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Abstract. Recent improvements to existing HPC codes NEMO 3-D and OMEN, combined 
with access to peta-scale computing resources, have enabled realistic device engineering 
simulations that were previously infeasible.  NEMO 3-D can now simulate 1 billion atom 
systems, and, using 3D spatial decomposition, scale to 32768 cores.  Simulation time for the 
band structure of an experimental P doped Si quantum computing device fell from 40 minutes 
to 1 minute.  OMEN can perform fully quantum mechanical transport calculations for real-
word UTB FETs on 147,456 cores in roughly 5 minutes.  Both of these tools power simulation 
engines on the nanoHUB, giving the community access to previously unavailable research 
capabilities. 

1.  Introduction 
The rapid progress in nanofabrication technologies has led to the emergence of new classes of nano-
devices, in which the quantum nature of charge carriers dominates the device properties and 
performance. The need for atomistic-level modeling is particularly clear in studies of quantum dots. 
Quantum dots are solid-state structures capable of trapping charge carriers so that their wave functions 
become fully spatially localized, and their energy spectra consist of well-separated, discrete levels. 
Existing nanofabrication techniques make it possible to manufacture quantum dots in a variety of 
types and sizes [1]. Among them, semiconductor quantum dots grown by self-assembly (SADs), 
trapping electrons as well as holes, are of particular importance in quantum optics, since they can be 
used as detectors of infrared radiation [2], optical memories [3], and single photon sources [4]. Arrays 
of quantum-mechanically coupled SADs can also be used as optically active regions in high-
efficiency, room-temperature lasers [5].  

Atomic scale modeling is also critical for studying concepts such as silicon-on-insulator ultra-thin-
body (UTB) devices [6], multi-gate nanowires [7-8], and band-to-band tunneling field-effect 
transistors (TFETs) [9-10].  In these regimes, classical simulation approaches, such as the drift-
diffusion [11] and effective mass [12] models, do not correctly capture the strong quantization effects, 
which influence device performance. 

The goal of this paper is to present new capabilities that have been added to our Nanoelectronic 
Modeling tool set. We are in the process of developing, in OMEN, a single code that will include the 



 
 
 
 
 
 
functionality of the well-established NEMO 3-D code for strain and electronic structure computations 
as well as a new capability to solve the challenging 3D quantum transport problem.  OMEN is 
designed to run efficiently on large NSF Track 2 systems like Ranger, at TACC, and Kraken, at NICS. 
We believe that OMEN will be one of the premier simulation tools for the design and analysis of 
realistic nanoelectronic devices, and, therefore, it will be an extremely useful tool for the Network for 
Computational Nanotechnology (NCN) community.  

The recent advances in OMEN and NEMO 3-D include algorithmic refinements, performance 
analysis to identify the best computational strategies, and porting to state of the art HPC architectures, 
including Ranger, the BlueGene, and Cray XT5, as well as a Woodcrest Linux cluster. One important 
consequence of these enhancements is the ability to run 3D quantum transport computations.  
Performing such calculations for realistic devices is a very challenging computational problem, and it 
represents a new capability for which resources of the scale of Ranger and Kraken are essential. We 
present initial results for the transport problem on both machines. We also present results for the 
electronic structure computations based on both the NEMO 3-D code, and the new implementation in 
OMEN. From an algorithmic point of view, a key challenge for electronic structure is the extraction of 
interior, degenerate eigenvectors at this scale. These calculations have been carried out on up to 8K 
cores on the BlueGene and the Cray XT3, and for 32K cores, and 1 billion atoms, on Kraken (XT5).  

The rest of the paper is structured as follows. In section 2 we review the physical models 
underlying NEMO 1-D, NEMO3-D, and OMEN and highlight some of they insights gained from 
these models; in section 3, we describe the approach used for the parallelization of the computations. 
In section 4, we briefly describe the algorithms implemented in the packages. Section 5 has the 
performance results, including benchmark results for 3D transport up to 65K cores, and up to 32K 
cores in the electronic structure phase.  Section 6 describes the deployment of these codes on the 
nanoHUB. 

