeck et al. [23]

4.1 TB models: appeal, problems and challenges

4.1.1 Appeal

Nano-scale devices are characterized by material and potential variations on the

length scale of a few atoms. The essential premise of the TB method is the rep-

resentation of a single electron wave function as a linear combination of atomic (or

atomic-like) orbitals. This indicates that the TB method may be able to capture

the effects of nano-scale spatial variation in material nature and potential (and hence

charge density) on an atomic scale rendering it useful to model nano-scale devices [9]

4.1.2 Problems

The appeal of the TB approach is offset by the fact that the basic building blocks

of the method are not gaps and effective masses, but interaction energies of the

various orbitals superposed to represent the eventual wave function. In addition to

this, material parameters, such as band gaps, energies and carrier effective masses at

high-symmetry points, are non-trivially related to the interaction energies. There is

no quantitative way to tell how a particular parameter affects a particular physical
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quantity, one can only solve for the eigenvalues of the material Hamiltonian and

directly compute these quantities. In addition to this, nano-scale devices have atomic

positions that vary drastically from their positions in a crystalline material, due to

the presence of strain in these devices. This changes the coupling between the orbitals

and hence the electronic structure.

4.1.3 Challenges

One must therefore not only be able to obtain the bulk band structure of a crys-

talline material reliably so that it matches experiment, one must also be able to

include the effects of strain in these models to ensure that the parameters are trans-

ferable to realistic device models. In addition to this, the multi-dimensional nature

of the optimization problem [Refer to chapter 2 and 3 for details] implies that a given

parameterization is valid insofar as it is fit to represent certain parameters correctly.

e.g. If we wish to model electron transport, the physical features of primary interest

are the slope of the band structure near the conduction band minimum and the value

of the conduction band minimum itself. On the other hand to model optical devices,

we must ensure that energy gaps and valence and conduction band optima are fit

within reasonable error margins.

The above challenges imply that in order to obtain a general, transferable set

of parameters, we need a optimization method that can fit several outputs, handle

arbitrary numbers of inputs and yet give acceptable fits in reasonable times. We have

seen in previous chapters how the GA is an acceptable method in the light of these

challenges. We now describe the parameterization process.

4.2 TB Parameterization - Overview

The TB parameterization process is divided into 4 distinct stages as follows:

1) Selecting a bulk TB model and its modification under strain.

2) Obtaining output values to be fit.
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3) Optimizing TB parameters.

4) Validating obtained parameters.

4.2.1 Selecting a bulk TB model and its modification with strain

Zero strain

The TB method suffers from an inherent drawback that the electron wave function

is constructed from an incomplete basis [9]. In order to obtain band structures that

match experiment, and otherwise make sense physically, it is necessary to choose a

sufficient number of orbitals to construct the basis. For tetrahedral semiconductors

such as InAs, GaAs, AlAs and Si, it has been seen that choosing a sp3s* basis predicts

that the effective mass at the X point is infinity [23]. This problem is alleviated by

selecting a larger basis, including the 5 d-orbitals. This factor increases the compu-

tational complexity of the process, since greater number of orbital interactions must

now be included. We use an sp3d5s* basis as outlined in [30]. The NanoElectronic

MOdeling - 1D tool (NEMO) [31] that implements this model is used to calculate the

band structure of the given semiconductor along a specified direction.

Finite Strain

Under the action of strain, the interactions between the orbitals are modified on

account of a change in lattice spacing. The changes in the Tight Binding Hamiltonian

with strain are outlined in references [32] and [30]. In realistic devices containing

several millions of atoms, such as quantum dots and quantum wells, the strain need

not be homogeneous and a parameterization that handles arbitrary strains is desired.

The parameterization under strain mentioned in [32] handles arbitrary strains in the

elastic limit.
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4.2.2 Obtaining target values

Zero strain

Where possible, experimental values are used as the outputs to be fit. Our prin-

ciple source for experimental data is the exhaustive listing of zincblende material

properties provided in Madelung [33], Vurgaftman et al. [34] and Adachi [35]. These

references contain experimental values of conductivity effective masses, band edges

at high symmetry points, band gaps at high symmetry points, variation in band gaps

with temperature, variation of lattice constants with temperature and similar such

useful data. Parameters such as band edges, k -values at high-symmetry points, band

gaps that can directly be extracted from the calculated band gap are compared with

these experimental values obtained from this handbook. The band structure effective

masses at high symmetry points, that correspond to the slope of the bands at these

points, are not obtained from experiment. We use the theoretical values provided

in [34] as the masses to be fit in this case.

Finite Strain

It has been long known that strain modifies the electronic structure of semicon-

ductors [5] besides modifying their structural properties. This effect has been used

to create bulk, strained crystalline materials that have better device performance

than their unstrained counterparts [36]. Semiconductors have also been observed to

have in built strain when grown epitaxially on lattice mismatched substrates. This

built in strain, beyond a threshold causes spontaneous formation of islands of the

epitaxially grown semiconductor in the so called Self- assembly or Stranki-Krastanow

process [37]. This process is the basis for growth of a variety of novel nanostructures

such as self-assembled semiconductor quantum dots. Bulk electronic structures have

historically been calculated assuming the valence band maximum to be the reference

zero energy point. In semiconductor nanostructures, the presence of multiple ma-
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terials complicates this process and the valence band maximum of one material is

assumed to be the reference zero energy point and all other energies of technological

interest are calculated offset to this reference. The theoretical values of these energy

offsets are provided by the ’Model Solid Theory’ described in [38]. This same reference

also describes the effect of hydro-static strain and bi-axial strain on the conduction

and valence band edges. We use this theory to find values of band edges and gaps

under strain. Fig 4.1 is an example of the theoretical variation with strain obtained

from van de Walle’s parameterization and the fits we obtain using our GA process.
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Fig. 4.1. Band gaps and band edges at Gamma for GaAs and InAs
at 4K. Solid lines indicate theoretical fits. Circles are our calculated
values.
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4.2.3 Optimizing TB parameters

The optimization procedure itself is split up into several parts.

