Transport characteristics of Nitride TFETs: Ballistic versus scattering

Saima Sharmin¹, Tarek Ameen¹, Junzhe Geng¹, Hesameddin Ilatikhameneh¹, Wenjun Li², Patrick Fay², Rajib Rahman¹ & Gerhard Klimeck¹

¹Purdue University, IN, USA ²University of Notre Dame, IN, USA

Key result statements

□ Ballistic simulation: In-line TFETs show better performance compared to Sidegate TFETs in terms of subthreshold swing and ON current.

Publication:" Polarization-Engineered III-Nitride Heterojunction Tunnel Field-Effect Transistors", Li W., Sharmin S., Ilatikhameneh H., Rahman R., Lu Y., Wang J., Yan X., Seabaugh A., Klimeck G., Jena D., Fay P., IEEE JExSSCDC, Vol. 1,Jul 2015.

☐ Non-ballistic simulation: Filling up of quasi-bound states degrades device performance in subthreshold regime.

characteristics of Nitride TFETs