2.  Physical models 
Figure 1 shows the evolution from the NEMO 1-D and NEMO 3-D codes to OMEN. NEMO 1-D is a 
mature code that computes quantum transport for a 1D system such as the resonant tunneling diode 
shown in Fig. 1a.  A critical modeling capability is the ability to model an open quantum mechanical 
system where carriers are injected on one side of the device and extracted at the other side.  This 
constitutes a quantum statistical mechanics problem in non-equilibrium.  The non-equilibrium Green 
function formalism (NEGF) is well established [53, 54] to solve this problem where a Hermitian 
system Hamiltonian is augmented by open boundary conditions, creating a non-Hermitian system.  A 
set of Green functions is needed to compute the states in the system as well as the occupancy and 
availability of states and the transfer of carriers from one state to the next.  For an overview of the 
NEGF formalism we refer the reader to a web-page on nanoHUB.org which is authored and 
maintained by Prof. Supriyo Datta.  

There were three key insights in the modeling of resonant tunneling diodes.  One was the need to 
model extended devices through novel boundary conditions [55] which includes quantum charge self-
consistency and strong ineleastic scattering or quasi equilibrium in the contacts.  The second key 
insight is that inelastic scattering from acoustic and polar optical phonons, alloy disorder, and interface 
roughness in the central device region can be modeled quantitatively in NEGF [56-59] and compare 
well to the valley currents in experimental data at low temperatures.  At room temperature, however, a 
very different physics explains the typical high performance, high current density resonant tunneling 
diode valley current:  It is thermionic emission through excited states.  That was the third critical 
insight that was enabled by the atomistic, layer by layer modeling through empirical tight binding 
[60,61].  The room temperature calculations require the solution of a double integral in transverse 
momentum k and total energy E over strongly spiked transmission coefficients (Fig 1b) to result in the 
overlap of theory with experimental current voltage curves (Fig 1c).  Since each bias point is in 
principle decoupled from the others one can expose a natural multilevel parallelism in voltage, 
momentum and energy (Fig 1d) [47].  



 
 
 
 
 
 

NEMO 3-D can compute strain and electronic structure (but not transport) for 3D devices where 
the devices are represented atom-by-atom (Fig 1e) [62-64]. The main NEMO 3-D calculation is the 
strain minimization [62, 16] in a valence force field method and the computation of electronic 
structure eigenstates, such as that one of an artificial atom / quantum dot depicted in Figure 1f.  From 
these eigenstates one can devise a plethora of properties such as absorption coefficients as symbolized 
in Fig 1g [67], single impurity characteristics in FinFETs [68], disordered Si quantum wells on SiGe 
[69], even some general transport characteristics of core-shell nanowires [70] and alloyed nanowires 
[71].  The first multi-million atom calculations of alloy-disordered systems were demonstrated in 2002 
[62,65].  NEMO 3-D is using a 1D layer decomposition as a nearest neighbor CPU communication 
pattern and was demonstrated to scale well on even the earliest Beowulf cluster computers [62,66]. 
Later we demonstrated scaling on thin and long nanowire like structures up to 8,192 cores [72]. The 
NEMO 3-D section below highlights our effort to parallelize NEMO 3-D on more than a single level 
through 3-D decomposition and parameter sweeps. 

Our new OMEN embraces the quantum transport concepts of NEMO 1-D and the 3-D spatial 
representation of NEMO 3-D.  Three dimensional atom arrangements of nanowires realistically gated 
with dielectrics (Fig 1i) are computed to obtain energy resolved current (Fig 1j) and current voltage 
characteristics (Fig. 1k). The dramatic work-load increase makes it a perfect candidate for the use of 
peta-scale computing systems with 4 levels of natural parallelism (Fig. 1l). The code has already been 
used to model ultra-scaled InAs High-Electron-Mobility Field Effect Transistors (HEMTs) [73], band-
to-band tunneling transistors with 2D and 3D device configurations [74], and graphene transistors 
[75]. An overview of the evolution of NEMO 1-D and NEMO 3-D to OMEN is also presented in 
reference [76]. Computational results for these capabilities, including scaling to to over 147,000 
processors, are presented in section 5.  