Choice of software

We make use of the Parallel Genetic Algorithm PACKage (PGAPACK) [22] as

the software module that implements the Genetic Algorithm. PGAPack has several

useful features such built-in libraries for parallel execution, a transparent interface

that allows users to define custom data-types and GA operators such as crossover,

mutation, etc. It also has a very useful User Guide that significantly reduces devel-

opment time related to the GA. The interface between the band-structure code and

the GA code ensures that the band-structure code is opaque to the GA. The only

interaction involves the return of a floating point number representing the fitness of

a string to the GA.

Initialization (done by GA)

We use a real number encoding scheme for the genes in our algorithm. Each gene

represents a matrix element of the Hamiltonian or a strain-related parameter that

modifies this matrix element. Each chromosome is simply a contiguous collection of

these real-numbered genes. As mentioned in the previous chapter, the initialization

step involves generating a large number of chromosomes/individuals to form an ini-

tial population of individuals that lives in the solution space. While this process can,

in general be random, we find that restricting the range of numbers to physically

meaningful values within a certain range helps in generating meaningful band struc-

tures. The number of initial individuals generated is user-defined and is typically a

minimum of 20 times the number of input parameters to ensure sufficient sampling

of the search space.
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Evaluation (done by band structure code) and Selection (done by GA)

Each generated individual represents a unique band structure calculation. Once

the band structure is calculated, gaps, edges, masses are extracted directly from the

band structure. The errors between calculated and desired values defined in the

material database are computed. The ’fitness’ of an individual is then calculated

as a weighted sum of the square of the errors. The smaller the error, the ’fitter’

the individual. Our problem is a minimization problem. We wish to minimize the

error between the calculated and desired values to as small a value as possible. This

fitness value is then passed on through the interface to the GA which sorts and

ranks the entire population of individuals in the ascending order of fitness. The

fittest ’n’ individuals are then selected through Tournament or Proportional Selection

(described in [29]) and are used to form the next population. The calculation of

fitness and the weights assigned to individual outputs (deciding their importance)

are the most critical components of the entire GA process. Our GA process is a

multi-objective optimization since we have several outputs to be fitted. However, we

calculate just a single number which is a weighted sum of errors for each output. The

assignment of weights makes the process extremely sensitive to weights. Though not

implemented in PGAPACK, Pareto optimal fronts for an application can be coded

for multi-objective optimization [39].

Crossover and mutation (done by GA)

Selected individuals form subsequent populations by crossover and mutation. One

point, two point and uniform crossover for real values chromosomes is implemented

in PGAPACK and we use these without modification. We explored two kinds of mu-

tation operators with essentially the same net result. In the first mutation operator,

we added or subtracted a very small fraction of the gene value to the gene randomly.

In the second, we changed drastically the value of the gene by adding a large number

but still keeping the gene value within physically sensible limits. These two opera-
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tions produce an entirely new population and the steps from evaluation through to

mutation are repeated until a stopping criterion is met.

Stoppage criteria

This can either be a maximum number of iterations, a minimum fitness, a con-

dition of homogeneity in the entire population (i.e. when all chromosomes are very

much alike) or a maximum number of evaluations.

The entire GA process described above is summarized in the following process

diagram.

Fig. 4.2. TB parameterization with GA
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5. RESULTS - TB PARAMETERIZATION BY GA-NEMO

AND ITS VALIDATION IN NEMO-3D

Having seen how the GA is used to optimize TB parameters, we are now in a position

to analyze some of the results we have obtained for low temperature TB parameter-

ization of InAs and GaAs using this procedure. In this chapter, we also discuss the

validation of these parameters by benchmarking simulations against actual experi-

ment.

5.1 The InAs/GaAs quantum dot system and the need for low tempera-

ture TB parameters

Self-assembled InAs dots embedded in a GaAs substrate have been investigated

with great interest due to their unique electronic properties that arise as a result of

confinement of charge carriers in all three spatial dimensions. Due to these interest-

ing properties, InAs/GaAs quantum dots have been studied in a variety of optical

and electronic applications like photo-detectors [40], lasers [41], single electron transis-

tors [42] and more recently, as potential solid state memory devices [43] and solid-state

qubits [44] for quantum computing. In order to be accepted as potential replacements

for currently existing technologies, these devices must exhibit robust room temper-

ature operation. Prior TB studies of the electronic structure of quantum dots have

therefore correctly focussed on a room temperature TB parameterization [30]. How-

ever, a number of experiments involving InAs/GaAs quantum dots have been carried

out at low temperatures of about 4K. A number of these experiments have shown

that the photo-luminescence spectrum of quantum dots is temperature sensitive and

we cite Dai et al. [45] and Fry et al. [46] as just two examples among them. The

activation of an increasing number of phonons with temperatures also affects the spin
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coherence of electrons [47], a critical factor in qubits for quantum computation. The

above examples indicate that a room temperature TB parameterization will give in-

correct results when applied to model low temperature experiments. It is therefore

essential that a new parameterization be derived to model the electronic structure of

InAs/GaAs quantum dots at low temperature. In addition, prior detailed theoretical

studies of the InAs/GaAs quantum dot system using pseudo-potentials by Williamson

et al. [48] have been carried out at low temperature. Obtaining a TB parameteri-

zation at low temperature will help us compare our results against these theoretical

studies.

