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Numerical utilities of the Contact Block Reduction (CBR) method in evaluating the

retarded Green’s function, are discussed for 3-D multi-band open systems that are

represented by the atomic tight-binding (TB) and continuum k·p (KP) band model.

It is shown that the methodology to approximate solutions of open systems which has

been already reported for the single-band effective mass model, cannot be directly

used for atomic TB systems, since the use of a set of zincblende crystal grids makes

the inter-coupling matrix be non-invertible. We derive and test an alternative with

which the CBR method can be still practical in solving TB systems. This multi-band

CBR method is validated by a proof of principles on small systems, and also shown

to work excellent with the KP approach. Further detailed analysis on the accuracy,

speed, and scalability on high performance computing clusters, is performed with

respect to the reference results obtained by the state-of-the-art Recursive Green’s

Function and Wavefunction algorithm. This work shows that the CBR method could

be particularly useful in calculating resonant tunneling features, but show a limited

practicality in simulating field effect transistors (FETs) when the system is described

with the atomic TB model. Coupled to the KP model, however, the utility of the

CBR method can be extended to simulations of nanowire FETs.
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I. INTRODUCTION

A. Needs for multi-band approaches

Semiconductor devices have been continuously downscaled ever since the invention of the

first transistor1, such that the size of the single building component of modern electronic

devices has already reached to a few nanometers (nm). In such a nanoscale regime, two

conceptual changes are required in the device modeling methodology. One aspect is widely

accepted where carriers must be treated as quantum mechanical rather than classical objects.

The second change is the need to embrace the multi-band models which can describe atomic

features of materials, reproducing experimentally verified bulk bandstuructures. While the

single-band effective mass approximation (EMA) predicts bandstructures reasonably well

near the conduction band minimum (CBM), the subband quantization loses accuracy if

devices are in a sub-nm regime2. The EMA also fails to predict indirect gaps, inter-band

coupling and non-parabolicity in bulk bandstructures3.

The nearest-neighbor empirical tight-binding (TB) and next nearest-neighbor k·p (KP)

approach are most widely used band models of multiple bases3,4. The most sophisticated TB

model uses a set of 10 localized orbital bases (s, s*, 3×p, and 5×d) on real atomic grids (20

with spin interactions), where the parameter set is fit to reproduce experimentally verified

bandgaps, masses, non-parabolic dispersions, hydrostatic and biaxial strain behaviors of

bulk materials using a global minimization procedure based on a genetic algorithm and

analytical insights3,5,6. This sp3d5s∗ TB approach can easily incorporate atomic effects such

as surface roughness and random alloy compositions as the model is based on a set of atomic

grids. These physical effects have been shown to be critical to the quantitative modeling

of Resonance Tunneling Diodes (RTDs), quantum dots, disordered SiGe/Si quantum wells,

and a single impurity device in Si bulk7–10.

The KP approach typically uses four bases on a set of cubic grids with no spin interactions4.

While it still fails to predict the indirect gap of bulk dispersions since it assumes that all the

subband minima are placed on the Γ point, the credibility is better than the EMA since the

KP model can still explain the inter-band physics of direct gap III-V devices, and valence

band physics of indirect gap materials such as silicon (Si)11,12.
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B. Contact Block Reduction method

One of the important issues in modeling of nanoscale devices, is to solve the quantum

transport problem with a consideration of real 3-D device geometries. Although the Non-

Equilibrium Green’s Function (NEGF) and WaveFunction (WF) formalism have been widely

used to simulate the carrier transport2,11,13–15, the computational burden has been always a

critical problem in solving 3-D open systems as the NEGF formalism needs to invert a system

matrix of a degree-of-freedom (DOF) equal to the Hamiltonian matrix13. The Recursive

Green’s Function (RGF) method saves the computing load by selectively targeting elements

needed for the matrix inversion16,17. However, the cost can be still huge depending on the

area of the transport-orthogonal plane (cross-section) and the length along the transport

direction of target devices18,19. The WF algorithm also saves the computing load if the

transport is ballistic as it doesn’t have to invert the system matrix and finding a few solutions

of the linear system is enough to predict the transport behaviors. But, the load still depends

on the size of the system matrix and the number of solution vectors (modes) needed to

describe the carrier-injection from external leads2,14. In fact, RGF and WF calculations for

atomically resolved nanowire field effect transistors (FETs) have demonstrated the need to

consume over 200,000 parallel cores on large supercomputing clusters20.