 

 
Figure 1. The NEMO 1-D code can do 1D NEGF quantum transport, 
while the NEMO 3-D is designed to do strain and electronic 
calculations.  Our new code OMEN incorporates NEMO 3-D 
functionality and adds a 3D quantum transport capability, and 
includes features that make the code peta-scale capable. 



 
 
 
 
 
 
2.1.  NEMO 3D 
We summarize here some of the key features of the model and the NEMO 3-D package, which 
consists of three main parts: 

• The geometry constructor (setup phase) 
• The strain computation 
• The electronic structure computation 

Geometry constructor and setup. The geometry constructor’s purpose is to represent the 
nanostructure in atomistic detail in the memory of the computer. Each atom is represented by its 
coordinates, its type (atomic number), whether the atom is on the surface or in the interior of the 
sample (important later on in electronic calculations), in what kind of computation it will participate 
(strain only or strain and electronic), and its nearest neighbors. This part of NEMO 3-D consumes only 
a small fraction of total computational time and memory, and will not be discussed further.  

The strain computation. The materials making up a quantum dot nanostructure differ in their lattice 
constants. This lattice mismatch leads to strain; atoms throughout the sample are displaced from their 
bulk positions. Knowledge of equilibrium atomic positions is crucial for the subsequent calculation of 
the quantum dot’s electronic properties, which makes the computation of strain a necessary step in 
realistic simulations of these nanostructures. NEMO 3-D computes strain using an atomistic valence 
force field method (VFF) [16]. In this approach, the total elastic energy of the sample is computed as a 
sum of bond-stretching and bond-bending contributions from each atom. The equilibrium atomic 
positions are found by minimizing the total elastic energy of the system. 

The electronic structure computation. The single-particle energies and wave functions are 
calculated using an empirical first-nearest-neighbor tight-binding model. The underlying idea of this 
approach is the selection of a basis consisting of atomic orbitals (such as s, p, d, and s*) centered on 
each atom. These orbitals are treated as a basis set for the Hamiltonian operator and lead to a discrete 
Hamiltonian matrix that has a block tri-diagonal structure due to the restriction to nearest neighbor 
interactions.  The parameterization of bonds using analytical forms of directional cosines is given in 
Ref. [17]. NEMO 3-D uses the parameterization for the sp3d5s* model, in which each atom is assigned 
20 spin-degenerate orbitals [18].  

The 20-band nearest-neighbor tight-binding model is parameterized by 34 energy constants, which 
need to be established by fitting the computed electronic properties of materials to those measured 
experimentally.  This is done by considering bulk semiconductor crystals (such as GaAs or InAs) 
under strain.  A genetic algorithm is used to search for optimal parameters, described in detail in Refs. 
[18-20]. Once a parameterization it is known for each material constituting the quantum dot, a full 
atomistic calculation of the single-particle energy spectrum is carried out on samples composed of 
millions of atoms. Calculating the electronic structure is the most computationally intensive phase of 
the code. The eigenvalue problem is solved in parallel using one of the algorithms discussed in Section 
4. 

2.2.  OMEN 
OMEN is a one-, two-, and three-dimensional quantum transport simulator based on the nearest-
neighbor tight-binding method and dedicated to next generation transistors like ultra-thin body (UTB), 
nanowire, and band-to-band tunneling field-effect transistors. It contains four levels of parallelism, 
and has already demonstrated scaling up to 65,536 cores with a performance of 208 TFlop/s [21].  

OMEN solves the Schrödinger equation with open boundary conditions in an orbital basis. The 
computational burden directly depends on the complexity of this basis. As one uses more orbitals to 
describe an atom (from 1 to 20), the size of the Hamiltonian matrices increase, as does the work 
required to solve the Schrödinger equation.  As an alternative to the popular Non-Equilibrium Green’s 
Function (NEGF) formalism, OMEN uses a Wave Function (WF) approach that is physically identical 
to NEGF, but computationally less expensive for ballistic transport [15].  In the WF formalism the 
Schrödinger equation takes the form of a sparse linear system of equations “Ax=b” with a block tri-
diagonal matrix “A” of size N =NA × tb,  equal to the number of atoms in the structure (NA) times the  



 
 
 
 
 
 
number of orbitals of the tight-binding model (tb ). For example, tb =10 in the sp3d5s  model without 
spin-orbit coupling. The first and the last diagonal blocks of the matrix A contain the open-boundary 
conditions, the multiple right-hand-side vector “b” the injection mechanism.  Typical device structures 
are composed of 10,000 to 200,000 atoms, resulting in matrices of size 50,000< N <1,000,000, 
depending on the value of tb.  