5.2 Distinct problems in the modeling of InAs/GaAs quantum dots

InAs/GaAs quantum dots grown by the Self-Assembly process [37] are charac-

terized by spatial inhomogeneity on account of strain in the structure. This strain

arises due to the large (approx 7 percent) mismatch between the lattice constants

of InAs and GaAs. Any theoretical model of the structure can be realistic only if it

captures this inhomogeneity accurately. The modeling of the electronic structure of

InAs/GaAs in the TB approach consists, then, of 3 distinct problems as follows.

5.2.1 Determination of bulk electronic structure of InAs, GaAs and its

variation with strain

Following the procedure outlined in the previous chapter, a bulk TB parameteri-

zation is first carried out. The InAs bulk band structure is offset to the GaAs valence

band maximum during the parameterization. A comparison of the low temperature

bandstructure with room temperature band structure is carried out as a first order

sanity check. It is essential to ensure that the parameterization reproduces all bulk

band symmetries and the correct magnitudes of energy gaps and edges. It must also

be ensured that the parameters obtained are physically meaningful, implying that the
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signs and relative magnitudes of these parameters must reflect the physical quantities

they are supposed to model.

5.2.2 Determination of Atomic Structure of the dot

The Born-Oppenheimer approximation [7] allows the atomic degrees of freedom

to enter electronic structure calculations as fixed parameters. However, the fact that

the atomic positions affect the eventual electronic structure indicates that these po-

sitions must be determined to a high level of accuracy to model electronic structure

accurately. In bulk materials, symmtery greatly reduces the error in determining

atomic positons. However, in nanostructures such as quantum dots, the presence of

inhomogeneous strain and the size of realistic dots (of the order of millions of atoms)

complicates matters and it is important to model these effects correctly to determine

eventual atomic structure.

5.2.3 Determination of electronic structure of the InAs/GaAs quantum

dots

Having determined atomic structure of the quantum dot, we construct a TB

Hamiltonian using the bulk parameterization. We then solve for its eigenvalues and

eigen-vectors. This process is usually time consuming as one must solve a eigenvalue

problem for a matrix of the order of millions. Having obtained the electronic structure

of the dot, we then compare these results to experiments.

The results of each of these three stages for low temperature InAs/GaAs dots will

now be discussed separately.
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5.3 Bulk Electronic Structure of InAs and GaAs at 4K and variation with

strain

In order to generate the TB parameters, an interface of GA and NEMO described

in the previous chapter was used. Diagonal parameter shifts and scaling of two

center integrals was obtained from the the theory of Boykin et al. [32] implemented

in NEMO.

In Table 5.1 we list the on-site energies and the two center integrals in the Slater-

Koster (SK) [49] notation for the sp3d5s* model [50]. The bulk band structure of

InAs and GaAs at Low Temperature (4K) and Room Temperature (300K) generated

from the parameters of table 5.1 and [32] are shown in Fig 5.1.

From this band structure we extract technologically relevant effective masses and

band edges and present them in Table 5.2 along with target masses and edges obtained

from experiment and theory [33] [34]. It is evident that the TB parameters thus

generated reproduce these masses and band edges accurately. An examination of the

band gaps (and band optima) in InAs and GaAs at Low Temperature and Room

Temperature shows that the direct and indirect energy gaps at 4K are larger than

their 300K counterparts as should be expected. At both 4K and 300K, InAs energies

are offset to the valence band of GaAs, taken to be the zero energy reference.

In Table 5.3 we list parameters for strained systems at 4K. It must be noted at

the outset that in generating these parameters, an assumption of elasticity has been

made, even for higher strain values. While this assumption is not strictly valid, it

has been used in the absence of a theory that handles arbitrarily large strains beyond

the elastic limit. The SK two center integrals were scaled according to a generalized

version of Harrison’s η = 2 scaling law [51]

U = U0(d0/d)
η (5.1)

Here U0 is an ideal unstrained two center integral while d0 and d are bond lengths

in unstrained and strained materials respectively. The constants C representing the

shift in onsite energies due to strain are also shown in the table.
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Table 5.1
Low Temperature unstrained TB parameters