Developed by Mamaluy et al.19,21, the Contact Block Reduction (CBR) method has re-

ceived much attention due to the utility to save computing expense required to evaluate the

retarded Green’s function of 3-D open systems. The CBR method is thus expected to be a

good candidate for transport simulations since the method doesn’t have to solve the linear

system yet reducing the computing load needed for matrix inversion19. The method indeed

has been extensively used such that it successfully modeled electron quantum transport in

experimentally realized Si FinFETs22, and predicted optimal design points and process vari-

ations in design of 10-nm Si FinFETs23,24. However, all the successful applications for 3-D

systems so far, have been demonstrated only for the systems represented by the EMA.

C. Goals of this work

While the use of multi-band approaches can increase the accuracy of simulation results, it

requires more computing load as a DOF of the Hamiltonian matrix is directly proportional
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to the number of bases required to represent a single atomic (or grid) spot in the device

geometry. To suggest a solution to this trade-off issue, we examine the numerical utilities

of the CBR method in multi-band ballistic quantum transport simulations, focusing on

multi-band 3-D systems represented by either of the TB or KP band model.

The objective of this work is to provide detail answers to the following questions through

simulations of small two-contact ballistic systems focusing on a proof of principles: (1) Can

the original CBR method be extended to simulate ballistic quantum transport of multi-band

systems? (2) If the answer to the question (1) is “yes′′, what is the condition under which

the multi-band CBR method becomes particularly useful?, and (3) How is the numerical

practicality of the multi-band CBR method compared to the RGF and WF algorithms,

in terms of the accuracy, speed and scalability on High Performance Computing (HPC)

clusters?

II. METHODOLOGY

In real transport problems, a device needs to be coupled with external contacts that allow

the carrier-in-and-out flow. With the NEGF formalism, this can be done by creating an open

system that is described with a non-Hermitian system matrix13. Representing this system

matrix as a function of energy, we compute the transmission coefficient and density of states,

to predict the current flow and charge profile in non-equilibrium. This energy-dependent

system matrix is called the retarded Green’s function GR for an open system (Eq. (1)).

GR(E) = [(E + iη)I −Ho − Σ(E)]−1, η → 0+ (1)

where Ho is is the Hamiltonian representing the device and Σ is the self-energy term that

couples the device to external leads. As already mentioned in the previous section, the eval-

uation of GR is quite computationally expensive since it involves intensive matrix inversions.

The CBR method, however, reduces matrix inversions with the mathematical process based

on the Dyson equation. We start the discussion revisiting the CBR method that has been

so far utilized for EMA systems.
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A. Revisit: CBR with EMA

The CBR method starts decomposing the device domain into two regions: (1) the bound-

ary region c that couples with the contacts, and (2) the inner region d that doesn’t couple

to the contacts. As the self-energy term Σ is non-zero only in the boundary region, Ho and

Σ are decomposed as shown in Eq. (2), where subscripts (c, d) denote above-mentioned

regions, respectively.

H =





Ho
c Ho

cd

Ho
dc Ho

d



 , Σ =





Σc 0cd

0dc 0d



 (2)

Then, GR can be evaluated with the Dyson equation defined in Eq. (3) and Eq. (4),

where Σx and Gx are conditioned with a Hermitian matrix X to minimize matrix inversions

by solving the eigenvalue problem (Eqs. (5)).

A−1
c = (Ic −Gx

cΣ
x
c )

−1 (3)

GR(E) = (I − ΣxGx)−1Gx (4)

=





A−1
c 0cd

−Gx
dcΣ

x
cA

−1
c Id









Gx
c Gx

cd

Gx
dc Gx

d





X =





xc 0cd

0dc 0d



 , Σx = Σ−X, (5)

Gx = [EI − (Ho +X)]−1

=





Gx
c Gx

cd

Gx
dc Gx

d



 =
∑

α

|Ψα〉〈Ψα|

E − ǫα + iη

where ǫα and Ψα are the αth eigenvalue and eigenvector of the modified Hamiltonian

(Ho+X). Here, we note that the matrix inversion is performed only to evaluate the bound-

ary block Ac (contact-block) for one time while the RGF needs to perform the block-inversion

many times depending on the device channel length. The computing load for matrix inver-

sion is thus significantly reduced, and the method is also free from solving a linear-system
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FIG. 1. Schematic of the semi-infinite contact to illustrate the treatment of the external contact

that is normally assumed to be an infinite chain of the slab on the device boundary (the outmost

slab in the device domain).

problem. Instead, the major numerical issue now becomes a normal eigenvalue problem for

a Hermitian matrix (Ho+X). For the numerical practicality, it is thus critical to reduce a

number of required eigenvalues, and for EMA Hamiltonian matrices, a huge reduction in

the number of required eigenvalues can be achieved via a smart choice of the prescription

matrix X .

