Does the low hole transport mass in 110 and 111 Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study

Citation: J. Appl. Phys. 111, 123718 (2012); doi: 10.1063/1.4729806
View online: http://dx.doi.org/10.1063/1.4729806
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v111/i12
Published by the American Institute of Physics.

Related Articles
Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching
High temperature finite-size effects in the magnetic properties of Ni nanowires
Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control
On-chip fabrication of ultrasensitive NO2 sensors based on silicon nanowires
Morphology and electrical properties of high aspect ratio ZnO nanowires grown by hydrothermal method without repeated batch process

Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/
Journal Information: http://jap.aip.org/about/about_the_journal
Top downloads: http://jap.aip.org/features/most_downloaded
Information for Authors: http://jap.aip.org/authors
Does the low hole transport mass in (110) and (111) Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study

R. Kotlyar,1,a) T. D. Linton,1 R. Rios,2 M. D. Giles,1 S. M. Cea,1 K. J. Kuhn,2 Michael Povolotskiy,3 Tillmann Kubis,3 and Gerhard Klimeck3

1Process Technology Modeling, Intel Corporation, 2501 NW 229th Ave., Hillsboro, Oregon 97124, USA
2Component Research, Intel Corporation, 2501 NW 229th Ave., Hillsboro, Oregon 97124, USA
3Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47906, USA

(Received 18 December 2011; accepted 21 May 2012; published online 26 June 2012)

The hole surface roughness and phonon limited mobility in the silicon (100), (110), and (111) square nanowires under the technologically important conditions of applied gate bias and stress are studied with the self-consistent Poisson-sp3d5s*-SO tight-binding bandstructure method. Under an applied gate field, the hole carriers in a wire undergo a volume to surface inversion transition diminishing the positive effects of the high (110) and (111) valence band nonparabolicities, which are known to lead to the large gains of the phonon limited mobility at a zero field in narrow wires. Nonetheless, the hole mobility in the unstressed wires down to the 5 nm size remains competitive or shows an enhancement at high gate field over the large wire limit. Down to the studied 3 nm sizes, the hole mobility is degraded by strong surface roughness scattering in (100) and (110) wires. The (111) channels are shown to experience less surface scattering degradation. The physics of the surface roughness scattering dependence on wafer and channel orientations in a wire is discussed. The calculated uniaxial compressive channel stress gains of the hole mobility are found to reduce in the narrow wires and at the high field. This exacerbates the stressed mobility degradation with size. Nonetheless, stress gains of a factor of 2 are obtained for (110) wires down to 3 nm size at a 5 x 10^12 cm^-2 hole inversion density per gate area. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729806]

I. INTRODUCTION

The silicon gate all around (GAA) nanowire is a promising device architecture to achieve ultra short channel devices for continued device density scaling with improved performance.1 In short channels, ballistic transport is expected where the mean free path of the scattering is comparable to or exceeds the device length. The carrier mean free path is linked to the low field mobility which is a long-channel device characteristic. This important quantity has been subject to significant theoretical attention in silicon wire devices.2–7 The electron mobility in cylindrical and square wires for different wire orientations at applied gate fields has been predicted to be reduced in the narrow wires due to the increased electron-phonon and surface roughness scattering.2–4,6,7 Hole mobility studies have been limited to wires at a zero field and no stress.5,6 These hole mobility studies point out that the high valence band nonparabolicity leads to large hole mobility gains in narrow (110), and (111) wires only limited by phonon scattering. The experimental measurements of hole mobility range from the reported peak mobility values of 1350 cm^2/Vs in 10–20 nm diameter back-gated cylindrical wires8 to significantly below the universal planar limit mobility in square 4 x 5 nm^2 (110) wires.9 To explain the experiments, we present a theoretical study of hole mobility under the technologically important conditions of an applied gate field and an applied stress. In particular, we address the question if the high nonparabolicity gains in the narrow wires extend to high fields and stresses and yield a high hole mobility under normal operating conditions in devices.

II. METHOD

We consider infinitely long square undoped silicon nanowires and surrounded by 1 nm of oxide gated on all sides. The three important wire channel orientations (100), (110), and (111) are studied. The side surface wafer orientations for the simulated wires are (100) ((100)) and (110) ((110) and (111)). The bandstructures of the Si wires are calculated using the sp3d5s*-SO 20-orbital tight-binding model implemented in the NEMOS5 simulator.10,13 The surface states are passivated using the sp3 hybridization approach.11 A uniform strain modifies the wire unit cell. Strain is included in the Hamiltonian by modifying the overlap integrals due to a bond stretching and including the diagonal shifts due to strain as described in Ref. 12 with Boykin et al.’s tight-binding parameter set.14 For the same-atom diagonal shifts, the same-orbital stress corrections are included. The presence of an oxide and an applied gate voltage affects the bandstructure of the wire through the included self-consistent Hartree potential, obtained by solving the three dimensional Poisson equation in a wire unit cell and a tight-binding bandstructure iteratively using a Nonlinear Poisson convergence scheme.15 Gate bias is modeled as a Dirichlet boundary condition for the electric potential. In each iteration, the equilibrium quantum
density is constructed from the calculated bandstructure, and this density is used by the Poisson equation in the next iteration. A Krylov-Schur method eigensolver is used to obtain the eigenvalues of the tight-binding Hamiltonian in each self-consistent iteration. In each iteration, we provide to the eigensolver a value of the top subband energy from a previous iteration as a shift parameter around which to calculate the desired eigenspectrum (i.e., valence bands in this case). With this eigensolver “guidance” method, we achieve the self-consistent solution typically within 10–15 iterations. This method allows us to “focus” the eigensolver on the appropriate interval of the desired spectrum in the presence of the strong band bending under high gate fields. We simulate square wires in the range of 3 × 3 to 15 × 15 nm². We also simulated a rectangular 10 × 35 nm² wire gated on the top and the two sides for the comparison with the planar limit at the high field. We include up to 100 valence subbands in the self-consistent bandstructure and scattering calculations. The hole momentum relaxation rates and the mobility for the given roughness function shows that a rigid shift normal to the wire channel orientation as the x-direction, y-z as the crosssection plane. The position of the th orbital of an atom at the unit cell and the unit cell lattice constant width ax depend on the wire orientation, but do not depend on the wire crosssection size. For example, a (100) wire has 4 (y-z) planar atomic layers in a three-dimensional wire unit cell. The carrier wavefunction for a subband n with a quasi-momentum k_x along the wire within the tight-binding approximation is given by

\begin{equation}
\psi_n^x(x,y,z) = \frac{1}{\sqrt{N_x}} \sum_{lm} C_{nlm}(k_x)e^{ik_xx} \cdot \phi_{ml}(r - \vec{r}_j) \equiv |nk_i\rangle.
\end{equation}