Parameter InAs GaAs

Ecs -5.6462 -5.6462

Ecp 4.322525 4.322525

Ecss∗ 21.17908 21.17908

Ecdd 13.21109 13.21109

λc 0.184481 0.184481

Eass∗ 22.44819 20.95755

Eas -1.11625 -0.19341

Eap 5.988797 5.052347

Ead 12.91644 11.89319

λa 0.117136 0.021002

sasc -1.77843 -1.77486

s ∗a s∗c -4.07846 -2.81242

s ∗a sc -2.61516 -2.40899

sas∗c -3.07826 -0.68952

sapc 3.091671 2.945532

scpa 2.463171 3.618029

s ∗a pc 2.129011 2.928687

s ∗c pa 0.429437 2.045608

sadc -2.7976 -1.26743

scda -1.14575 -3.29464

s ∗a dc -2.52751 -0.78685

s ∗c da 3.153259 -0.36524

ppσ 4.095 4.214353

ppπ -1.53709 -1.53618

padcσ -1.90317 -2.10917

pcdaσ -1.167 -1.10345

padcπ 2.364101 2.024289

pcdaπ 2.578959 2.365867

dcdaσ -2.1672 -1.74846

dcdaπ 2.136146 2.35935

dd∆ -0.99874 -1.36161
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Table 5.2
Energies, band gaps and k points at 4K

Quantity GaAs calculated GaAs Target % deviation InAs calculated InAs Target % deviation

Eg-gamma 1.5383092 1.5382 0.007099207 0.417766 0.418 0.055980861

Ec-gamma 1.5383087 1.5382 0.007066701 0.6435875 0.6437 0.017477086

Vhh -0.0000006 0 – 0.2258215 0.2257 0.053832521

Vlh -0.0000006 0 – 0.2258215 0.2257 0.053832521

Vso -0.3082936 -0.34 9.325411765 -0.1543033 -0.1543 0.002138691

Delta-so 0.308293 0.34 9.325588235 0.3801247 0.38 0.032815789

E-X 1.899928 1.9 0.003789474 2.2799501 2.28 0.002188596

E-L 1.7079764 1.708 0.001381733 1.5300286 1.53 0.001869281

k-X 0.9 0.9 0 0.9 0.9 0

k-L 1 1 0 1 1 0

Electrons

mstar-c-001 0.0658386 0.067 1.733432836 0.0229801 0.0239 3.848953975

mstar-X-long 1.3003649 1.3 0.028069231 1.1751791 1.3 9.601607692

mstar-X-trans 0.2288044 0.23 0.519826087 0.1603539 0.23 30.28091304

mstar-L-long 1.8996865 1.9 0.0165 1.6289335 1.9 14.26665789

mstar-L-trans 0.1102078 0.0754 46.16419098 0.0802688 0.0754 6.45729443

Holes

mstar-lh-001 -0.0826915 -0.0871 5.061423651 -0.0281261 -0.0273 3.026007326

mstar-lh-011 -0.0731901 -0.0804 8.967537313 -0.0270091 -0.0264 2.30719697

mstar-lh-111 -0.0709123 -0.0786 9.780788804 -0.0266759 -0.0261 2.20651341

mstar-hh-001 -0.3106723 -0.403 22.91009926 -0.3258846 -0.3448 5.485904872

mstar-hh-011 -0.6059149 -0.66 8.194712121 -0.6236339 -0.6391 2.419981224

mstar-hh-111 -0.8233913 -0.813 1.278142681 -0.8766644 -0.8764 0.030168873

mstar-so-001 -0.1511486 -0.15 0.765733333 -0.0942714 -0.15 37.1524
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Table 5.3
Low Temperature strain parameters

Parameter InAs GaAs

ηss∗σ 0 0

ηs∗s∗σ 2.122098 5

ηssσ 0 0

ηspσ 0 1.151641

ηppσ 0.604445 4.338978

ηppπ 0 0

ηsdσ 0 0

ηs∗pσ 2.490183 0.238984

ηpdσ 4.442049 3.100839

ηpdπ 0.938528 0

ηconst 1.507385 1.196034

ηddσ 2.700428 2.410947

ηddπ 2.507279 0

ηdd∆ 0 0

ηs∗dσ 2.436776 5

Css 0 2.223464

Cs∗s∗ 3.299733 5

Cs∗as 4.867499 0

Csas∗ 0 4.932335

Csapc 5 3.462799

Cpasc 4.842725 0

Cs∗apc 5 0

Cpas∗c 3.525504 0

Csadc 0 0.646123

Cdasc 5 2.032087

Cs∗adc 0 4.902844

Cdas∗c 5 0

Cpp 5 4.973038

Cpadc 0 0.655428

Cdapc 5 4.255733

Cdd 4.731473 0
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(d) InAs at 300K.

Fig. 5.1. Bulk Zero-strain Band Structures for InAs and GaAs gener-
ated by the parameters in Table 5.1 and 5.2

Band edges (direct and indirect) and gaps and their variation with strain are

of prime importance in the modeling of InAs/GaAs quantum dots and these were

given large weights in the fitting of parameters. Figure 5.2 shows the variation of

the conduction band minimum at Γ the valence band maxima for the heavy hole,

light hole and split off bands with hydrostatic and uniaxial [001] strain. Our results

follow van de Walle’s theoretical parameterization quite closely both qualitatively and

quantitatively.
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(b) GaAs - Hydrostatic Strain
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Fig. 5.2. Band gaps and band edges at Gamma for GaAs and InAs
at 4K. Solid lines indicate theoretical fits. Circles are our calculated
values.

It is interesting to note that the variation of the direct band gap with uniaxial

strain is quite small in magnitude as compared to its corresponding variation with

hydrostatic strain. This observation directly affects our study of InAs/GaAs quantum

dots, since it must be expected that apart from confinement, the fact that the InAs

dot is strained plays an important role in determining the optical gap of these dots.