To find the matrix X and see if it can be extended to multi-band systems, we first need

to understand how to couple external contacts to the device. Fig. 1 illustrates the common

approach which treats the contact as a semi-infinite nanowire of a finite cross-section. Here,

HB is a block matrix that represents the unit-slab along the transport direction, and W is

another block matrix which represent the inter-slab coupling. The eigenfunction of the plane

wave at the mth mode in the nth slab, Ψ(n,m) should then obey the Schrödinger equation and

the Bloch condition (Eqs. (6)).

(EI −HB)Ψ(n,m) = W+Ψ(n−1,m) +WΨ(n+1,m),

Ψ(n+1,m) = exp(ikmL)Ψ(n,m) (1 ≤ m ≤ M) (6)

where km is the plane-wave vector at the mth mode, L is the length of a slab along the

transport direction, and M is the maximum number of plane-wave modes that can exist in
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a single slab and is equal to the DOF of HB. Then, the surface Green’s function Gsurf and

self-energy term Σ can be evaluated by converting Eqs. (6) to the generalized eigenvalue

problem for a complex and non-Hermitian matrix17. The solution for Gsurf and Σ are

provided in Eqs. (7), where K and Λ are shown in Eqs. (8).

Gsurf = K[K−1(HB − EI)K +K−1W+KΛ]−1K−1,

Σ = W+GsurfW (7)

K = [Ψ(0,1) Ψ(0,2) . . . Ψ(0,M)],

Λ = diag[exp(ik1L) exp(ik2L) . . . exp(ikML)] (8)

In systems described by the nearest-neighbor EMA, each slab becomes a layer of common

cubic grids such that each grid on one layer is coupled to the same grid on the nearest layer.

The inter-slab coupling matrix W thus becomes a scaled identity matrix, with which the

general solution for Gsurf and Σ in Eqs. (7) can be simplified using a process described in

Eq. (9) and Eq. (10). We note that previous literatures have shown only the simplified

solution for Gsurf and Σ19,21.

Gsurf = K[K−1(HB − EI)K +K−1W+KΛ]−1K−1

= K[K−1(HB − EI)K +W+Λ]−1K−1

= K[−K−1(W+KΛ +WKΛ−1) +W+Λ]−1K−1

[∵ (EI −HB)K = W+KΛ +WKΛ−1]

= −K[WΛ−1]−1K−1 = −KΛW−1K−1 (9)

Σ = W+GsurfW

= W+(−KΛW−1K−1)W

= −W+KΛK−1 (∵ W+ = W )

= −WKΛK−1 (10)
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The original CBR method coupled to the EMA prescribes the Hermitian matrix X as

−W or its Hermitian component (if W is complex). The new self-energy term Σx in Eqs.

(5) then becomes (Eq. (11)):

Σx = Σ−X = Σ+W

= −WKΛK−1 +W

= −WK(Λ− I)K−1 (11)

where the matrix (Λ− I) becomes zero at Γ point, where EMA subband minima are always

placed on. The resulting new Hamitonian (Ho-W ), becomes the Hamiltonian with the

generalized V on-Neumann boundary condition at contact boundaries. The spectra of the

matrix (Ho-W ), therefore become approximate solutions of the open boundary problem,

and the retarded Green’s function GR(E) in Eq. (4) can be thus approximated with an

incomplete set of energy spectra of the Hermitian matrix near subband minima19,25.

B. CBR with multi-band models

Regardless of the band model, the GR(E) in Eq. (4) can be accurately calculated with

a complete set of spectra since it then becomes the Dyson equation (Eq. (3)) itself. The

important question here is then whether we can make the CBR method be still numerically

practical for multi-band systems such that the transport can be simulated with a narrow

energy spectrum. To study this issue, we focus on the inter-slab coupling matrix W of

multi-band systems. A toy Si device that consists of two slabs along the [100] direction, is

used as an example for our discussion.