In Eq. (2), the orthonormal Löwdin atomic functions \(\phi_{ml} \) \((r - \vec{r}_j) \) for the nth orbital of an atom at \(\vec{r}_j \) contain all the dimensionality of the global wavefunction \(|nk_i\rangle \). The tight-binding expansion coefficients \(C_{nlm}(k_x) \) are unitless. The extent of the atomic functions determines an atom “size” (or an atomic volume \(V_{\text{atom}} \)). In Eq. (2), the second line includes various definitions which we introduce and re-use below.

Using the orthonormality of the atomic functions, we construct for the Poisson equation the integrated hole charge density around each atom position

\begin{equation}
\int d^3r \rho_h(r) = e \sum_n a_n \frac{d}{dk_x} \sum_m C_{nm}(k_x)C_{ml}(k_x)f^n(k_x),
\end{equation}

where \(f^n(k_x) \) is the Fermi-Dirac equilibrium distribution function evaluated at the subband energy \(E_n(k_x) \).

We include the scattering of holes in a wire with the bulk silicon acoustic and optical phonons. The confinement of the acoustic phonons is expected to have only a minor impact on our results for the studied wire sizes of 3 to 15 nm. The momentum-relaxation rate \(\Gamma_{\text{ac}}(k_x) \) for the hole phonon deformation potential scattering from an initial subband \(n \) to a final subband \(n' \) is calculated using the relaxation time approximation (RTA) and is given by

\begin{equation}
\Gamma_{\text{ac}}(k_x) = \frac{2\pi}{\hbar} \sum_{q_f,q_i,k_x'} |\langle nk_i | U(q) | n'k_x' \rangle|^2 \left(1 - \frac{k_x'}{k_x} \right) \times \frac{1 - f(E')} {1 - f(E)} \delta(E' - E \mp \hbar\omega_q).
\end{equation}

In Eq. (4), \(q \) and \(\omega_q \) are the bulk phonon momenta and frequency dispersion, respectively. The \(\mp \) in the energy conserving delta-function correspond to the phonon absorption and phonon emission processes. \(U(q) \) describes the hole-phonon interaction Hamiltonian. Using this approach and the approximations described in the Appendix A, Eq. (4) is evaluated as

\begin{equation}
\Gamma_{\text{ac}}^\text{RTA}(k_x) = \frac{2\pi}{\hbar} \frac{d}{dk_x} \left(\frac{kT}{\rho \omega_0} \right) F_{nk,nk',k_x} \delta(E' - E).
\end{equation}

Similarly, for the hole-optical phonon scattering, we obtain

\begin{equation}
\Gamma_{\text{opt}}^\text{RTA}(k_x) = \frac{2\pi}{\hbar} \frac{d}{dk_x} \left(\frac{kT}{2\rho \omega_0} \right) \left(n_0 + \frac{1}{2} \mp \frac{1}{2} \right) \times \frac{1 - f(E')} {1 - f(E)} F_{nk,nk',k_x} \delta(E' - E \mp \hbar\omega_0).
\end{equation}

The tight-binding bandstructure is solved on a uniform tensor grid in half of k-space for no stress and for uniaxial stresses. The uniform grid consists of 100 points in \([0, 0.3] \) \(2\pi/a_x \). The integration over k-grid includes \(\pm k_x \) using the time-reversal symmetry of the bandstructure. Eigenvalues are computed at each \((k_x) \) grid point, but the computationally expensive hole-phonon overlaps \(F_{nk,nk',k_x} \) in Eqs. (5) and (6) are computed on a 1/5 sparser k-grid and then interpolated for the entire k-grid. A similar k-grid approach to the computation of the hole-phonon overlap integrals for hole phonon scattering in confined surface channels can be found in Ref. 17.

We include the surface scattering of holes at each of the four surfaces of a rough wire, assuming that the roughness values \(\Delta_i(x) \) \((i = 1, 2, 3, 4) \) on different surfaces are uncorrelated. We consider the roughness \(\Delta_i(x) \) which arises from the shift of one of the surfaces as a whole: at the cell position \(x \) in a wire a layer (or layers) of atoms along one of the wire crosssection dimensions (y or z) is added to or subtracted from the wire crosssection unit cell. Fourier analysis of the general roughness function shows that a rigid shift normal to the surface gives the largest contribution to the surface roughness. The momentum-relaxation rate for the surface roughness scattering on a single surface \(i \) is given by

\begin{equation}
\Gamma_{\text{surf}}^\text{RTA}(k_x) = \frac{2\pi}{\hbar} \frac{d}{dk_x} \left(\frac{kT}{2\rho \omega_0} \right) \left(n_0 + \frac{1}{2} \mp \frac{1}{2} \right) \times \delta(E - E' \mp \hbar\omega_0).
\end{equation}
Using this approach and the approximations described in the Introduction, the interaction rate in a wire is evaluated as

$$r_c = \sum_{k_x} \left| \langle n | V_{SR} | n' \rangle \right|^2 \left(1 - \frac{k'_x}{k_x} \right) \delta(E - E').$$ \hspace{1cm} (7)