The resulting charge and current densities are then self-consistently coupled to the Poisson 
equation expressed in a finite-element basis. Hence, ballistic transport, source-to-drain tunneling, alloy 
disorder, strain, and interface roughness can be treated on an atomistic level in n- or p-doped FETs 
with a cross section up to about 22 nm2 for circular or square nanowire and a width of 8 nm for UTB. 
Transistor structures made of several semiconductor materials, such as Si, Ge, SiGe, GaAs, or InAs 
and with any channel orientation (<100>, <110>, <111>, or <112>) can be investigated. As an 
example a double-gate UTB FET with transport along the <100> axis is considered in Figure 2 [13-
15]. 

 

 

 
 
Figure 2. Schematic view of a double-gate ultra-
thin body field effect transistor with transport 
along the <100> crystal axis and confinement 
along <010>. 
 

 

3.  Parallelization 

3.1.  NEMO 3-D 
To extend NEMO 3-D performance, the new features of NEMO 3-D include 3D domain 
decomposition parallelism (Figure 3). Recent benchmarks show that 3D domain decomposition 
scheme can be utilized exceeding 32,000 cores on realistic electronic structures comprised of one 
billion atoms. The spatial decomposition can be placed in the lowest level of parallelization for 
solving eigenstates and charge of general electronic structures. 

Additionally, NEMO 3-D is prepared with programmable multiple-level parallelization (Figure 3) 
which is similar to the tri-level parallelism in NEMO 1-D (bias-energy-momentum) [22] and four-
level parallelism in OMEN (bias-energy-momentum-1D spatial decomposition) [23-24]. However the 
parallelization scheme is different in a sense that the variables involved in each level can determined 
depending on the application. For example, if we are interested in self-consistent band structure of a 
highly doped wire with respect to temperature and magnetic field of 20 and 10 samples, respectively, 
the branch immediately spreads out into 200 independent tasks. With the addition of 10 momentum 
groups and 50 processors for spatial decomposition, then 100,000 cores can be immediately employed 
for simulation with nearly ideal scalability.  

3.2.  OMEN 
Quantum transport calculations involve solving many linear system of equations (LSE); when hundred 
of thousands of LSEs have to be solved to simulate the properties of a given device, the solution time 
becomes an issue. In effect a LSE “Ax=b” must be treated for each energy (typically 500 to 10,000) 
and momentum (1 to 50) used to inject states into the simulation domain and for each applied voltage 
(15 to 100 drain-to-source and gate-to-source bias combinations). In the most advantageous case this 
represents 7,500 LSE, but 50 million in the worst case. 



 
 
 
 
 
 

 
 
 
 
 
Figure 3. Multiple-level parallelism in NEMO 
3-D. For example, if we want to simulate the 
self-consistent band structure with respect to 
temperature and external magnetic field, we 
can set the first group as temperature values(T), 
the second group as magnetic field(B) and the 
last group as k points. Therefore, each final branch 
(3-D decomposition) will be an independent 
group (T,B,k) that solves self-consistent band 
structure. 
 

 
Figure 4. Parallel scheme of OMEN. Bias points, momentum points, and 
energy points are embarrassingly parallelized and form the three highest 
levels of parallelism. From the total number of cores, P0, there are PVg 
cores operating per bias point, Pkz per momentum point, and Pe per energy 
point. If PE>1(here4) the simulation domain is spatially decomposed 
(fourth level of parallelism). 



 
 
 
 
 
 

To accelerate the computation of all the LSE three natural levels of parallelism have been identified 
in OMEN: energy, momentum, and bias points. The two first levels (energy and momentum) are 
almost embarrassingly parallel, they just call the function “MPI Allreduce” at the end of the 
calculation to sum over the contributions from all the processors. The bias points are completely 
independent. These three levels are controlled by MPI instructions.  The parallelization scheme of 
OMEN is shown in Figure 4. 