In addition to these results, Fig. 5.3 shows the variation of the bulk band gap with

temperature for InAs and GaAs as obtained with our TB parameterization. We

also obtained three independent parameterizations to fit Varshni’s relation [52] as
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shown in Fig. 5.3. We treated these parameterizations independently of each other,

i.e. no attempt was made to find a pattern in the variation of TB parameters with

temperature. While the gaps at 77K and 4K were chosen to fit the Varshni relation

quite closely, the previous parameterization of Boykin et al. [32] chooses the gap

at 300K to be 0.37 eV. Since we used the unstrained parameters mentioned in this

work, our calculated gap at 300K is about 20meV higher than that expected from

the Varshni relation.
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Fig. 5.3. Energy gaps at Γ: Varshni relation vs. our calculated values

To ensure that our TB parameterization behaved correctly under strain and con-

finement and produced larger band gaps than room temperature at all strains, we

simulated free standing, rectangular InAs cubes of edge 5 nm in NEMO-3D at 4K

and 300K. We manually adjusted the lattice constants of the InAs box to correspond

to hydrostatic strain, which was varied from 0 to -8 percent. Figure 5.4 shows the

variation of the band gap of this free-standing box versus strain and temperature.

The optical gap (difference between ground state electron and hole levels in the box)

shows a linear increase with increasing compressive strain at both 4K and 300K.
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The optical gap at 4K is uniformly larger than the 300K value. Since the spatial

confinement is the same in all 3 cases, the variation with hydrostatic strain should

be expected to qualitatively follow bulk values (not quantitatively, since in bulk we

assume periodic boundary conditions, while we assume closed boundary conditions

in the box).
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Fig. 5.4. Optical gaps (difference between ground state electron and
hole levels) in a free standing cubic InAs box of side 5 nm

In the course of this study, it was found that the 300K parameterization reported

in [32] overestimated optical gaps at hydrostatic strains greater than 5 percent. The

strain parameters ηs and Cs were then modified to ensure correct behavior at all

strains keeping the unstrained two center integrals and on-site energies the same.

The corrected values of these parameters at 300K is presented in Table 5.4 It was

ensured that the signs of the TB parameters and their relative magnitudes correspond

to physically feasible values by restricting the range that these parameters could take

in the optimization to physically meaningful values. In Fig 5.5 we show the variation

of gaps and energies at Γ obtained from the 300K TB strain parameterization for

uniaxial [001] and hydrostatic strain.



45

−5 0 5

−0.5

0

0.5

1

1.5

2

 Percentage Strain

 E
ne

rg
y 

[e
V]

 
 Eg Ec Vhh Vlh Vso

(a) GaAs - Uniaxial Strain

−8 −6 −4 −2 0 2 4
−0.5

0

0.5

1

1.5

2

2.5

3

 Percentage Strain

 E
ne

rg
y 

[e
V]

 
 Eg

Ec
Vhh
Vlh
Vso

(b) GaAs - Hydrostatic Strain
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(c) InAs - Uniaxial Strain
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Fig. 5.5. Band gaps and band edges at Gamma for GaAs and InAs at
300K. Solid lines indicate theoretical fits. Circles are our calculated
values.

Having ensured (to the extent possible) the correctness of the TB parameters thus

generated, we now investigate the atomic structure of realistic InAs/GaAs quantum

dots in NEMO-3D.

5.4 Atomic Structure of InAs/GaAs quantum dots

Before beginning a discussion on atomic structure it is imperative to say a few

words about the simulator NEMO-3D that is used for these calculations. NEMO-3D is
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Table 5.4
Room temperature strain parameters

Parameter InAs GaAs

ηss∗σ 3.413554 3.061963

ηs∗s∗σ 2.313446 3.611876

ηssσ 3.998445 1.204155

ηspσ 0.934251 4.8

ηppσ 0 2.560341

ηppπ 0 1.2

ηsdσ 0 1.832811

ηs∗pσ 1.23561 4.8

ηpdσ 3.690212 4.704001

ηpdπ 0.853037 4.159215

ηconst 1.858506 1.843388

ηddσ 5.024782 2.589812

ηddπ 0 4.8

ηdd∆ 0.501759 1.2

ηs∗dσ 5 4.8

Css 3.06707 2.264256

Cs∗s∗ 0 0

Cs∗as 0.371833 2.421205

Csas∗ 1.881896 0

Csapc 0 1.411449

Cpasc 4.389994 2.995678

Cs∗apc 1.180655 0

Cpas∗c 3.243818 1.828038

Csadc 2.897887 0

Cdasc 3.559295 0.364774

Cs∗adc 0 2.007091

Cdas∗c 4.791748 4

Cpp 3.925621 2.154247

Cpadc 0.898993 0

Cdapc 3 3

Cdd 2.936632 0
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an atomistic, 3-D, nano-scale simulator. It can calculate the electronic structure, car-

rier wavefunctions, phonon dispersions, strain distribution and number of such phys-

ically useful quantities for a variety of nano-structures. It utilizes two strain models

(to be described in this section) for atomic structure calculations and a Rayleigh-Ritz

or Lanczos solver for electronic structure calculations. It incorporates a variety of

boundary conditions for both electronic structure and atomic structure calculations.