Keeping only the terms linear in roughness, the interaction potential is written as $V_{SR} = V_{SR}^0 \Lambda(x)$. We use the approximations of an unscreened surface roughness potential and include the Prange-Nee term. Generalizing the results of Refs. 3 and 4 to the tight-binding model, we write the matrix element as

$$V_{SR}^0 = \langle n | V_{SR} | n' \rangle = \langle n_k | \left[\frac{\partial H}{\partial c} \right]_{V = \text{const}} + \frac{\partial V}{\partial c} (1 - |r'_c - r_c|/t_i) + (E_n - E_{c}) (1 - |r'_c - r_c|/t_i) \frac{\partial}{\partial c} \Lambda(x) \rangle n' k_x',$$ \hspace{1cm} (8)

r_c is the coordinate of the wire dimension of length t_i normal to the rough surface: for the top and the bottom surfaces $r_c = z$, for the left and the right surfaces $r_c = y$. r'_c are the corresponding coordinates of these surfaces. E_n and E_{c} are the subband energies. V is the electrostatic potential energy. Using this approach and the approximations described in the Appendix B, the hole-surface roughness momentum relaxation rate in a wire is evaluated as

$$\Gamma_{\text{mr}}(k_x) = \frac{2\pi}{\hbar} \sum_{k'_x} \left| \langle n | V_{SR}^0 | n' \rangle \right|^2 \left(1 - \frac{k'_x}{k_x} \right) \delta(E - E').$$ \hspace{1cm} (9)

The hole surface roughness overlap $F_{n\text{mr}}^0$ has dimensions of energy/length and is evaluated using Eq. (B4). The average roughness $\langle \Delta_{q_z} \rangle$ with $q_{z \pm} = k'_x \pm k_x$ is calculated using the correlation function with a correlation length λ and a RMS roughness Λ given in Eq. (B3).

All included scattering rates are summed, and the result is inverted to obtain the total momentum relaxation time $\tau^\alpha_n(k_x)$ which is used to calculate the low field hole mobility along the wire for each subband n

$$\mu^\alpha_n = \frac{e}{m^* e \hbar} \sum_{k_x} \frac{d\mu^\alpha_n(k_x)}{d\mu^\alpha_n(k_x)} \frac{\partial f^{\alpha}(k_x)}{\partial k_x},$$ \hspace{1cm} (10)

h^n_h is the hole density in a subband, and $v^\alpha_n(k_x) = \frac{d\mu^\alpha_n(k_x)}{d\mu^\alpha_n(k_x)}$ is the hole velocity in a subband at k_x, respectively. The total hole mobility is obtained by summing over the subbands $n \approx \sum_n n^\alpha_n \mu^\alpha_n/n_h$, where n_h is the total hole density summed over all subbands. To study the effects of the band-structure modifications under an applied field and external stress independent from the scattering rate changes, we compute the inverse transport mass as

$$(\frac{1}{m})^\alpha_{xx} = \frac{1}{m^* e \hbar} \sum_{k_x} \frac{d\mu^\alpha_n(k_x)}{d\mu^\alpha_n(k_x)} \frac{\partial f^{\alpha}(k_x)}{\partial k_x}. \hspace{1cm} (11)$$

We also compute the injection velocity in the ballistic limit in the top of the barrier model

$$\nu^\alpha_n = \frac{\int \frac{d\mu^\alpha_n(k_x) f^{\alpha}(k_x)}{2\pi}}{\int \frac{d\mu^\alpha_n(k_x)}{2\pi}}.$$

$$\nu^\alpha_n = \frac{\int \frac{d\mu^\alpha_n(k_x) f^{\alpha}(k_x)}{2\pi}}{\int \frac{d\mu^\alpha_n(k_x)}{2\pi}}.$$

The equilibrium Fermi energy for the velocity calculation is computed using the density of the carriers moving with $+k_x$ only.

III. RESULTS AND DISCUSSION

Narrow $\langle 110 \rangle$ and $\langle 111 \rangle$ wires have a high valence band nonparabolicity which gives light transport mass and high phonon mobility at zero gate field. This result has been highlighted in earlier work. We obtain a similar dependence of the phonon mobility computed at zero applied gate field and at a low linear hole density of 1×10^6 cm$^{-2}$ as a function of the wire size shown in Fig. 1. We use the parameters $\Sigma_{ac} = 5.6$ eV, $\Sigma_{opt} = 13.24 \times 10^8$ eV/cm, $\hbar \omega_0$ = 61.2 meV (Ref. 23). Our acoustic potential value is close to the value of 5.39 eV used in Ref. 6. The changes in the band nonparabolicity as a function of the wire size are directly reflected in the enhancements ($\langle 110 \rangle$, $\langle 111 \rangle$) or near-invariance ($\langle 100 \rangle$) of the inverse transport mass in Fig. 1. Note that the phonon scattering in narrow structures is increased for all the wire orientations. The increased phonon scattering comes from the large hole-phonon overlaps $F_{nk\text{ph}}^k$, in Eqs. (5) and (6) due to the strong hole geometry size confinement in narrow wires. The calculated hole-phonon overlaps in narrow wires increase over their values in the larger simulated 15×15 nm2 sizes. The corresponding ratios of the subband population averaged phonon-hole overlaps in the reference $\langle 110 \rangle$ 15×15 nm2 size wire to their values in the $lx \times ly$ nm2 size wire, $\langle F_{nk\text{ph}}^k (lx \times ly) \rangle / \langle F_{nk\text{ph}}^k (15 \times 15) \rangle$, reduces in wires down to 3×3 nm2 sizes in Fig. 1. In Eq. (1), when the shown normalized

![FIG. 1. The phonon-limited mobility, the inverse transport mass (in the inset lines with symbols), and the ratio of the subband population averaged phonon-hole overlaps $\langle |F_{nk\text{ph}}^k (lx \times ly)\rangle / |F_{nk\text{ph}}^k (15 \times 15)\rangle$ (in the inset lines with dashes) as a function of square nanowire size $lx = ly$ for the $\langle 100 \rangle$, $\langle 110 \rangle$, and $\langle 111 \rangle$ transport channels computed at a zero gate field and at a low fixed hole inversion linear density of 1×10^6 cm$^{-2}$ due to the strong geometry size confinement in narrow wires, the hole-phonon overlaps increase from their values in the larger simulated 15×15 nm2 sizes and the corresponding hole-phonon overlap ratios reduce in wires down to 3×3 nm2 sizes. The increase of the band curvature along the $\langle 110 \rangle$ and $\langle 111 \rangle$ directions leads to inverse transport mass and mobility enhancements at small wire sizes. For $\langle 100 \rangle$ channels, the inverse transport mass is nearly flat and the phonon-limited mobility is dominated by the geometry size confinement degradation in the narrow wires.](image-url)
ratios are less than 1, the phonon scattering is stronger in a wire than it is in the reference wide wire. Therefore, size effects on the mass and size effects on the phonon scattering compete. This leads to smaller gains for 3 nm over 15 nm wires in the phonon mobility of factors of 3.2 and 3.0 as compared to these gains in the inverse transport mass of factors of 4.9 and 3.4 in ⟨110⟩ and ⟨111⟩ channels, respectively. With the inverse transport mass being near flat as a function of the wire size, we obtain a degradation of the phonon mobility by a factor of 2.3 in ⟨100⟩ 3 nm wire. Note that the effect of the band nonparabolicity on the inverse transport mass diminishes at 15 nm in ⟨110⟩ wires. For these wire sizes, the phonon mobility approaches the bulk hole mobility in silicon. In contrast, in ⟨111⟩ wires, the inverse transport mass is twice the values of ⟨110⟩ and ⟨100⟩ wires, and the mobility is high at 15 nm wire size.