The distribution of cores to each task is decided by the user at the beginning of the simulation. This 
works fine with the bias and the momentum points since their respective number is known at the 
beginning of the simulation. However, the number of energy points is different for each momentum, 
not known at the beginning of the simulation, and requires an automatic redistribution of the number 
of cores per momentum point to equalize the work load as much as possible [21].  

The fourth level of parallelism in OMEN, labeled “spatial domain decomposition”, is directly 
related to the calculation of the open boundary conditions (OBCs), the construction of the matrix “A” 
and of the vector “b”, and the solution of the sparse linear system of equations “Ax=b”. The open 
boundary conditions are parallelized by treating each open contact on a different CPU. Since most of 
the time a device has only two open contacts the calculation of the OBCs does not scale beyond two 
cores.  

4.  Algorithms 

4.1.  NEMO 3-D 
To find the energy levels and wave functions of the electronic structure, in a quantum dot, for 
example, we need to solve a large eigenvalue problem arising from the discretization of the time-
independent Schrödinger equation iii EH ψψ

rr
= , where H is the n by n Hamiltonian matrix, iψ

r
 is the 

eigenvector representing the wave function associated with the eigenvalue iE  representing the i-th 
energy level.  We have implemented the Lanczos algorithm [25] in NEMO 3-D and in OMEN.  For a 
standard symmetric eigenvalue problem, this algorithm builds an orthonormal basis kV for a Krylov 
subspace associated with the Hamiltonian, and a k by k tridiagonal matrix kT such that the following  

relationship (the Lanczos factorization) is satisfied: T
kkkkkkk evtTVHV rr

,1++=  

It has been shown [26] that the eigenvalues of kT  tend to eigenvalues of H as k tends to n. 
Moreover, some eigenvalues of kT  converge to eigenvalues of H very quickly. The problem of finding 
eigenvalues iE of H is then reduced to the much easier problem of finding eigenvalues of a small 
tridiagonal matrix kT  and the eigenvectors iψ

r
 of H are found to be kkk WV=][ 1 ψψ

r
K

r , where 

kW are the eigenvectors of kT . The advantage of Lanczos algorithm is that it is fast. However, it cannot 
compute repeated eigenvalues. This is addressed by our implementation of block Lanczos, which we 
do not discuss here. We have also implemented Trace Minimization [27-28] and Rayleigh-Ritz 
eigenvalue solvers, and interfaced the PARPACK library [29] to NEMO 3-D.  

4.2.  OMEN 
The LSE “Ax=b” are solved in parallel using direct sparse linear solver libraries like MUMPS [30], 
SuperLUdist [31], Pardiso [32], or a customized block cyclic reduction (BCR) of the matrix “A” [33]. 
Some of the algorithms work with MPI in a distributed memory way (MUMPS, SuperLUdist , BCR), 
others (Pardiso, BCR again) with OpenMP on shared memory machines. In 3D nanowire structures 
the BCR outperforms the other solvers by a factor of 2 if spin-orbit coupling is not included [34].   
Another advantage of the BCR algorithm is that it allows an interleaved calculation of the open 
boundary conditions and of the solution of “Ax=b”. Standard packages like MUMPS, SuperLUdis , or 
Pardiso need the completely assembled matrix “A” at the beginning of the factorization phase. The 



 
 
 
 
 
 
BCR algorithm can start working on a matrix “A” not including its first and last diagonal blocks since 
they are only used at the last step of the reduction of “A”.   Consequently, the calculation of the OBCs 
can scale beyond 2 cores and better computational performance is obtained compared to a sequential 
approach [21].  

Once all the LSE are solved the carrier density and the electrostatic potential in the device are 
calculated from the wave function coefficients stored in the vector “x” of “Ax=b”. The solution of 
Schrödinger equation is self-consistently coupled to the Poisson equation described on a three-
dimensional finite element mesh [35-36]. To reduce the computational burden Poisson equation is 
solved in parallel up to 512 cores using Aztec [37], an iterative sparse linear solver.  On multi-core 
supercomputers OMEN has the ability to work either with four levels of MPI parallelization as 
described above or with 2.5 levels of MPI parallelization (bias, momentum, and energy points across 
the nodes) and 1.5 levels of OpenMP parallelization (energies within one node and spatial domain 
decomposition) [21]. The hybrid OMEN requires nested parallelization [38] which is not possible on 
all the machines due to compiler issues. The MPI-OpenMP hybrid version of OMEN was tested up to 
60,000 cores on Ranger at TACC, scaled almost perfectly there, and helped reduce the start up time of 
the simulations. 

