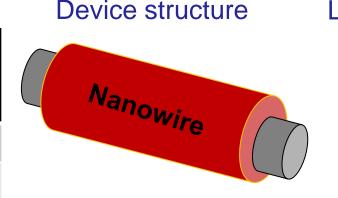


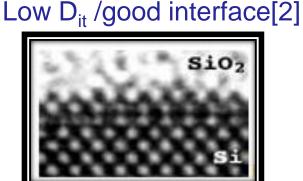
Network for Computational Nanotechnology (NCN)

UC Berkeley, Univ. of Illinois, Norfolk State, Northwestern, Purdue, UTEP

Performance Analysis of SiGe/Si core/shell and Standard Nanowire FETs for High Performance CMOS Application

Abhijeet Paul*, Saumitra Mehrotra, Mathieu Luisier and Gerhard Klimeck ECE and NCN @Purdue University West Lafayette, IN 47906, USA




Motivation

Shrinking device dimensions and higher drive current: Moore's Law

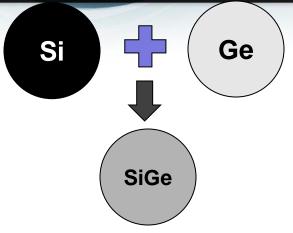
Bulk **Mobility** Si Ge (cm²/Vs)[1]Electrons 1400 3900 Holes 450 1900

Channel material

SiGe/Si core/shell & SiGe standard NWFETs.

Strong geometrical and potential confinement. Capture bandstructure effects for performance comparison.

- [1] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/index.html
- Image from http://www.sandia.gov/materials/science/capabilities/materials-character.html Abhijeet Paul


Outline

☐ Calculation of energy dispersion in SiGe
□ Numerical modeling approach.
☐ Types of nanowire FETs (NWFETs).
☐ Method for performance comparison in NWFETs.
☐ Important device metrics and device details.
☐ Performance comparison for n and p type NWFETs
☐ Improving p-NWFET performance
☐ Conclusions.

Bandstructure Calculation in SiGe

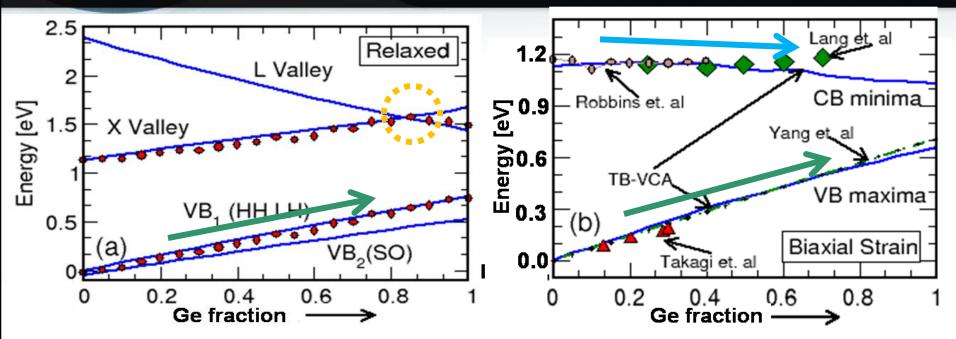
- Change in bond-length.
- Onsite Tight-Binding parameter accounting for internal and external strain
- Coupling parameter accounting for internal and external strain

"Virtual Atom"