The simulator is described in detail in Klimeck et al. [30] Realistic InAs/GaAs quan-

tum dots contain several millions of atoms. While it is desirable to simulate the

growth of these dots to match experimental techniques and capture inhomogeneous

strain effects, the enormous number of atoms in the system makes such a calculation

unfeasible. NEMO-3D uses two strain models - a quasi-harmonic Valence Force Field

(VFF) - Keating model [53] [54] and an anharmonic VFF model [55] [56] to describe

the strain energy in nanostructures. We now describe the two strain models.

5.4.1 The quasi-harmonic Keating model

The quasi-harmonic Keating model calculates the local strain energy at atomic

position i as:

Ei =
3

16

∑

j

[

α2
ij

d2ij
(R2

ij − d2ij)
2 +

n
∑

k>j

√

βijβik
dijdik

(Rij.Rik − dij.dik)
2

]

(5.2)

where the sum is over neighbours j of atom i. Here dij and Rij are the equilibrium

and actual distances between atoms i and j respectively. The parameters α and β

represent force constants for bond length and bond angle distortions respectively. In

the absence of Coulomb corrections, they are related to the bulk elastic moduli by

C11 + 2C12 =

√
3

4dij
.(3αij + βij) (5.3)

C11 − C12 =

√
3

dij
.βij (5.4)

C44 =

√
3

4dij
.
4αijβij
αij + βij

(5.5)
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In zincblende materials, modified relations to account for Coulomb effects due to

unequal charge distribution between anion and cation must be used. α and β obtained

by Martin [57] are used in this work.

5.4.2 The anharmonic Keating model

The anharmonic Keating model introduces corrections to the force constants α

and β used in the VFF model. In the anharmonic model, α and β are no longer

constants, but are dependent on strain as follows:

αij = αij
0

[

1− A
(R2

ij − d2ij)
2

d2ij

]

(5.6)

βijk = βijk
0

[

1−B(cosθijk − cosθijk0 )
]

•
[

1− C
(rijrik − dijdik)

dijdik

]

(5.7)

Here αij
0 and βijk

0 =
√

βij
0 β

ik
0 are the same force constants as in the harmonic VFF

model. cosθijk and cosθijk0 are the angles between bonds formed by atoms having

indices i,j,k in the strained and unstrained cases respectively. Constants A and C

describe the dependence of α and β on hydrostatic strain, while B describes the

dependence of beta on bi-axial strain. The values of A, B and C are taken from

Lazarenkova et al. [55]

A schematic representation of the strain energy versus bond length distortions

for the two models in shown in Figure 5.5 adapted from Lazarenkova et al. [56].

This picture, however, is inadequate as it does not describe the effect of bond-angle

distortions. A more complete profile of strain energy versus arbitrary bond length

and bond angle distortions is shown in the figure 5.5 as a coloured contour plot.

This more complete picture serves to illustrate the essential difference between the

two models. The quasi-harmonic strain energy shows a parabolic variation with both

bond angle and bond length distortions in both compressive and tensile regimes. The

anharmonic model, on the other hand shows a parabolic variation with compressive

bond length distortions but is not parabolic versus bond angle variations. In addition,
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monic model. The black rectangle indicates our region of interest, as
will be explained later on in this chapter.

the curvature of the parabolic variation with bond length distortions is greater in the

harmonic model than the anharmonic model.

In NEMO-3D the device is initially setup with both InAs and GaAs set to the

lattice constant of GaAs. This implies that the InAs is lattice mismatched by about 7

percent and is strained severely as a result. The total strain energy in the structure is

calculated according to the above models and is then minimized by using a conjugate

gradient energy minimization at each atomic position in the structure. The relaxed

atomic structure so obtained is then used for electronic structure calculations. The
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electronic structure of the InAs/GaAs dots obtained after using relaxed atomic po-

sitions obtained from the two different models differs in terms of energy offsets and

absolute energy gaps. In the following section we discuss these results in details and

offer explanations for the differences in results.

5.5 Electronic Structure of InAs/GaAs quantum dots

Once the relaxed atomic positions are known, an atomistic Tight Binding Hamilto-

nian is constructed for the quantum dot. NEMO-3D allows for a variety of boundary

conditions. For the purpose of this study we used periodic boundary conditions, im-

plying that our system is essentially not a single quantum dot but a 3-D periodic

array of quantum dots. The eigenvalues and eigenvectors of this Hamiltonian are

then calculated. NEMO-3D has a variety of parallel eigenvalue solvers as described

in [30] and we use a parallel Lanczos solver for our calculations.

Before describing our results in detail, it must be noted that there are several

experimental uncertainties that prevent absolute matching of results. The primary

experimental uncertainty is that the amount of Ga that has diffused into the dot dur-

ing nucleation (formation of the dot)and overgrowth (surrounding InAs with GaAs)

is unknown experimentally [48]. The diffusion of Ga into the dot has the effect of

increasing the optical band gap and altering the overall electronic structure. Another

experimental uncertainty is the size of the dot. We have varied the sizes of simulated

dots in order to make sure we get results that have correct qualitative trends. Finally,

we compute strain in our models by initially setting the lattice constant of the InAs

to equal that of GaAs. The initial stages of growth of an InAs quantum dot (before

surrounding the dot with GaAs) are volume conserving steps [58]. This implies that

the in-plane compressive strain in InAs must be accompanied by a out-of-plane tensile

strain. While deposition of large quantities of GaAs after the growth of the dot forces

the InAs to strain compressively on an average, it must be expected that there will

some tensile strain in the dot due to the initial relaxation out of the plane. However,
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in NEMO-3D, relaxation from an initially large compressive strain in InAs ensures

that no InAs bonds will be tensile in nature on relaxation, since they are surrounded

and outnumbered by GaAs several times over.