Fig. 2 shows the device geometry and corresponding Hamiltonian matrix built with the

EMA, KP and TB model, respectively. Here, we note that the simplifying process in Eq.

(9) and Eq. (10) is not strictly correct if the inter-slab coupling matrix W is not an identity

matrix, since, for any square matrix K and W , K−1WK cannot be simplified to W if W is

neither an identity matrix nor a scaled identity matrix. When a system is represented with

KP model, a single slab is still a layer of common cubic grids as the KP approach also uses

a set of cubic grids. But, the non-zero coupling is extended up to next-nearest neighbors

such that the inter-slab coupling matrix W is no more an identity matrix. The simplified
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FIG. 2. Illustration of the geometry and the Hamiltonian matrix built for the (a) EMA, (b) KP,

and (c) TB toy nanowire. Arrows represent the inter-slab coupling. The simplifying process in

Eq. (9) and Eq. (10) are not strictly accurate for multi-band models since the inter-slab coupling

matrix is neither an identity matrix nor a scaled identity matrix. Especially, the coupling matrix

becomes singular in TB model, which indicates that the simplified solution for Gsurf and Σ are

even mathematically invalid.

solution for Gsurf and Σ, however, can be still used to approximate the general solutions

in Eqs. (7) since the coupling matrix W is diagonally dominant and invertible. But, the

situation becomes tricky for TB systems that are represented on a set of real zincblende

(ZB) grids.

In the ZB crystal structure, a Si unit-slab has a total of four unique atomic layers along

the [100] direction. Because the TB approach assumes the nearest-neighbor coupling, only

the last layer in one slab is coupled to the first layer in the nearest slab while all the other

coupling blocks among layers in different slabs become zero-matrices. As described in Fig. 2,

10



this makes the inter-slab coupling matrix W be singular such that matrix inversions become

impossible. The simplified solution for Gsurf and Σ in Eq. (9) and Eq. (10) are therefore

mathematically invalid, and they cannot be even used to approximate the full solution (Eqs.

(7)). A new prescription for X is thus needed to make the CBR method be still practical

for ZB-TB systems, and we propose an alternative in Eq. (12).

X =
Σ(ǫedge) + Σ+(ǫedge)

2
(12)

where ǫedge is the energetic position of the CBM (valence band maximum (VBM)) of the

bandstructure of the semi-infinite contact.

If only a few subbands near the CBM (or VBM) of the contact bandstructure are enough

to describe the external contact, the prescription suggested in Eq. (12) works quite well as

X is the Hermitian part of the self-energy term, such that (Ho +X) approximates the open

system near the edge of the contact bandstructure, The approximation, however, becomes

less accurate if more subbands in higher energy (in lower energy for valence band) are

involved to the open boundaries. Away from the band edge, subband placement becomes

denser and inter-subband coupling becomes stronger. The prescription X in Eq. (12)

then would not be a good choice as it only approximate the open boundary solution near

band edges, and the CBR method thus needs more eigenspectrums to solve open boundary

transport problems. So, for example, the multi-band CBR method would not be numerically

practical to simulate FETs at a high source-drain bias, since a broad energy spectrum is

then needed to get an accurate solution.

Before closing this section, we note that, if the inter-slab coupling matrix W is either an

identity matrix or a scaled identity matrix, the prescription matrix X in Eq. (12) becomes

identical to the one utilized to simulate 3-D systems in the previous literatures22–24, where

(Ho +X) approximates the open system well near every subband minima if the system is

represented by the EMA19,21,25. Once Gsurf and Σ are determined from the prescription

matrix X , evaluation of the transmission coefficient (TR) and the density of states (DOS)

can be easily done13,19,21,25. Further detailed mathematics regarding derivation of TR and

DOS will not be thus discussed here.
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III. RESULTS AND DISCUSSIONS

The results are discussed in two subsections. First, we validate the CBR method for

multi-band systems with the new prescription for X in Eq. (12). Focusing on a proof of

principles, we compute the TR and DOS profiles for a toy TB and KP system, compare the

result to the references obtained with the RGF algorithm, and suggest the device category

where the multi-band CBR method could be particularly practical. Second, we examine the

numerical practicality of the multi-band CBR method by computing TR and DOS profiles of

a resonant tunneling device and a nanowire FET. The accuracy, the speed of calculations in

a serial mode, and the scalability on HPC clusters, are compared to those obtained with the

RGF and WF algorithm. We assume a two-contact ballistic transport for all the numerical

problems.