"Virtual Atom"
$$a_{SiGe} = xa_{Si} + (1-x)a_{Ge}$$

$$E_{A,B}^{strain} = x(E_A + \Delta_A) + (1-x)(E_B + \Delta_B)$$

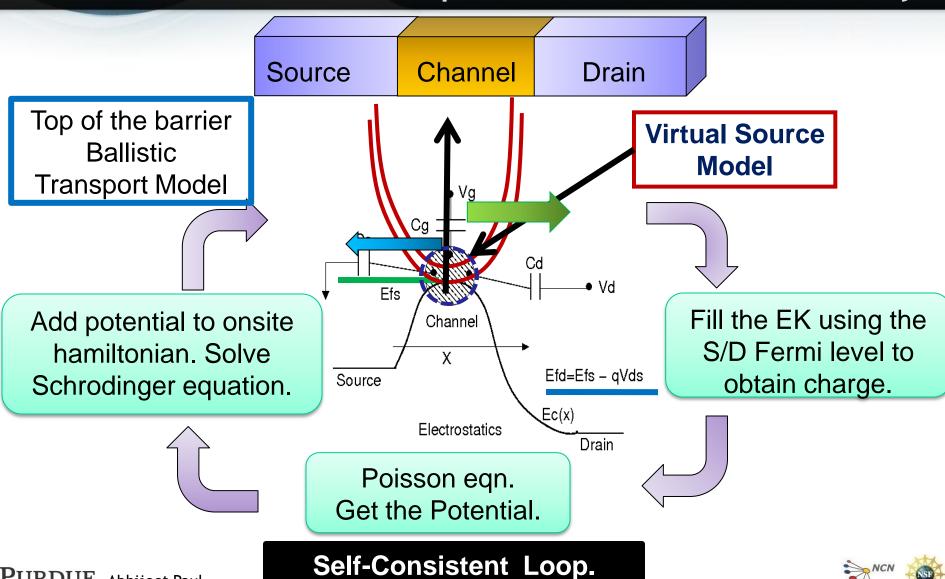
$$V_{\sigma_1\sigma_2}^{SiGe,strain} = x(V_{\sigma_1\sigma_2}^{Si} \left[\frac{a_{Si}}{a_{SiGe}} \right]^{\eta_{Si}}) + (1-x)(V_{\sigma_1\sigma_2}^{Ge} \left[\frac{a_{Ge}}{a_{SiGe}} \right]^{\eta_{Ge}})$$

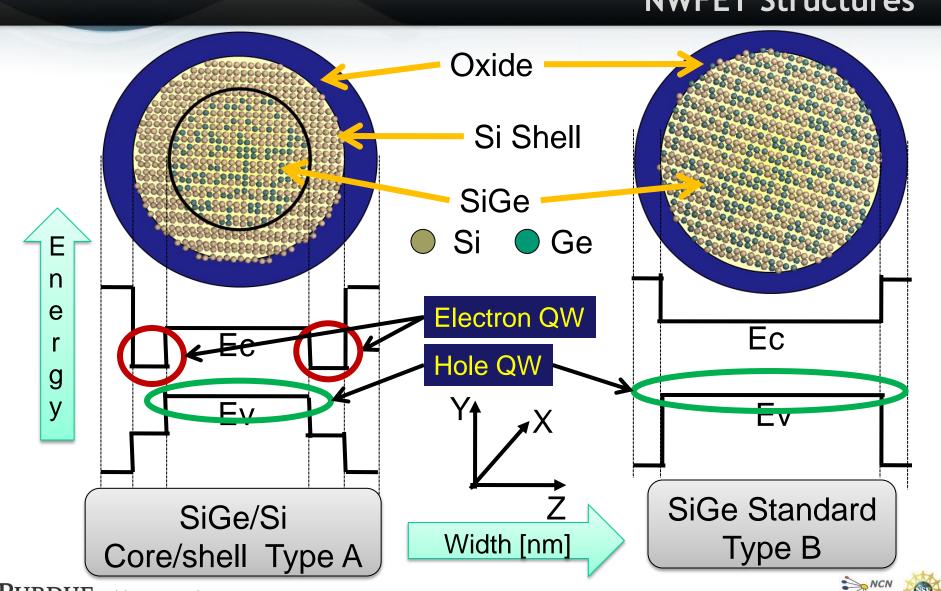

Tight-Binding based Virtual Crystal Approximation TB-VCA

Benchmarking Bulk Band-structure

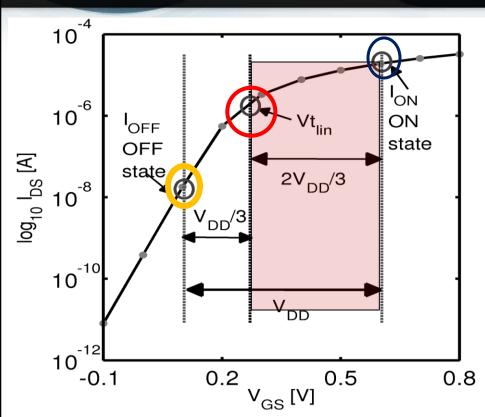
- •Captures the band cross-over at 85% Ge for relaxed SiGe CB.
- •Valance Band Edge changes by an equal amount in both relaxed and biaxial compressive strained SiGe bulk.
- CB edge is almost constant for all Ge% for strained SiGe Bulk.

