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The generalized tunneling formula with the simple model for the broadening in the contacts
gives surprisingly good results for the majority of RTD structures. It is just as fast as the
standard coherent tunneling simulators and much more versatile. It is easily generalized to
multi-band and multidimensional models. The multi-band generalization of the theory and the

effect of the optical potential are described.
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The theory of the generalized open system boundary
conditions [1,2] leads to a generalized tunneling for-
mula which is the basis for our quantum device simu-
lator [3,4]. The generalized boundary conditions
allow one to take a large structure and partition it into
two large reservoirs and a short device provided that
the reservoir regions are well equilibrated with the n*
contacts (see Fig. (1a)). These defined reservoirs have
a complicated density of states which must be calcu-
lated numerically. The density of states or spectral
function is displayed by the gray-scale in Fig. (1a).
The partitioning of the system serves two purposes:
(1) it allows one to inject into the device from quan-
tized emitter states in a coherent tunneling formula
[5], and (2) it reduces the device domain for the com-
putationally intensive calculations required to include
scattering.

The extension of the previous discussions [1,2]
based on the single band tight binding model is
straightforward. The scalar quantities become block
matrices in a localized orbital multi-band model.

Using the standard sp3s* basis [6] the current equation
for a device defined between andRR including layers 1
through N becomes

2e dE L R
) [5u {ritatarifet, } (i - fe)

(1)

where the I'’s include the effect of the states in the res-
ervoirs, fﬂ(g() is the Fermi factor of the left (right) con-
tact. The I'’s and G’s are block matrices of dimension
equal to the number of orbitals per layer and the trace
is over the orbital indices. The subscripts refer to the
layer number.

To calculate the Green function, we use the exam-
ple of a three layer device, {i, j} € {1,...3} GR is
found from
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FIGURE 1 (a) Conduction band profile and corresponding density
of states for a device with many quantized emitter states. (b) Corre-
sponding experimental and simulated I-V characteristic

where XRE =1t ogRoto, and TP, =1 ilgd,
~ 880 1to, - All of the symbols above represent block
matrices of dimension equal to the number of orbitals
per layer. g is the surface Green function for the
semi-infinite region ending at layer 0 immediately to
the left of the device.

Starting with the bulk surface Green function in the
flat band region of the left lead [7], the surface Green
function at layer O is calculated with the recursive
Green function method. Using our boundary self
energy, Z,{‘? , we have the recursive Green function
algorithm

g.=[E-DL —IL,L—lgf~1,L-1fL—1,L]_] (3)

An imaginary potential, in, is included in the diagonal
Hamiltonian matrix elements of the contact regions to
account for the effects of scattering induced broaden-
ing of any quantized states that form there.

The power of this approach is demonstrated in Fig.
(1). Such a device can now be treated within the
framework of a single electron tunneling formula, Eq.
(1). We have obtained similar results in a multi-band
sp3s* calculation.

The key that makes the approach work is the opti-
cal potential included in the contacts. What is its
effect ? For devices with 3D emitters, ie. where there
is no quantization in the emitter, the effect is small.
For such a device, the conduction band profile, spec-
tral function, and I-V for 4 different values of 1 is
shown in Fig. (2). As 1 increases, the peak current is
slightly decreased and the valley current is slightly
increased.

For structures with both 2D states in the emitter
and 2D states in the device, the effect is large. The I-V
calculated with 4 different values of n corresponding
to the device of Fig. (1) is shown in Fig. (3). As n is
reduced, the I-V becomes a series of narrow peaks
whose width is finally determined be the intrinsic
linewidth of the resonances. The necessity of includ-
ing broadening factors has been observed before, 5
meV for Turley et al. [8] and 0.2 -16 meV for Chen et
al. [9]. For such devices, the optical potential in the
contacts covers over a number of omissions : (1) Cor-
rect numerical integration over the transverse
momentum [10]. Initial calculations indicate that the
value of 1 can be reduced by a factor of 1/2 when the
transverse integration is done correctly. (2) The
broadening of the device states due to scattering, and
(3) the actual broadening of the emitter states due to
scattering. Note well that as the optical potential
model is improved, everything else must be improved
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FIGURE 2 (a) Conduction band profile and corresponding density
of states for a device with a bulk 3D emitter. (b) I-V characteristic
calculated with 4 different values of the optical potential
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FIGURE 3 I-V characteristic calculated with 4 different values of
the optical potential for the device of Fig. (1)

to maintain the same accuracy of the results since the
omissions that were covered by the simple model are
no longer covered. Incremental improvements are dif-
ficult.

The generalized tunneling formula with the simple
model for the broadening in the contacts gives sur-
prisingly good results for the majority of RTD struc-
tures. It is just as fast as the standard coherent
tunneling simulators [11] and much more versatile. It
is also easily generalized to 2D and 3D simulators. It
is useful as a fast design tool and as the starting point
for more sophisticated calculations. .
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