A. Validation of multi-band CBR method

To validate the multi-band CBR method that has been discussed in the previous section,

we consider two multi-band toy Si systems represented by the 10-band sp3d5s∗ TB and

3-band KP approach. Here, we intentionally choose extremely small systems to calculate

a complete set of energy spectra of the Hamiltonian, with which the CBR method should

produce results identical to the ones obtained by the RGF algorithm. For the TB system,

the electron-transport is simulated while we calculate the hole-transport for the KP system

due to a limitation of the KP approach in representing the Si material26.

TB System: Fig. 3 illustrates the TR and DOS profile calculated for the TB Si toy

device which consists of (2×2×2) (100) unit-cells (∼1.1(nm)). The device involves a complex

Hermitian Hamiltonian matrix of 640 DOF, and electrons are assumed to transport along the

[100] direction. The TR and DOS profiles are calculated using the CBR method for a total of

three cases - with 6, 60 and full (640) energy spectra that correspond to 1%, 10%, and 100%

of the Hamiltonian DOF, respectively. The transport happens at the energy above 2.32(eV)

which is the CBM of the contact bandstructure. We note that this energetic position is

higher than the Si bulk CBM (1.13(eV)), due to the structural confinement stemming from

the finite cross-section of the nanowire device27.

With the new prescription matrix X suggested in Eq. (12), the TR and DOS profile
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FIG. 3. (Electron-transport in a toy Si TB system) TR and DOS profiles calculated by the CBR

method: Results with a prescription suggested in Eq. (12) (New method), and an old prescription

suggested for the EMA (Original method). Note that, with the old prescription, using more energy

spectra does not improve the accuracy of the CBR solution.

obtained by the CBR method become closer to the reference result as more spectrums are

used, and eventually reproduce the reference result with a full set of spectrums, as shown

in the left column of Fig. 3. Here, the CBR result turns out to be quite accurate near the

CBM even with 1% of the total spectrums, indicating that the TB-CBR method could be

a practical approach if most of the carriers are injected from the first one or two subbands
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of the contact bandstructure. This condition can be satisfied when (1) only the first one or

two subbands in the contact bandstructure are occupied with electrons, and (2) the energy

difference between the source and drain contact Fermi-level (the source-drain Fermi-window)

becomes extremely narrow. So, the simulation of FETs at a high source-drain bias would not

be an appropriate target of the TB-CBR simulations since the source-drain Fermi-window

may include many subbands, and many spectra may be thus needed for accurate solutions28.

Instead, we propose that RTDs could be one of device categories for which the TB-CBR

method is particularly practical, since the Fermi-window for transport becomes extremely

small in RTDs in some cases29.

The same calculation is performed again but using the old prescription X suggested for

the EMA, and corresponding TR and DOS profiles are shown in the right column of Fig. 3.

The CBR method still reproduce the reference result with a full set of energy spectra since

the Dyson equation (Eq. (4)) should always work for any X ’s. The accuracy of the results

near the CBM, however, turns out to be worse than the one with the new prescription.

The results furthermore reveal that the accuracy with 10% of the total spectra does not

necessarily becomes better than the one with 1%, indicating that the old prescription for X

cannot even approximate the solution near the CBM of open TB systems.

KP System: The TR and DOS profile of the KP Si 2.0(nm) (100) cube, are depicted

in Fig. 4. The structure is discretized with a 0.2(nm) grid and involves a complex Hermi-

tian Hamiltonian of 3,000 DOF. Here, the DOF of the real-space KP Hamiltonian can be

effectively reduced with the mode-space approach11. The effective DOF of the Hamiltonian

therefore becomes 500, where we consider 50 modes per each slab along the transport di-

rection. Again, we note that the VBM of the contact bandstructure is placed at -0.4(eV),

and lower in energy than the VBM of Si bulk (0(eV)) due to the confinement created by the

finite cross-section.