Simulated bandstructures in good agreement with experimental data.




Abhijeet Paul

Transport Model and Self-consistency



NWFET Structures

Method of comparing the NWFETs

Steps for comparison of NWFETs:

- Obtain threshold voltage (V_T)
- Obtain the ON-state by setting:

$$V_{ON} = V_T + 2V_{DD}/3$$

This sets a **constant over-**
drive voltage for all the FETs to be compared.

Set the OFF-state by setting: $V_{OFF} = V_T - V_{DD}/3$

Constant Overdrive method [1] is used for the comparison of **NWFETs**

[1] R Chau et. al., IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 4, NO. 2, MARCH 2005

Metrics for Performance comparison

Important devices metrics for 1D ballistic FETs are:

$$I_{ON} = C_g \bullet (V_G - V_T) \bullet v_{inj} \propto v_{inj}$$

Higher value indicates better driving capability and faster devices.

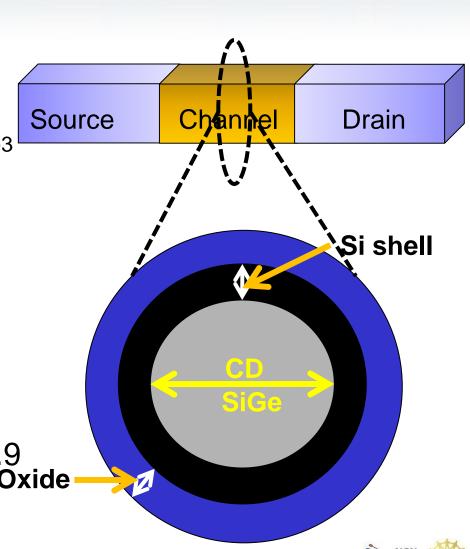
$$\tau_D = C_g \bullet (V_G - V_T) / (C_{gl} \bullet (V_G - V_T) \bullet V_{inj}) \propto V_{inj}^{-1}$$

Reflects how fast the device switches from OFF to ON state. Faster devices need smaller delay,

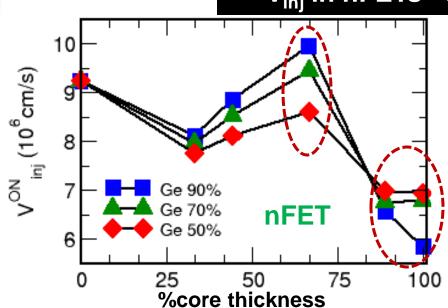
$$V_{inj} = \sum_{n,k} \rho_{n,k} \frac{\partial E_{n,k}}{\partial k} / \sum_{n,k} \rho_{n,k}$$

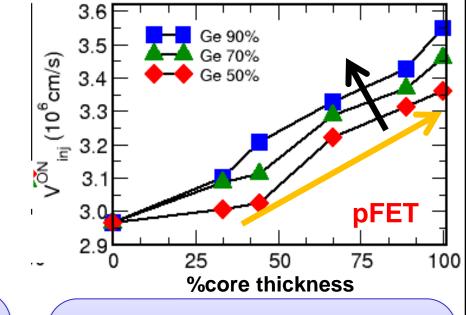
Reflects the role of bandstructure in deciding the ultimate speed of the carriers in the channel.

Gate delay and Virtual source velocity(Vinj) are 3 imp. metrics



NWFET device details


- N and P type SiGe NWFETs.
- Ge% \rightarrow 90%, 70%, 50%
- Source/Drain doping: 1e20 cm⁻³
- Channel is intrinsic.
- Metal work function in midgap for all NWFETs.
- Core diameter(CD) varied from
 - 0 (pure Silicon), 3, 6, 8, 9 nm(no Si shell)
- Oxide thickness = 1.5nm, $\varepsilon_r = 3.9$

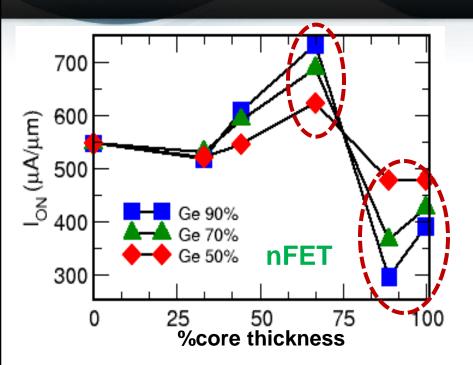


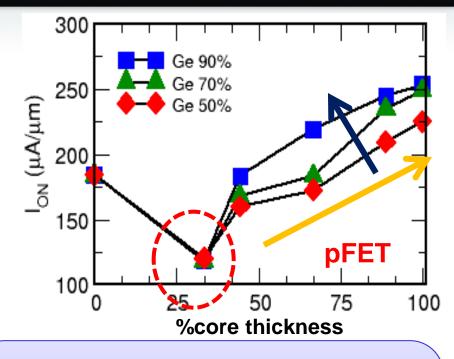
Virtual Source Velocity (Vinj)