The gains in the inverse transport mass and the phonon-limited mobility obtained in the ⟨110⟩ and ⟨111⟩ narrow wires due to the high nonparabolicity at a zero field diminish greatly at the high fields. The gate field enables a transition from volume inversion (low field or low inversion density) to surface inversion (high field or high inversion density). It is of technological importance to compute hole mobility under p-channel Metal Oxide Semiconductor Field Effect Transistor (PMOSFET) operating conditions in devices in the range of 5 × 10^{12}–1 × 10^{13} cm^{-2} carrier density per gate area. The evolution of the carrier density distribution as a function of the applied gate field in 5 × 5 nm^2 and 15 × 15 nm^2 wires shown in Fig. 2 progresses from volume inversion at low fields to the surface inversion at high fields. This transition occurs at lower fields in larger structures. The bands show a strong bending at the silicon/oxide interface at high fields. The band curvature, and consequently, the inverse transport mass, the phonon limited mobility, and the hole-phonon overlaps which are shown in Figs. 3(a)–3(c) evolve as a function of the applied field due to this transition. In the shown range of hole densities, the inverse transport masses reduce from their zero gate field values by factors of 1.8 and 1.6 in the ⟨110⟩ and ⟨111⟩ 3 nm wires, respectively. The corresponding reductions in the phonon-limited mobility by factors of 4.2 and 6.1 are amplified by the increased scattering due to a strong field-induced confinement. The ratios of the subband population averaged phonon-hole overlaps in the reference ⟨110⟩ 15 × 15 nm^2 size wire to their values in the ⟨100⟩ 15 × 15 nm^2 size wire, ∣⟨F_{nk,ln}⟩_{110}⟩_{nm}^2(15 × 15)∣ / ∣⟨F_{nk,ln}⟩_{110,0}(lx ly)⟩, reduce at high field in Fig. 3(c). In Fig. 3(c), when the shown normalized ratios are less than 1, the phonon scattering is stronger in a wire than it is in the reference wire. In the larger 10 × 10 nm^2 and 15 × 15 nm^2 ⟨110⟩ and the 10 × 10 nm^2 ⟨111⟩ wires, the inverse transport mass improves at high field. The phonon limited mobility peaks at low densities due to the competing lower mass and stronger scattering effects in these larger crossection wires. At high inversion densities, the field confinement leads to a lower mobility in the 10 × 10 nm^2 than in 3 × 3 nm^2 ⟨100⟩ wires which have the inverse transport mass and the hole-phonon overlaps weakly dependent on the field. The inter-subband hole-phonon scattering contributes to the mobility degradation in the 10 × 10 nm^2 ⟨100⟩ wire at the high field where the lowest subband spacing is much lower than the thermal energy kT, whereas it is minimal in the 3 × 3 nm^2 ⟨100⟩ wire where the lowest subband spacing varies from 0.9 to 1.3 kT in the shown range of fields in Fig. 3.

We validate our surface roughness model with the planar device limit. In Fig. 4, we compare our simulated phonon and surface roughness limited mobility in the 10 × 35 nm^2 ⟨110⟩ and ⟨100⟩ rectangular wires gated on the top and the two sides with planar ⟨110⟩ channel PMOSFET data at high field for the ⟨100⟩ and ⟨110⟩ wafer orientations. At high inversion density in the surface inversion regime, the ⟨110⟩ wire mobility is dominated by the ⟨110⟩ side surfaces and it approaches the ⟨110⟩⟨110⟩ planar data values. Similarly, at high field, the ⟨100⟩ wire mobility approaches the ⟨110⟩⟨100⟩ planar data values. This agreement validates our simulations because ⟨100⟩ and ⟨110⟩ channels have the same hole mobility in the planar limit on a (100) wafer. The surface roughness parameters are λ = 3.0 nm and Δ = 0.65 nm, which are similar to the values used by us in the modeling of hole surface channel mobility. A detailed comparison with experiments is not available at present due to a large scatter in the wire data and the presence of additional charge sources of degradation, which are not included in our model.