NEMO-3D enables the user to choose a variety of outputs mentioned previously.

Our chief interest was in calculating the excitonic gaps for our structures. The exci-

tonic gap calculated by NEMO-3D is essentially the difference between electron and

hole ground states calculated assuming a single electron TB model. In order to model

the excitonic gaps correctly, an additional correction due to excitonic Coulomb inter-

actions must be subtracted from the NEMO-3D result. In the dots we simulated this

correction is between 30-50 meV as reported in another theoretical study [48].
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Fig. 5.7. Distribution of bonds in the relaxed structure for (a) InAs (b) GaAs at 4K

We simulated a variety of quantum dots using the low temperature TB parameters

and compared their excitonic gaps with experimental and theoretical results. When

the harmonic Keating model was used to model strain, the resulting excitonic gaps

were higher than experiment by about 100 meV, while the anharmonic model always

under-estimated the band gap by about 50 meV. To understand why this may be

happening, we conducted a numerical experiment. We set up the same device struc-

tures having dimensions given in Table 5.5 and allowed the atoms in the structure to

relax. On relaxation, we computed In-As bond lengths and plotted the districution
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of InAs bonds versus their precentage deviation from the unstrained bond length as

shown in Fig. 5.7. It can be seen from this figure that the anharmonic model results

in a strain distribution that is shifted towards lower strain values as compared to the

harmonic model. It can also be seen, as was previously hypothesized, that all In-As

bonds are strained compressively and a majority are between 2-5 percent compres-

sively strained. Also, GaAs is strained compressively and tensile-ly within 1 percent

of its unstrained value. From the schematic picture of the strain energy versus bond

length distortion, one can conclude that this shift towards lower total strain is due

to the larger curvature of the anharmonic model in the compressive regime. A larger

curvature and near parabolic nature in this regime implies an α that is much larger

than that calculated from the harmonic model. Comparing this situation to a com-

pressed spring with the same initial distortion and larger spring constant, one can see

why the eventual distortion in the anharmonic model will always be lesser than the

harmonic model.
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Table 5.5
Optical gaps at 4K: calculated values versus experiment

Optical Gap (meV)

Dot dimensions Keating - Harmonic Keating - Anharmonic Keating - Anharmonic Experiment/Theory

(Base nm X width nm) (Fit to Harmonic) From [48] [59]

15 X 2.5 1238 1133 1207 1078

20 X 6 1184 1000 1100 1098

25.2 X 3.5 1164 1040 1132 1032

25.2 X 2.5 1178 1059 1153 1131

27.5 X 3.5 1154 1020 1125 1016
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In the absence of detailed information about Ga diffusion into the InAs dot, we

assume pure InAs dots. This is a worst case scenario in reality given the procedures

of thermal annealing that are carried out to manufacture these dots. The fact that

the anharmonic model under-estimates the excitonic gap even in the absence of the

Coulombic correction implies that we need to tune the α and β in the anharmonic

model to have a smaller curvature and thereby lead to larger eventual strains in InAs

and larger optical gaps. It must be ensured, however that the relations of equation

(5.3) through (5.5) are fit as closely as possible. Using αs and βs that do not fit elastic

constants implies that we are calculating strains for a different material altogether.

Fig. 5.8 shows the result of such a fitting procedure done using a GA. The figure is an

orthogonal projection of the values of C11, C12 and C44 versus α and β. Only those αs

and βs that resulted in elastic constants within 5 percent of their experimental values

at 4K were used. The region of intersection of the surfaces corresponds to those αs

and βs for which all three elastic constants are simultaneously within 5 percent of

experiment. Choosing the new values of α and β to be 35.78 and 6.94 respectively, we

simulated the same dots once again and we found significant increase in the optical

gap towards experimental values. These results are presented in table 5.5. We also

varied the size of these dots in order to compare our results with previous theoretical

results. In general, we find good agreement between our results and the results of

Williamson et al [48]. On varying the size of the dots, our results show the same

trends and are numerically in close agreement with experiment and theory.

The next chapter discusses other projects attempted and future directions for the

work described in this thesis.
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6. ATTEMPTED AND FUTURE WORK

The GA is an extremely versatile optimization algorithm. In this chapter we discuss

some other optimization projects done using the GA in the course of this work. We

also discuss some of the deficiencies in the current implementation of PGAPack and

suggest improvements that can be undertaken.

6.1 Optimization engine for the nanoHUB

The nanoHUB is a web-based resource for research, education and collaboration

in nanotechnology [60]. The nanoHUB contains several research-quality simulation

tools in several sub-fields in nanotechnology and requires nothing but a Java enabled

web-browser in order to use these tools. It was envisaged to create an optimization

engine for the simulation tools on the nanoHUB keeping in mind the frequent need

for optimization mentioned previously. The following are some of the desired features

of an optimization toolbox for a multi-tool environment like the nanoHUB:

1) The toolbox must interface with Rappture [61], the architecture driving the tools

on the nanoHUB.