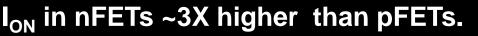
V_{ini} in nFETs ~3X higher than pFETs.

- Maximum Vinj at CD ~ 70% of wire diameter. 90% Ge shows highest Vinj
- •For thinner shell Vinj flips. 90% Ge is slowest since <100>n-Ge slower than <100> n-Si for nFETs. [1]

- Vinj increases as Si shell thickness reduces in pFETs.
- 90% Ge content shows highest Vinj for all CD in pFETs.



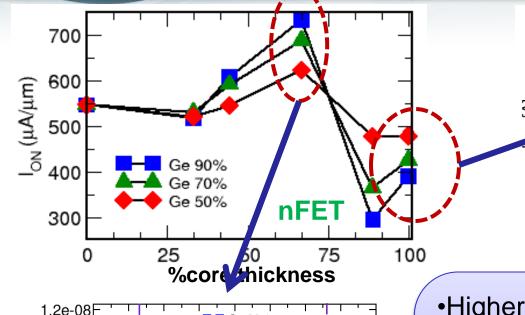


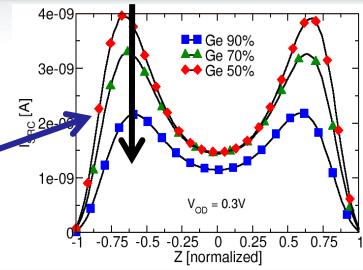

•I_{ON} peaks at CD ~70% wire diameter. Maximum for 90% Ge content.

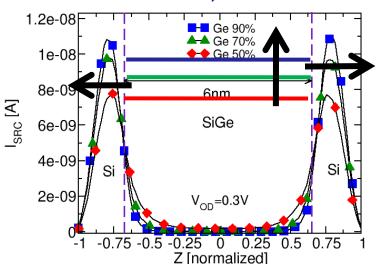
•I_{ON} trend flips for very thin Sishell. 90% shows minimum I_{ON}.

ON state drain current (I_{ON})

- •I_{ON} increases as CD increases.
- •For a fixed CD I_{ON} increases with Ge content in the NWFET.
- Dip in I_{ON} observed at very small CD due to very small charge content.

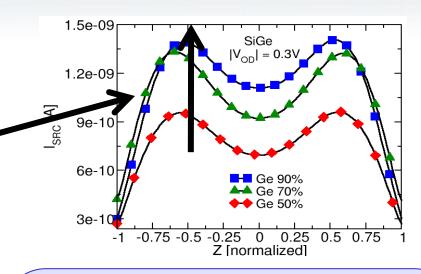






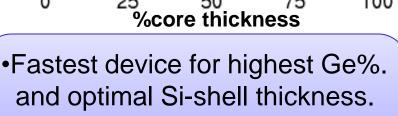
Explanation for I_{ON} in nFETs

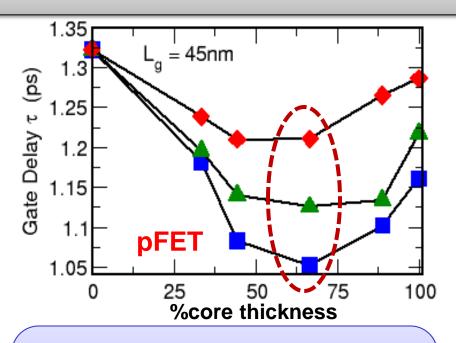
- Higher Ge content increases Ec.
 - Current pushed more in Si shell. 90% Ge with CD~6nm is optimal for maximizing I_{ON}.
- •For very thin or no Si-shell. I_{ON} goes down with inc. Ge % . Vinj for <100> n-Ge smaller compared to <100> n-Si



Explanation for I_{ON} in pFETs


- •I_{ON} reduces while moving from Si to SiGe since current is pushed into the narrow SiGe core.
- Higher Ge concentration in the core increases carrier velocity and hence the ON current.