We claim that the CBR method works quite well for the KP system, since the TR and

DOS profiles not only become closer to the reference results as more of the energy spectrums

are used, but also exhibit excellent accuracy near the VBM of the contact bandstructure as

shown in Fig. 4. We, however, observe a remarkable feature that is not found in the CBR

method coupled to TB systems: The KP-CBR method shows a good accuracy with both

the old and new prescription matrix X , which supports that the simplified solution for Gsurf

and Σ (Eq. (9) and Eq. (10)) are still useful to approximate the full solution (Eqs. (7))
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FIG. 4. (Hole-transport in a toy Si KP system) TR and DOS profiles calculated by the CBR

method: Results with a prescription suggested in Eq. (12) (New method), and an old prescription

suggested for the EMA (Original method). Note that the accuracy of the CBR solution is similar

with both the new and old prescription.

as discussed in the previous section. We also claim that the utility of the KP-CBR method

could be extended to nanowire FETs because the mode-space approach reduces the DOF of

the Hamiltonian such that we save more computing cost needed to calculate energy spectra.

In the next subsection, we will come back to this issue again.
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FIG. 5. Illustration of the geometry and potential profile of a Si:P RTD that is used as the example

to examine the utility for the TB-CBR method. For the potential profile, 1.13(eV) is used as a

reference value representing the Si Bulk CBM. The single donor coulombic potential that has been

calibrated by Rahman et al. (Ref. [9]), with respect to the Si bulk, is superposed to the channel

potential profile to consider the sharp structural confinement stemming from the single donor.

B. Practicality of multi-band CBR method

In this subsection, we provide a detailed analysis of the numerical utility of the multi-

band CBR method in terms of the accuracy and speed. Based on discussions in the previous

subsection with a focus on a proof of principles on small systems, a RTD is considered as

a simulation example of TB systems, while a nanowire FET is again used as an example of

KP systems to discuss the numerical practicality of the method. The TR and DOS profiles

obtained by the RGF and WF algorithm are used as reference results. We note that the
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FIG. 6. (Electron-transport in a Si:P RTD) (a) TR and (b) DOS profiles calculated by the CBR

method. Note that all the resonances in the range of energy are captured even with just 40 spectra

that corresponds to just 0.2% of the DOF of the TB Hamiltonian.

WF case is added in this subsection to provide a complete and competitive analysis on the

speed and scalability on HPC clusters.

TB System: A single phosphorous donor in host Si material (Si:P) creates a 3-D structural

confinement around itself. Such Si:P quantum dots have gained scientific interest due to

their potential utility for qubit-based logic applications30. Especially, the Stark effect in Si:P

quantum dots is one of the important physical problems, and was quantitatively explained

by previous TB studies9,10. The electron-transport in such Si:P systems should be therefore

another important problem that needs to be studied.

The geometry of the example Si:P device is illustrated in Fig. 5. Here, we consider a [100]

Si nanowire that is 14.0(nm) long and has a 1.7(nm) rectangular cross-section. The first and

last 3.0(nm) along the transport direction, are considered as densely N-type doped source-

drain region assuming a 0.25(eV) band-offset in equilibrium31. Then, a single phosphorous

atom is placed at the channel center with a superposition of the impurity coulombic potential

that has been calibrated for a single donor in Si bulk by by Rahman et al.9. The electronic

structure has a total of 1872 atoms and involves a complex Hamiltonian matrix of 18,720
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FIG. 7. (Electron-transport in a Si:P RTD) TR and DOS profiles integrated over energy. The

cumulative profiles of TR and DOS effectively indicates the accuracy of the current and charge

profiles. The cumulative DOS is especially important as it is directly coupled to charge profiles

that are needed for charge-potential self-consistent simulations.

DOF.

Fig. 6 shows the TR and DOS profiles in four cases, where the first three cases are the

CBR results with 10, 20 and 40 spectra that correspond to 0.05%, 0.1%, and 0.2% of the

Hamiltonian DOF, and the last one is used as a reference. Due to the donor coulombic

potential, the channel forms a double-barrier system such that the electron transport should

experience a resonance tunneling. As shown in Fig. 5, the CBR method produces a nice

approximation of the reference result such that the first resonance is observed with just 10

energy spectra. It also turns out that 40 spectra are enough to capture all the resonances

that show up in the range of energy of interest.