2) The toolbox must be modular. Rather than create a specific optimization toolbox

for each tool, it is preferable to keep the optimization toolbox separate and invoke it

from each tool through a Rappture interface.

3) If point (2) holds it implies that there should be a unique and transparent way of

specifying fitness for each tool without being tool-dependent.

4) Since tools have a varying number of parameters, it is desired that the optimiza-

tion toolbox introduce parallelism in its execution to speed up the execution process.

This involves two discrete steps: the first step involves the selection of an optimiza-

tion method that can be parallelized, while the second step requires Rappture to be
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able to execute individual tools in parallel. The subtle difference between the two

steps is further explained below.

Our previous experience with the inherent parallelism of the GA made it an auto-

matic choice for implementing the core optimization algorithm. In order to interface

the GA core to the Rappture interface, the Rappture optimization API (Application

Programming Interface) was created with the above requirements in mind, on which

subsequent modifications were made and additional wiring was added for greater

functionality in terms of control provided to end-users of the optimization toolbox.

Features (2) and (3) above presented themselves as unique challenges never imple-

mented elsewhere. The Rappture interface is currently able to launch a single tool

at a time. In order to have a parallel optimization operation, it would be necessary

to launch several runs of a single tool in parallel, each run containing different input

parameters for the same tool (corresponding to individuals/chromosomes). Some ef-

forts have been made in this direction. However, this exercise is considerably time

consuming from the point of view of development and it was decided to designate this

task as work that could be undertaken in the future. Problem (2) is also designated as

a task that can be undertaken in the future. A serial execution of Genetic Algorithms

that interfaces with Rappture has been demonstrated for the Quantum Dot Lab tool

on the nanoHUB.

In addition to Genetic Algorithms other parallel optimization approaches includ-

ing some of the approaches mentioned in earlier chapters could be integrated into the

Rappture API and the API has a provision for this purpose.

6.2 TB parameterization of Antimonides

The lack of a suitable strain parameterization better than the work of Jancu et

al. [50] for Antimonide materials led to an attempt at parameterizing InSb, GaSb

and AlSb. As of now, we have 300K TB parameters for each of these semiconductors
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when they are bulk, unstrained materials. Strain parameterization is underway and

the results are awaited.

6.3 Force Field Optimization

In place of time consuming ab-initio calculations for materials, it is desirable to

model the forces between atoms in a material by using force fields and then obtain

strained relaxed energy structures using the force fields so parameterized. We are

currently working on a parallel GA immplementation of a ForceField optimization

for Ni-Ni and Ni-Ti alloys. Serial GA runs have so far failed to yield minimum strain,

energy and force structures and a parallel implementation is therefore desired.

6.4 Deficiences in current implementation of the GA and scope for future

work

The main deficiency in the current implementation of the GA by PGAPack is the

sensitivity of the material parameterization to the weights assigned to various outputs

in the fitting process. It was frequently observed that minor variation in weights often

led to entirely unpredictable results. Also, the assignment of weights in the process

is arbitrary and can never be considered as something that can be adopted across

the board for all materials. This senstivity affects the amount of time required to

obtain an accurate material parameterization. As mentioned in chapter 5, the GA

treats the parameterization as an optimization problem. In order to obtain physically

meaningful values, it is necessary for the designer to carefully assign ranges of allowed

values for parameters. It is therefore desirable that the parameters be derived from

a more detailed and physically meaningful ab-initio calculation.
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7. SUMMARY AND CONCLUSIONS

In chapter 1 of this thesis we motivated the need for optimization in nano-electronics.

Chapter 2 was an overview of some optimization techniques and their suitability to

the problem of TB parameterization. This led to the motivation for the selection

of the GA as our optimization algorthm. Chapter 3 discussed the working of the

Genetic Algorithm. We saw how features such as crossover and mutation helped

towards getting optimum solution. Chapter 4 discussed some of the motivations

behind the use of the TB approximation and the methodology of generating and

optimizing these parameters using the GA. Chapter 5 presented the main results of

this work, parameter sets for InAs and GaAs at 4K and strain parameter sets for

InAs and GaAs at 300K. In this regard, some of the main conclusions are as follows:

1. The parameterizations obtained for InAs and GaAs at 4K are physically mean-

ingful. The band energies and effective masses at high symmetry points match

experimental and theoretical values quite well.

2. New 300K strain parameters were obtained to correct deficiencies in earlier

parameterization.

3. The 4K and 300K strain parameterizations match the theoretical values of van

de Walle [38] quite closely.

4. No effort was made to find a pattern in the variation of the TB parameters with

temperature. Both parameterizations were treated as independent problems.

5. Atomic structure effects were found to be particularly important during the

validation of the TB parameterization. In particular, effects of parabolicity

of the strain energy were studied. It was found that in almost all cases, the

harmonic model over-estimated the optical gap of InAs/GaAs quantum dots,
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while the anharmonic model significantly underestimated the optical gap, in

spite of not adding corrections for excitonic Coulomb interactions.

6. New values of α and β were obtained for the anharmonic model by fitting it to

the harmonic model in the compressive regime. It was found that this brings

the optical gap closer to experiment.

7. Further investigation into the role of atomic structure is needed, although, even-

tually, experimental uncertainties like dot composition and size prevent us from

modeling these dots with absolute accuracy.

Eventually, we discussed some other work undertaken as part of our work with the

GA and some scope for further work in this area.
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