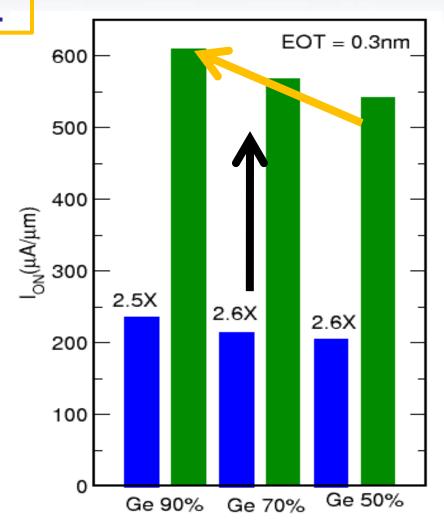



Intrinsic Gate Delay

Gate delay decided by the interplay of charge build-up and velocity in channel

- •Slow device for higher Ge % and no Si-shell.
- Vinj plays key role.

- •Fastest device for highest Ge% for any core thickness.
- •Cg and Vinj both imp. To decide delay in pFETs.


Improvement in pFET performance

I_{ON} in nFETs ~3X higher than pFETs.

Replace $SiO_2 \rightarrow High-K$, e = 21. EOT = 0.3nm. pFETs with diameter = 9nm. No Sishell.

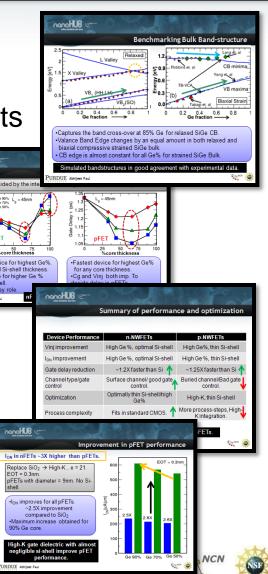
- •I_{ON} improves for all pFETs. ~2.5X improvement compared to SiO₂
- Maximum increase obtained for 90% Ge core.

High-K gate dielectric with almost negligible si-shell improve pFET performance.

Summary of performance and optimization

Device Performance	n-NWFETs	p-NWFETs
Vinj improvement	High Ge %, optimal Si-shell	High Ge%, thin Si-shell
I _{ON} improvement	High Ge %, optimal Si-shell	High Ge %, thin Si-shell
Gate delay reduction	~1.2X faster than Si	~1.25X faster than Si
Channel type/gate control	Surface channel/ good gate control.	Buried channel/Bad gate control.
Optimization	Optimally thin Si-shell/high Ge%	High-K, thin Si-shell
Process complexity	Fits in standard CMOS.	More process-steps, High- K integration.

nFETs fit better into CMOS flow compared to pFETs.



Conclusions

- Developed TB based VCA method for EK calculation.
 - Results in good agreement with experiments
- SiGe nFETs faster than pFETs
- SiGe improves both nFETs and pFETs
 - 1.2X improvement in I_{ON} compared to Si counterpart
- pFETs improvement achieved by high-K gate dielectric and no Si-shell.

References

Relaxed SiGe Bulk EK:

CB data: [1] J. F. Morar, P. E. Batson, and J. Tersoff, PRB, 47, 7, 4107-4110, (1993).

VB data: [2] L. Yang, J. R. Watling, R. C. W. Wilkins, M. Borici, J. R. Barker, A. Asenov, and S. Roy, Semi. Sci. and Tech., 19, 10, 1174-1182, (2004).

Strained SiGe Bulk EK:

[1] D. J. Robbins, L. T. Canham, S. J. Barnett, A. D. Pitt, and P. Calcott, JAP, 71, 3, 1407-1414, (1992).

- [2] D. V. Lang, R. People, J. C. Bean, and A. M. Sergent, "APL, 47, 12, 1333-1335, (1985).
- [3] S. Takagi, J. Hoyt, K. Rim, J. Welser, and J. Gibbons, TED, 45, 2, 494-501, (1998).
- [4] L. Yang, J. R. Watling, R. C. W. Wilkins, M. Borici, J. R. Barker, A. Asenov, and S. Roy, Semi. Sci. and Tech., 19, 10, 1174-1182, (2004).

Thank You !!! Any Questions?