Surface roughness scattering dominates in small wires at low gate bias. Hole mobility degradation due to surface roughness scattering depends on the hole mass along the normal of the rough surface. In Figs. 5(a)–5(c), we show the evolution of the wire size dependence of phonon and surface roughness limited mobility as a function of the field strength. For ⟨110⟩ and ⟨111⟩ channels with a high phonon limited mobility, the total mobility is dominated by surface roughness scattering at low fields in the small size wires. It reduces mobility by factors of about 20 ⟨110⟩, 3.4 ⟨111⟩,
and by a smaller factor of 1.6 (⟨100⟩) in the 3 nm wires. The strength of the surface roughness scattering in the wire depends on the wafer orientation of the rough atomic surface. This effect is more pronounced at smaller crosssection sizes. The degradation of the surface roughness limited mobility in the narrow wires comes from the strong size dependence of F_{ni0} in Eq. (9). We calculate the subband population averaged surface roughness overlap $\langle F_{ni0} \rangle$ for each surface, and find that $\langle F_{ni0} \rangle \gg \langle F_{n10} \rangle$. $\langle F_{n10} \rangle$ in narrow wires. We show the ratios of the subband population averaged surface roughness overlap in the reference (110) 15 × 15 nm² size wire at 0 field for the surface roughness scattering with the (110) surface to their values in the $lx \times ly$ nm² size wire, $\langle F_{n10}^{(110)} \rangle/\langle F_{n10}^{(100)} \rangle, \langle F_{n10}^{(110)} \rangle/\langle F_{n10}^{(111)} \rangle$, as a function of wire size in Figure 5(d). In Figure 5(d), when the shown normalized ratios are less than 1, the surface roughness scattering is stronger in a wire than it is in the reference wide wire. For example, at zero field in a 3 nm (110) wire the scattering with the top and bottom (100) surfaces is much stronger than the scattering with the side (110) surfaces with the ratio of the corresponding average overlaps of a factor of 9. This result can be understood from a simple particle-in-a-box picture. The dependence of the kinetic energy in the first term in Eq. (8) on the wire size predominantly determines the magnitude of the surface roughness scattering at low field. This dependence is inversely proportional to the
carrier mass along the direction normal to the surface. For (110) surfaces this mass is heavy, while for (100) surfaces it is light. This confinement mass asymmetry leads, for example, to the carrier inversion on the (110) surfaces first at a finite field in Eq. (2). The (110) wires have two strong surface scattering surfaces (top and bottom) in contrast to the (111) wire that experiences a weaker scattering. Therefore, the reduction of the hole mobility due to surface roughness scattering is stronger in the (110) than in the (111) wires. The strength of the surface roughness scattering in the wire also depends on the wire channel orientation. The dependence of the surface overlaps on the wire channel orientation comes from the strong coupling of the x and y degrees of freedom in the tight-binding Hamiltonian, and from the corresponding anisotropic valence bandstructure in the wire crosssection plane. The subband population averaged surface overlap for (100) side surfaces is larger for the (110) wire than it is in the (100) wire at zero field shown in Figure 5(d).

At intermediate (corresponding to 5×10^{12} cm$^{-2}$ density) and at high field (corresponding to 1×10^{13} cm$^{-2}$ density), both the phonon and surface-roughness limited mobilities are reduced due to a strong surface field confinement. The surface overlaps at the high field in wires down to 5 nm size increase over their values in the reference (110) wire at 0 field in Figure 5(d). At a high inversion density and larger crosssections, the second and the third terms in Eq. (8) give the largest contributions to

\[\text{FIG. 4.} \text{ The phonon and surface roughness limited mobility in } 10 \times 35 \text{ (100) and (110) wires gated on the top and the two sides simulated as a function of the areal hole density is compared with the experimental (110) planar surface channel mobility on (110) and (100) wafers.}\]

\[\text{FIG. 5. The wire size dependence evolution of the hole mobility in } (100), (110), \text{ and (111) channels as a function of the field: at a zero field (a), at } 5 \times 10^{12} \text{ cm}^{-2} \text{ (b), } 1 \times 10^{13} \text{ cm}^{-2} \text{ (c). The ratio of the subband population averaged surface-roughness overlaps [Eq. (11)] would (15 \times 15) [15 \times 15] [15 \times 15] \text{ as a function of square nanowire size } lx = ly \text{ computed at a zero gate field (solid) and at } 1 \times 10^{10} \text{ cm}^{-2} \text{ (dashes). The channel and the surface orientations for the surface overlaps are given in the legend. Surface roughness is the dominant scattering mechanism at the high field and at the small wire size. In the (100) and (110) wires, it is responsible for the mobility reduction in the narrow wires at the low field. At high fields under strong field confinement, the hole mobility shows an enhancement due to the volume inversion at the 4–5 nm (100) and (110) wire sizes. The surface roughness scattering depends on the orientation of the transport channel and on the orientation of the transport surface.} \]
surface roughness. In the self-consistent tight-binding bandstructure-Poisson solution, the different confinement masses along normals to wire surfaces lead to the hole carrier distribution peaks being closer to the (110) surface than to the (100) surface in the (110) wire in Eq. (2). The corresponding surface overlaps for the (100) surfaces are smaller than their values for the (110) surfaces in the (110) wires down to 5 nm size shown in Figure 5(d) at the high field. Note this trend in the overlap dependence on the rough surface orientation at high field in larger wires is reversed from the zero field limit where the first kinetic energy term in Eq. (8) gives the largest contributions to the surface roughness scattering in narrow wires. In the intermediate and the high field regime, the total mobility in both the (100) and the (110) wires shows a peak at 4–5 nm sizes and it is increasing in down from 10 nm size (111) wires due to less surface scattering as carriers re-distribute away from the silicon/oxide interfaces under volume inversion. The (111) wires lose their hole mobility advantage over the (110) wires at high field and wire sizes larger than 10 nm. The corresponding surface overlaps in the (111) wires are larger than their values in the (110) wires at high field and wire sizes larger than 10 nm in Figure 5(d).

Stress warps the valence bands and increases the nonparabolicity along the (110) and (111) directions enhancing hole mobility. At a low gate bias, strain effects are larger in larger wires. We study hole mobility in wires under an applied compressive longitudinal uniaxial channel stress. Such stress has been a reliable booster of the device performance in PMOSFET devices for several technology generations. 21 We show the stress responses of the hole mobility and the inverse transport mass for 3, 5, 7, and 10 nm (110) wires at 5×10^{12} cm$^{-2}$ in Fig. 6(a). We take the applied stress to be uniform in a wire and convert this stress to strain using a bulk silicon compliance tensor. We use the resultant stress to be uniform in a wire and convert this stress to strain through the stress induced changes of the transport mass, the subband splitting, and band mixing. At a low field (not shown in the figure), the hole mobility has progressively larger responses where the k-space is 1D, the repopulation effect due to the warping does not occur. Stress affects the hole mobility through the stress induced changes of the transport mass, the confinement masses in the wire crosssection, the subband splitting, and band mixing. At a low field (not shown in the figure), the hole mobility has progressively larger responses for the larger structures, varying from a factor of 1.6 for a 3 nm wire to a factor of 5 for a 10 nm wire under -3 GPa stress. This is largely driven by the transport mass gains with stress. At 5×10^{12} cm$^{-2}$, the same trend is obtained in the wires starting from the 5 nm size.