5.  Results 

5.1.  NEMO 1-D 
NEMO 1-D was designed to model high-performance Resonant Tunneling Diodes (RTDs) [41,42].  In 
order to do this accurately, NEMO 1-D considers resonant states in the contacts, which modify the 
injection of carriers into the central device structure.  NEMO 1-D also employs a Hartree self 
consistent quantum mechanical charge calculation in both the contacts and the central body of an 
RTD.  Realistic band structures, with non-parabolic 
regions and band warping, are also included in 
NEMO 1-D, along with low temperature scattering 
due to optical phonons, acoustical phonons, and 
interface roughness [43-45].  Incorporating this level 
of accuracy is demanding, and this mature code is 
the standard to which the others are compared. The 
original parallelism on three levels based on bias 
points, momentum integral, and energy integral was 
developed for a small cluster system to enable the 
most flexible efficiency of parallelism [46]. Figure 5 
shows the scaling results of a hole RTD simulation 
using NEMO 1-D, in a sp3d5s* basis, 180 bias 
points, 200 momentum points, and an adaptive 
energy grid to handle sharp resonant peaks. This 
simulation scaled to 23,000 cores on Jaguar at 
NICS, reducing the time for a simulation which 
would have required 100 days on a serial machine to 
10 minutes. 

5.2.  NEMO 3-D 
The new 3D spatial decomposition algorithm in NEMO 3-D opens new avenues of exploration. 
Previously, the 1D decomposition method used in NEMO 3-D limited the range of simulations to 
artificially elongated domains. Many systems of interest, e.g. quantum dots, are cubic. Figure 6 shows 
a comparison between 1D, 2D, and 3D spatial decomposition for the calculation of band structure for 
a 4 million Si atom structure.  The 1D decomposition cannot utilize more than 80 cores, while the 3D 
decomposition can use up to 2048 cores, reducing the simulation time by a factor of 25.  Given the 

  
Figure 5. NEMO 1-D scaling with 2 and 3 
levels of parallelism on Jaguar at NICS. 



 
 
 
 
 
 

availability of HPC resources, this capability brings previously unrealistic simulations into the realm 
of practical consideration. 

The 3D spatial decomposition also enables much larger simulations.  Figure 7 shows simulations of 
cubic structures with up to 1 billion atoms, using up to 32768 cores on Kraken XT5 at NICS.  NEMO 
3-D can now make very efficient use of HPC resources to perform studies which would otherwise be 
impossible.  

One such system of interest is a thin highly doped phosphorous region in a Si substrate, which is of 
interest to experimentalists and theoreticians for potential use in quantum computing systems [39-40]. 
Figure 8 shows the scaling of an end-to-end band structure calculation of a 2D Si-P bar 1.1 x 1.1 x 22 
nm3. Spatial decomposition and momentum space parallelism reduce the simulation time for this 
system from 40 minutes to 1 minute.   

5.3.  OMEN 
OMEN has enabled fully quantum transport simulations of realistic devices.  For example, Figure 9 
shows the scaling for simulations of a 2D Si double gate ultra-thin-body (UTB) transistor, with a 
thickness of 5 nm, gate length 22 nm, and total length 42 nm.  Four levels of parallelism are 
employed: 16 applied bias points, 16 momentum points, 800 to 1400 energy points, and spatial 
decomposition on 2 cores.  These simulations scaled to 65536 cores on Kraken at NICS and Ranger at 
TACC.  The availability of the peta-scale resources makes the total simulation time for a fully 
quantum mechanical calculation very manageable.  

Very recently we were given access to the Leadership Computing Facility at Oak Ridge with its 
Cray XT5 Jaguar.  On that resource we demonstrated scaling to 147,456 cores.  At that level of 
parallelism the code delivered around 504 TFLOP/s at 37% of peak for each CPU.  We note here that 
no special tuning was performed on this platform to obtain this high peak performance.  

