

Atomistic Simulation on Gate-recessed InAs/GaSb TFETs

and Performance Benchmark

Zhengping Jiang, Yu He, †Guangle Zhou, Tillmann Kubis, †Huili Grace Xing, Gerhard Klimeck Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana, USA; †University of Notre Dame, Notre Dame, Indiana, USA

MOTIVATION

Faster & Power Efficient Switch

Power density has flattened performance, while transistor count increased: Result clock has stalled or goes backward

MOSFET: Carrier injection from thermal tail of Boltzmann Distribution

current due to tunneling

GaSb/InAs TFET N-type

- Power consumption prevents performance improvement by increasing clock frequency.
- TFETs outperform MOSFET in power efficiency.

Record High I_{on} in Gate-recessed TFETs

Features:

- Broken-gap GaSb/InAs heterojunction
- Tunneling direction in-line with gate field
- Low drain contact and access resistances due to gaterecess process

TFET Electrostatics

Electrostatics in TFET:

- Bandgap blocks electron injection from source contact
- Channel is in equilibrium with drain contact -> channel follows drain Fermi distribution
- Low charge density in channel → low capacitance

Electrostatics for TFET is much simpler than MOSFET Channel is in *quasi-equilibrium* for most biases

METHODS

Two Common Methods for Simulation

Drift Diffusion (DD) + Wentzel-Kramers-Brillouin (WKB)

- ©Fast convergence
- ②Available for big structure
- ©Easy implementation
- Fitting parameter for tunneling coefficient
- No confinement effects

Atomistic tight-binding based NEGF

- Include complex bandstructure effects
- ©Suitable for nano-scale device
- heavy computational burden

Combine two methods, improve efficiency!

Hybrid Solver: Drift-diffusion + NEGF

Method:

- Semi-classical density with quasi-Fermi level to get potential
- NEGF transport on top of semi-classical potential

) DD: Band edges for carrier injection

Band edges are extracted from the lead unit cell, which depends on structure and material.

2) DD: Fermi level in the leads

Self-consistent calculations determine differences between band edges and Fermi levels

3) DD: Density of states (DOS)

3D DOS with parabolic band is assumed in the drift diffusion: Effective DOS matching the same Fermi level and density as calculated

 $n = N_C \frac{2}{\sqrt{\pi}} F_{1/2}(\eta_C)$

3-dimentional DOS for DD

4) Self-consistent DD calculation for electrostatic potential

Resulting electrostatic potential from DD is used as the

final potential for the NEGF calculation

RESULTS

Gate-recessed TFETs

180μA/μm Vg=0.2, 0.4, 0.5 measured at Vg=Vd=0.5V 0.2 0.3 0.4 0.5

- Vertical drain will introduce additional resistance.
- Low contact resistance due to recessed gate process shows small effects when gate Vg=Vd=0.5V.
- Overall performance improved.

Effects of Drain Extension & Doping

Results:

- 6nm InAs drain: 1) small band overlap → high ON current 2) small InAs bandgap → high leakage current
- Moderate doping improves SS → bandgap blocks ambipolar
- Long drain extension blocks direct leakage tunneling and improves SS

Comparison with Other Architectures

Top-gated TFET

SS < 60mV/dec achieved in both N- and P-type. P-type shows better SS due to small ambipolar current.

DG & SG - TFET

-0.5 -0.3 -0.1 0.1 0.3 0.5

SS > 60mV/dec for all biases. Electrostatic control improved by double-gate structure.

-0.5 -0.3 -0.1 0.1 0.3 0.5

(a-b) Add delta doping layer before tunneling junction. (c) Increase gate length or shift gate position by L_{shift}

By improving doping and geometry, leakage current could be minimized and SS for UTB could be optimized.

NW-TFETs Nanowire TFET -0.5 -0.3 -0.1 0.1 0.3 0.5 2 4 6 8 10 12

NW-TFET shows better SS then UTB due to better electrostatic control, but current level is small.

Optimized diameter is critical for better current vs. gate control.

Summary

Objectives

 Comparison of device performances for L-shaped vertical TFETs, UTB TFETs and nanowire **TFETs**

Methods

 NEGF + Drift Diffusion potential with corrected parameters

TFETs Device Geometries

Results

 L-shaped TFETs show best performance among III-V TFETs

Scaling of L-shaped TFETs limite by undercut lengths Current of UTB TFETs affected by source-gate coupling NW TFETs suffer from small current n-NW

due to strong confinement

CONCLUSIONS

- An efficient hybrid simulation flow is developed to simulation TFET with high accuracy
- Evaluate effects of geometry and doping variations
- Identify leakage source for off current in gaterecessed TFETs
- Device benchmark: Top-gated TFETs offer best performance, but other architectures could also be further improved.

Vd=0.3V / -0.3V

-0.5 -0.3 -0.1 0.1 0.3 0.5