The effect of increased surface roughness scattering overlap with stress competes with inverse transport mass gains reducing stress gains of the hole mobility. This overlap, as discussed above, depends on the confinement masses in a wire crosssection plane. Its changes with stress are different for the (100) and (110) surfaces as shown in Fig. 6(b). For (110) compressive stress, the y-mass increases with stress and z-mass decreases with stress in a wire. The average overlap and surface scattering for the (110) surface decrease in the 3 nm wires with stress. For the (100) surface, they are enhanced with stress. This enhancement reduces in small geometries where the stress induced confinement mass changes saturate. As a result, the 3 nm wire has larger stress gains than the 5 nm wire for which the surface roughness scattering is enhanced with stress.

Stress effect gains are modulated by volume to surface inversion transition as a function of applied gate field, and
are lowered at high fields. The size dependence of the hole mobility under an applied -2 GPa compressive longitudinal stress in the $\langle100\rangle$, $\langle110\rangle$, and $\langle111\rangle$ wires as a function of field is studied in Figs. 7(a)–7(c). At a vanishingly small field, for all the studied channel orientations the stress gains reduce at the smaller sizes. This exacerbates the mobility degradation with wire size. The stress gains reduce with the strength of the confinement field in Figs. 7(b) and 7(c). At 1×10^{13} cm$^{-2}$ in 4–5 nm $\langle110\rangle$ wires, stress leads to degradation of mobility due to the increased surface scattering overlaps. We show the ratios of the subband population averaged surface roughness overlap in the reference $\langle110\rangle$ 15 \times 15 nm2 size unstressed wire at 0 field for the surface roughness scattering for the $\langle110\rangle$ surface to their values in the $lx \times ly$ nm2 size wire under -2 GPa compressive longitudinal stress, $\langle F_{\langle110\rangle/\langle110\rangle,0}\rangle (15 \times 15) / \langle F_{\langle110\rangle/\langle110\rangle,0}\rangle (lx \times ly) \rangle^2$, as a function of wire size in Figure 7(d). In Figure 7(d), when the shown normalized ratios are less than 1, the surface roughness scattering is stronger in a wire than it is in the reference unstressed wide wire. Note the overall larger surface roughness overlaps in the stressed case in Figure 7(d) as compared to the unstressed overlaps shown in Figure 5(d).

Mobility enhancement due to the transition to the volume inversion regime is obtained for the $\langle100\rangle$ 5 nm wire. In the narrow $\langle111\rangle$ wires, the surface roughness scattering is weaker than in the $\langle100\rangle$ and $\langle110\rangle$ wires as we have discussed earlier. This also be seen in smaller overlaps in the $\langle111\rangle$ wires than in the $\langle100\rangle$ and $\langle110\rangle$ stressed wires at 3 nm size in Figure 7(d). The $\langle111\rangle$ wires also have smaller stress gains than the $\langle110\rangle$ channels. As in the no stress case, with the transition to surface inversion at high density, the $\langle111\rangle$ wires lose their advantage under strong field confinement for sizes larger than 10 nm.

In a ballistic limit, only mass changes under geometry and field confinement matter. In this limit, in ultra-scaled gate length devices, scattering is expected to play less of a role in transport. We show the injection velocity calculated in this limit as a function of wire size, channel orientation and stress at a 5×10^{12} cm$^{-2}$ inversion density in Fig. 8. The velocity is enhanced in the narrow $\langle110\rangle$ and $\langle111\rangle$ wires and it is further enhanced by an applied -2 GPa uniaxial channel stress. The advantage of the $\langle111\rangle$ over $\langle110\rangle$ narrow wires is modest with no stress and it is lost under the applied stress.
inversion density gains of a factor of 1.8 are obtained for the per gate area. It is shown that in the ballistic limit at this stress gains of a factor of 2 are obtained for the three important wire channel orientations from 3 to 15 nm, for the three important wire channel orientations experience less surface roughness scattering than the (100) surfaces. For the (110) wires, in conjunction with the high valence band nonparabolicities, this leads to a high hole mobility in up to 10 nm wire sizes and up to intermediate fields at a 5×10^{12} cm$^{-2}$ hole inversion density per gate area. A compressive channel stress along the wire direction is shown to lead to mobility gains for all studied orientations. The stress gains are found to reduce in narrow wires. Still, stress gains of a factor of 2 are obtained for (110) wires down to 3 nm size at a 5×10^{12} cm$^{-2}$ hole inversion density per gate area. It is shown that in the ballistic limit at this inversion density gains of a factor of 1.8 are obtained for the injection velocity of the 3 nm (110) wire. The (111) wires lose their advantage to the (110) wires under an applied stress in this limit. Our results show that the (110) wire hole mobility remains competitive to the hole planar mobility at high field and high stress, making wires an attractive PMOSFET candidate for continued device scaling. Finally, we note that our results present theoretical expectations as a guide for hole mobility over wide experimental conditions to help understand the large scatter seen in hole mobility wire data.

IV. CONCLUSIONS

The self-consistent tight-binding theoretical study of hole mobility in square silicon nanowires for sizes ranging from 3 to 15 nm, for the three important wire channel orientations $\langle 100 \rangle$, $\langle 111 \rangle$, and $\langle 110 \rangle$, and for a range of applied gate fields and applied stresses is presented. The scattering with bulk silicon acoustic and optical phonons is included within a tight-binding model and the calculated hole phonon limited mobility is compared with the Si bulk mobility limit in large wires. An inverse transport mass in wires is calculated to elucidate the bandstructure effects independent from the scattering changes as a function of field and stress. It is found that the high valence band nonparabolicities diminish at high field, reducing the phonon limited mobility advantage down to 3 nm size at a 5×10^{12} cm$^{-2}$ inversion density. In the ballistic limit only band nonparabolicity matters, and the velocity is enhanced in the narrow wires and by the applied stress.

ACKNOWLEDGMENTS

The authors would like to thank Portland Technology Development and Components Research at Intel for joint collaboration in this work. R. Kotlyar also would like to thank Dr. D. Nikonov for the early discussions on the selection of the bandstructure codes for this work. The supercomputer Redsky at the Sandia National Lab and an internal Intel High Power Computing Cluster were used for the computations of our results presented in this paper. Work at Purdue University was supported by NSF PetaApps grant number OCI-0749140, the Semiconductor Research Corporation’s (SRC) Nanoelectronics Research Initiative (NRI) and National Institute of Standards & Technology through the Midwest Institute for Nanoelectronics Discovery (MIND), and the MSD Focus Center, one of six research centers funded under the Focus Center Research Program (FCRP).