The accuracy of the solutions approximated by the CBR method, is examined in a more

quantitative manner by integrating the TR and DOS profile over energy. Fig. 7 illustrates

this cumulative TR (CTR) and DOS (CDOS) profile, which are conceptually equivalent to

the current and charge profile, respectively. In spite of a slight deviation in absolute values,
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FIG. 8. (Hole-transport in a Si nanowire) (a) TR and DOS profiles, and (b) corresponding cu-

mulative profiles. The KP-CBR solutions exhibit excellent accuracy such that 200 spectra, which

corresponds to just 2.2%, turn out to be enough to almost reproduce the reference solutions in the

entire range of energy of interest (0.8(eV) beyond the VBM of the wire bandsturcutrue).

the CTR profiles still confirm that the CBR method captures resonances quite precisely

such that the energetic positions where the TR sharply increases, are almost on top of the

reference result. The CDOS profile exhibits much better accuracy such that the result with

40 spectra almost reproduces the reference result even in terms of absolute values. We claim

that the accuracy in the CDOS profile is particularly critical, since it is directly connected

to charge profiles that are essential for charge-potential self-consistent simulations.
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KP System: Si nanowire FETs obtained through top-down etching or bottom-up growth

have attracted attention due to their enhanced electrostatic control over the channel, and

thus become an important target of various modeling works11,33. For KP systems, the CBR

method could become a practical approach to solve transport behaviors of FET devices

since the computing load for solving eigenvalue problems can be reduced with the mode-

space approach.

A [100] Si nanowire FET of a 15.0(nm) long channel and a 3.0(nm) rectangular cross-

section, is therefore considered as a simulation example to test the performance of the

KP-CBR method. The hole-transport is simulated with the 3-band KP approach, where

the simulation domain is discretized with a set of 0.2(nm) mesh cubic grids and involves a

real-space Hamiltonian matrix of 50,625 DOF. As the device has a total of 75 slabs along

the transport direction, the mode-space Hamiltonian has 9,000 DOF with a consideration

of 120 modes per slab. It has been reported that the wire bandstructure obtained with

120 modes per slab, becomes quite close to the full solution for a cross-section smaller than

5.0×5.0(nm2)11. The wire is assumed to be purely homogeneous such that neither the

doping nor band-offset are considered.

To see if the CBR method can be reasonably practical in simulating the hole-transport

at a relatively large source-drain bias, we plan to cover the energy range at least larger

than 0.4(eV) beyond the VBM of the wire bandstucture. For this purpose, we compute

50, 100, and 200 energy spectra that correspond to 0.5%, 1.1%, and 2.2% of the DOF of

the mode-space Hamiltonian, respectively. Fig. 8(a) shows the corresponding TR and DOS

profiles. Here, the CBR solution not only become closer to the reference result with more

spectra considered, but also demonstrate fairly excellent accuracy near the VBM of the wire

bandstructure. The CTR and CDOS profiles provided in Fig. 8(b) further support the

preciseness of the CBR solutions near the VBM. The cumulative profiles also support that

the CBR solution covers a relatively wide range of energy, such that 50 energy spectra are

already enough to cover ∼0.4(eV) below the VBM quite well. We note that the solution

obtained with 200 spectra almost replicates the reference result in the entire range of energy

that is considered for the simulation (∼0.8(eV) below the VBM).

Speed and scalability on HPCs : So far, we have discussed the practicality of the multi-

band CBR method focusing on the accuracy of the solutions for two-contact, ballistic-

transport problems. Another important criterion to determine the numerical utility should
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FIG. 9. Speed and scalability of the multi-band CBR method: For the example multi-band systems

of TB Si:P RTD and KP Si nanowire FET, we measure the time required to calculate the TR and

DOS per single energy point. Scalability of the calculation time is also measured to examine the

numerical practicality of the method on HPC clusters.

be the speed of calculations. We therefore measure the time needed to evaluate the TR and

DOS per single energy point for the TB Si:P RTD and the KP Si nanowire FET represented

that are utilized as simulation examples. To examine the practicality of the multi-band CBR

method on HPC clusters, we also benchmark the scalability of the simulation time on the

Coates cluster under the support of the Rosen Center for Advanced Computing (RCAC) at

Purdue University. The CBR, RGF, and WF methods are parallelized with MPI/C++, the

MUltifrontal Massively Parallel sparse direct linear Solver (MUMPS)34, and a self-developed

eigensolver based on the shift-and-invert Arnoldi algorithm35. All the measurements are per-

formed on a 64-bit, 8-core HP Proliant DL585 G5 system of 16GB SDRAM and 10-gigabit

ethernet local to each node.

Table I summarizes the wall-times measured for various methods in a serial mode. Gen-

erally, the simulation of the KP Si nanowire FET needs less computing loads, such that the
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TABLE I. The time required to evaluate the TR and DOS per single energy point in a serial mode,

for the RTD and nanowire FET considered as simulation examples.