6.  Deployment on nanoHUB.org 
nanoHUB.org is a community web site intended to deliver on-line simulation and more to the 
nanotechnology community at large.  Over 150 tools are now on line which have delivered over 
400,000 simulations to over 7,000 users in the 12 months leading up to May 2009.  All the simulation  

 
Figure 6. Comparison between different domain 
decomposition algorithms. Tested with 44 x 44 
x 44 (nm3) silicon structure that has 4 million 
atoms. Ranger@TACC computational resources 
were used. 

 

 
Figure 7. Strong scaling plots with NEMO 3-
D for different number of atoms. Tested on 
Kraken@NICS (XT5). 



 
 
 
 
 
 

tools are fully interactive in that users can easily set-up their numerical experiments and “what if?” 
questions and compare their simulation results after the computation.  No installation of software is 
needed on the user end, compute cycles, the graphical user interface, tools, and instructional materials 
are delivered remotely.  Tools of various computational intensity are hosted, many of them executing 
in a few minutes, few of them running in parallel on computational resources like the TeraGrid.  Over 
430 citations in the literature are evidence of use in peer-reviewed research — 52% of these citations 
are unaffiliated with the host of the nanoHUB: The Network for Computational Nanotechnology.  
nanoHUB has also been used in over 290 
classes in over 90 different institutions for 
educational purposes. More information can  
be found on http://nanoHUB.org/about and 
http://nanoHUB.org/usage as well as several 
peer reviewed articles [47-52].  

Both NEMO 3-D and OMEN drive 
computational tools on nanoHUB.org. OMEN is 
the underlying engine for the tools OMEN 
Nanowire and Band Structure Lab, while 
NEMO 3-D powers Quantum Dot Lab. Figure 
10 shows the usage statistics for these 
simulation tools. Together NEMO 3-D and 
OMEN have driven thousands of simulations on 
the nanoHUB, providing cutting-edge research 
capability for a worldwide user base.  We plan 
to replace the backend of several more tools on 
the nanoHUB with OMEN or components of 
OMEN; this will greatly simplify maintenance 
of those tools and consolidate several competing 

 
Figure 8. The performance of the multi-level 
parallelism. End-to-end band structure 
calculation is performed on a small periodic 
structure with 256 k points considered.   

 
 

 
 

 
Figure 9: Scaling performances of OMEN up to 
65,536 cores for a 2-D DG UTB transistor using 
four levels of parallelism (16 bias points, 16 
momentum points, 800 to1400 energy points, 
spatial decomposition on 2 cores).  

 
Figure 10. Scaling performances of OMEN up to 
147,456 cores for a 2-D DG UTB transistor using 
four levels of parallelism (16 bias points, 24 
momentum points, 850 energy points, spatial 
decomposition on 8 cores). 



 
 
 
 
 
 
implementations into one code base. For example, currently several tools implement a Poisson solver 
using different methods.  In many cases, no one maintains the code.  By replacing these with the 
OMEN solver, we reduce the number of Poisson implementations to one, which is a highly optimized 
current research tool.  The number of simulations run in these OMEN and NEMO3D powered tools 
are tabulated in Table 1 and the global users are depicted in Figure 11. 
 

Table 1. Usage statistics for OMEN- and NEMO 3-D-powered tools on the nanoHUB. 

 

 

Figure 11. World map of NEMO3D and OMEN-powered tool users.   

7.  Conclusions  
We have made substantial enhancements to the codes NEMO 3-D and OMEN.  The enhancements 
allow the codes to make full use of peta-scale computing resources and opened previously inaccessible 
realms of device engineering studies.  NEMO 3-D can handle billion atom systems, scaling to 32768 
cores, using three dimensional spatial decomposition.  By making use of large scale computing 
resources, NEMO 3-D can reduce the calculation time for the band structure of a cutting-edge 
quantum computing device from 40 minutes to 1 minute.  OMEN can model fully quantum 
mechanical transport in realistic UTB FETs on 147,456 cores in about 15 minutes.  These compute 
engines drive tools on the nanoHUB, presenting users with state-of-the-art research capabilities in 
their web browsers.  
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