APPENDIX A: HOLE-PHONON SCATTERING

We start with the expression in Eq. (4). The interaction Hamiltonian $U(\vec{r})$ arises from the changes in the crystal potential V due to ionic vibrations in the phonon modes $\omega(q)$ and is given by $\Delta V \cdot \vec{u}(\vec{r})$. The bulk ionic displacement field $\vec{u}(\vec{r})$ is given by

$$\vec{u}(\vec{r}) \equiv \sum_q \vec{u}_q = \sum_q \frac{\hbar}{2 \rho V \omega_q} \left(a_q e^{i \vec{q} \cdot \vec{r}} + h.c. \right) e_q,$$

(A1)

where ρ, V, and e_q are the crystal density, volume, and the polarization vector, respectively. a_q (a_q^\dagger) are the phonon annihilation (creation) operators. The displacement field of the acoustic mode describes the in-phase motion of the atoms in a bulk unit cell. The Fourier transform of the interaction potential with the acoustic mode is $U(\vec{q}) = U_+ (\vec{q}) + U_- (\vec{q})$, where

$$U_{\pm} (\vec{q}) = \pm i \Sigma_{ac} (e_q \cdot \vec{q}) \sqrt{\frac{\hbar}{2 \rho V \omega_q} \left(n_q + \frac{1}{2} \right)}^{1/2} e^{\pm i \vec{q} \cdot \vec{r}}$$

(A2)

Equation (A2) is obtained by evaluating the expectation value of the interaction potential between the initial and final states of the phonon bath with an equilibrium phonon occupation, given by the Bose-Einstein statistics

$$n_q = \left(e^{\frac{\hbar \omega_q}{kT}} - 1 \right)^{-1}.$$

(A3)

The displacement field of the optical mode describes the out-of-phase motion of the two atoms in a silicon bulk unit cell. Using the same definitions as in Eq. (A2), we write the interaction potential with the optical mode as

FIG. 8. The injection velocity unstressed (solid lines) and under an applied ~ 2 GPa compressive longitudinal uniaxial channel stress (dotted) as a function of the wire size simulated at 5×10^{12} cm$^{-2}$ inversion density. The ballistic limit only band nonparabolicity matters, and the velocity is enhanced in the narrow wires and by the applied stress.
The hole-phonon scattering overlap integral $F_{nk,n'k'_i}$ has the dimensions of 1/area. Its evaluation involves computing the integrals over the atomic wavefunctions:

$$F_{nk,n'k'_i} = \sum_{l,m} C_{m,l}^{n'}(k_i) C_{m,l}^{n'}(k'_i) C_{m,l}^{n}(k) \times \frac{d_x}{4V_{atom}}$$

(A11)

where $V_{atom} = 4\pi R^3/3$ with R taken as the Slater atomic radius for silicon of 1.15 Å. The factor of 4 in Eq. (A11) arises assuming an exponential radial decay of the four atomic functions in Eq. (A10). The integral over x' gives the factor of a_x. In the final evaluation, we approximate $F_{nk,n'k_i} \approx F_{nk,n'k'_i}$. Combining all the results and changing from a summation over the final momentum k'_i to the integration $\int Dk'_i$ in Eq. (4), we obtain Eqs. (5) and (6). Our computed phonon mobility for the larger size $\langle 110 \rangle$ wires approaches the Si bulk phonon mobility value in Eq. (1) showing that our approximations in the calculations of the hole-phonon overlaps give a reasonable accuracy of our results.

APPENDIX B: HOLE-SURFACE ROUGHNESS SCATTERING

$\Delta_i(x)$ in Eq. (8) is expanded in the Fourier series:

$$\Delta_i(x) = \sum_{q_{ix}} \Delta_{q_{ix}} e^{i q_{ix} x}.$$

(B1)

Similar to the phonon case, the integration over the wire is broken into integration over the wire unit cell and summation over the unit cells. The last summation gives the conservation of the momenta along the wire within the reciprocal lattice vector K_i of a wire. Similarly as in bulk, we take the terms $e^{i(q_{ix}-k_{ix}) x} \approx 1$ over the small width of the wire unit cell. The summation over phonon momenta converted to integration in Eq. (4) and using Eq. (A5) gives

$$\sum_{q_{iy},q_{iz}} \left| \langle nk_i | U^{p}_{\pm}(\vec{q}) | n'k'_i \rangle \right|^2 = V \int \frac{dq_y dq_z dt}{2\pi 2\pi} \left| \langle nk_i | U^{p}_{\pm}(\vec{q}) | n'k'_i \rangle \right|^2$$

$$= \frac{\left| \langle U^{p}_{\pm}(0) \rangle \right|^2}{L_x} \int d^3r \int d^3r' \psi_{k_i}^* (x,y,z) \psi_{k'_i} (x',y',z') \times (x',y',z') \times \left| \langle U^{p}_{\pm}(0) \rangle \right|^2 F_{nk,n'k'_i}. \quad (A8)$$

The last expression defines the hole-phonon scattering overlap integral $F_{nk,n'k'_i}$ in the tight-binding model.

$$U^{\pm}_{\pm}(\vec{q}) = \Xi^{\pm}_{\pm} \left(q_{iy} + \frac{1}{2}, q_{iz} + \frac{1}{2} \right)^{1/2} e^{i \vec{q} \cdot \vec{r}}$$

$$= \Xi^{\pm}_{\pm} \left(q_{iy} - q_{iy'}, q_{iz} - q_{iz'} \right) e^{i \vec{q} \cdot \vec{r}}.$$

(A4)

Σ^{\pm} and Ξ^{\pm} are the acoustic and optical deformation potentials. In the matrix element in Eq. (4) for each interaction potential $U^{p}_{\pm}(\vec{q})$ ($p = \text{an acoustic or an optical process}$) the integration over the wire of length L_x is broken into integration over the unit cell and the sum over unit cells

$$\langle nk_i | U^{p}_{\pm}(\vec{q}) | n'k'_i \rangle = \langle nk_i | U^{p}_{\pm}(\vec{q}) \rangle \sum_j e^{i(k'_j - k_j) x_j}$$

$$= \langle nk_i | U^{p}_{\pm}(\vec{q}) \rangle \frac{2\pi \delta_{k'_j - k_j, k_i}}{L_x}. \quad (A5)$$