Approaches (TB) time (s) Approaches (KP) time (s)

CBR 0.05(%) 11.5 CBR 0.5(%) 4.9

CBR 0.1(%) 11.8 CBR 1.1(%) 5.1

CBR 0.2(%) 12.0 CBR 2.2(%) 5.9

RGF 19.0 RGF 5.0

WF 6.5 WF 3.4

wall-times are reduced by a factor of two with respect to the computing time taken for the

TB Si:P RTD. This is because the KP approach can represent the electronic structure with

the mode-space approach such that the Hamiltonian matrix has a smaller DOF (9,000),

compared to the one used to describe the TB Si:P RTD (18,720).

Compared to the RGF algorithm in a serial mode, the CBR method demonstrates a

comparable (KP), or better (TB) performance. Since a single slab of the KP Si nanowire is

represented with a block matrixHB (Fig. 1) of 120 DOF, the matrix inversion is not a critical

problem any more in the RGF algorithm such that the CBR method doesn’t necessarily show

better performances than the RGF algorithm. The TB example device, however, needs a HB

of 720 DOF to represent a single slab (a total of 26 slabs) so the burden for matrix inversions

become bigger compared to the KP example. As a result, the CBR method generally shows

better performances. The CBR method, however, doesn’t beat the WF method in both

the TB and KP case since, in a serial mode, the CBR method consumes time to allocate

a huge memory space that is needed to store “full” complex matrices via vector-products

(Eqs. (5)).

The strength of the CBR method emerges in a parallel mode (on multiple CPUs), where

the vector-products are performed via MPI-communication among distributed systems and

each node thus saves only a fraction of the full matrix. The scalability of the various

methods is compared up to a total of 16 CPUs in Fig. 9. The common RGF calculation can

be effectively parallelized only up to a factor of two, due to its recursive nature16, and the

scalability of the WF method becomes worse in many CPUs because it uses a direct-solver-

based LU factorization to solve the linear system. As a result, the CBR method starts to
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show the best speed when more than 8 CPUs are used.

IV. CONCLUSION

In this work, we discuss numerical utilities of the CBR method in simulating ballistic

transport of multi-band systems described by the the atomic 10-band sp3d5s∗ TB and 3-band

KP approach. Although the original CBR method developed for single-band EMA systems

achieves an excellent numerical efficiency by approximating solutions of open systems, we

show that the same approach can’t be used to approximate TB systems as the inter-slab

coupling matrix becomes singular. We therefore develop an alternate method to approximate

open system solutions. Focusing on a proof of principles on small systems, we validate the

idea by comparing the TR and DOS profile to the reference result obtained by the RGF

algorithm, where the alternative also works well with the KP approach.

Since the major numerical issue in the CBR method is to solve a normal eigenvalue

problem, the numerical practicality of the method becomes better as the transport can be

solved with a less number of energy spectra. Generally, the practicality would be thus

limited in multi-band systems, since multi-band approaches need a larger number of spectra

to cover a certain range of energy than the single band EMA does. We, however, claim

that the RTDs could be one category of TB devices, for which the multi-band CBR method

becomes particularly practical in simulating transport, and the numerical utility can be even

extended to FETs when the CBR method is coupled to the KP band model. To support

this argument, we simulate the electron resonance tunneling in a 3-D TB RTD, which is

basically a Si nanowire but has a single phosphorous donor in the channel center, and the

hole-transport of a 3-D KP Si nanowire FET. We examine numerical practicalities of the

multi-band CBR method in terms of the accuracy and speed, with respect to the reference

results obtained by the RGF and WF algorithm, and observe that the CBR method gives

fairly accurate TR and DOS profile near band edges of contact bandstructures.

In terms of the speed in a serial mode, the strength of the CBR method over the RGF

algorithm depends on the size of the Hamiltonian such that the CBR shows a better per-

formance than the RGF as a larger block-matrix is required to represent the unit-slab of

devices. But, the speed of the WF method is still better than the CBR method as the CBR

method consumes time to store a full complex matrix during the process of calculations. In
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a parallel mode, however, the CBR method starts to beat both the RGF and WF algorithm

since the full matrix can be stored into multiple clusters in a distributive manner, while the

scalability of both the RGF and WF algorithm are limited due to the nature of recursive

and direct-solver-based calculation, respectively.
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