The sum over wire unit cells in Eq. (A5) gives the conservation of the momenta along the wire within the reciprocal lattice vector K_i of a wire. Similarly as in bulk, we take the terms $e^{i(q_{ix}-k_{ix}) x} \approx 1$ over the small width of the wire unit cell. The summation over phonon momenta converted to integration in Eq. (4) and using Eq. (A5) gives

$$\sum_{q_{iy},q_{iz}} \left| \langle nk_i | U^{p}_{\pm}(\vec{q}) | n'k'_i \rangle \right|^2$$

$$= V \int \frac{dq_y dq_z dt}{2\pi 2\pi} \left| \langle nk_i | U^{p}_{\pm}(\vec{q}) | n'k'_i \rangle \right|^2$$

$$= \frac{\left| \langle U^{p}_{\pm}(0) \rangle \right|^2}{L_x} \int d^3r \int d^3r' \psi_{k_i}^* (x,y,z) \psi_{k'_i} (x',y',z') \times (x',y',z') \times \left| \langle U^{p}_{\pm}(0) \rangle \right|^2 F_{nk,n'k'_i}. \quad (A6)$$

We used the isotropic and equipartition approximation employed previously by us and elsewhere to the hole-acoustic scattering in the confined channels

$$\left| \langle U^{p}_{\pm}(0) \rangle \right|^2 = \sum_{n} \frac{kT}{2 \rho v_n^2}, \quad (A7)$$

where v_n is the average sound velocity. For the optical phonon scattering, considering one branch of the frequency ω_0 we get

$$\left| \langle U^{p}_{\pm}(0) \rangle \right|^2 = \Xi^{\pm}_{\pm} \frac{h}{2 \rho \omega_0} \left(n_0 + \frac{1}{2} \pm \frac{1}{2} \right). \quad (A8)$$

The last double integral in Eq. (A6) gives a product of $\delta(y - y')$ and this equation simplifies to

$$\frac{\left| \langle U^{p}_{\pm}(0) \rangle \right|^2}{L_x} \int d^3r \int d^3r' \psi_{k_i}^* (x,y,z) \psi_{k'_i} (x',y',z') \psi_{k_i}$$

$$\times (x',y',z') \psi_{k'_i} (x',y',z') \equiv \frac{\left| \langle U^{p}_{\pm}(0) \rangle \right|^2}{L_x} F_{nk,n'k'_i}. \quad (A9)$$

The last expression defines the hole-phonon scattering overlap integral $F_{nk,n'k'_i}$ in the tight-binding model.
Since $S(q, \omega)$ is a rapidly decaying function at large q, we evaluate the matrix element in Eq. (B1) between $k_i = k'_i = 0$ states.

The matrix element in Eq. (8) consists of the three terms. $\frac{\partial H}{\partial V} \big|_{V=const}$ describes the change of the kinetic energy with the change of wire crosssection. It does not depend on the carrier distribution and therefore it is not expected to depend strongly on the applied gate field.\(^4\) We evaluate this term at zero electrostatic potential as $\frac{\partial E_n}{\partial r_c} \big|_{V=0}$ for the intra-subband transitions. We compute the subband energies E_n^0 and E_n of a wire of the original size, and of a wire with one atomic layer added in a unit cell to the considered rough surface. Then $(\frac{\partial E_n}{\partial r_c} \big|_{V=0}) \approx (E_n - E_n^0)/dr_c$, with dr_c equal to the increase in the wire crosssection dimension normal to the surface. The other two terms in Eq. (8) depend on the applied field and we evaluate these terms by computing the spatial derivatives on a finite element mesh. The integrals over the atomic functions we approximate using their orthonormality property. We obtain for the surface roughness overlap

$$F_{n\ell\mu\nu}^0 \big|_{V=0} = \delta_{\mu\nu} \sum_{lm} C_{ ml} C_{ m\ell} \frac{\partial V}{\partial r_c} \big|_t (1 - |t^l - r_c|/t_l)$$

$$+ (E_n - E_n^0) \sum_{lm} C_{ ml} \frac{\partial C_{ ml}}{\partial r_c} \big|_t (1 - |t^l - r_c|/t_l),$$

(B4)

$\frac{\partial V}{\partial r_c}$ and $\frac{\partial C_{ ml}^\ell}{\partial r_c}$ are evaluated by interpolating the potential and the wavefunction for each orbital component m between the atom positions and the finite element mesh nodes. The derivatives are then evaluated on the finite element mesh and the results are interpolated back at the atom positions. Combining all the results and doing the integration over the final momentum k'_i, we obtain Eq. (9).

\(^1\)N. Singh et al., Tech. Dig. - Int. Electron Devices Meet. 2006, 1.

\(^3\)S. Jin et al., J. Appl. Phys. 102, 083715 (2007).

\(^6\)Neophytou et al., Nano Lett. 10, 493 (2010).

\(^8\)Y. Cui et al., Nano Lett. 3, 149 (2003).

\(^9\)J. Chen et al., VLSI 2010, 175.

\(^10\)S. Steiger et al., in Device Research Conference, 2011.

\(^13\)G. Klimeck et al., CMES 3, 601 (2002).

\(^15\)NEMO5 simulator manual, Network for Computational Nanotechnology, Purdue University, 2011. The eigensolver “guidance” method described here has been included as one of simulation options in the NEMO5 manual.

\(^17\)J. C. Slater, Phys. Rev. 36, 57 (1930).

\(^19\)M. S. Lundstrom and J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation (Springer, 2006).

\(^24\)For the evaluation of this integral, we used the formula (3.371) from the I. S. Gradshtejn and I. M. Ryzhik, Tables of Integrals, Sums, Progressions and Products (State Publishing of Physics-Mathematics Literature, Moscow, 1963).

\(^25\)See https://wci.llnl.gov/codes/visit/, for information on the visualization software, Lawrence Livermore National Laboratory, 2011.