Shape and orientation effects on the ballistic phonon thermal properties of ultra-scaled Si nanowires

Abhijeet Paul, Mathieu Luisier, and Gerhard Klimeck

Citation: J. Appl. Phys. 110, 114309 (2011); doi: 10.1063/1.3662177
View online: http://dx.doi.org/10.1063/1.3662177
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v110/i11
Published by the American Institute of Physics.

Related Articles
Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene

Study on lattice dynamics of filled skutterudites InxYbyCo4Sb12

Quasi-harmonic approximation of thermodynamic properties of ice Ih, II, and III

Development of a force field for zeolitic imidazolate framework-8 with structural flexibility

Interstitial doping induced superconductivity at 15.3K in Nb5Ge3 compound

Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/
Journal Information: http://jap.aip.org/about/about_the_journal
Top downloads: http://jap.aip.org/features/most_downloaded
Information for Authors: http://jap.aip.org/authors

ADVERTISEMENT
Shape and orientation effects on the ballistic phonon thermal properties of ultra-scaled Si nanowires

Abhijeet Paul, a) Mathieu Luisier, and Gerhard Klimeck
School of Electrical and Computer Engineering, Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana, USA, 47907

(Received 11 August 2011; accepted 15 October 2011; published online 6 December 2011)

The effect of geometrical confinement, atomic position, and orientation of silicon nanowires (SiNWs) on their thermal properties are investigated using the phonon dispersion obtained using a Modified Valence Force Field (MVFF) model. The specific heat \(C_v\) and the ballistic thermal conductance \(\kappa_{\text{bal}}\) shows anisotropic variation with changing cross-section shape and size of the SiNWs. The \(C_v\) increases with decreasing cross-section size for all the wires. The triangular wires show the largest \(C_v\) due to their highest surface-to-volume ratio. The square wires with [110] orientation show the maximum \(\kappa_{\text{bal}}\) because they have the highest number of conducting phonon modes. At the nano-scale a universal scaling law for both \(C_v\) and \(\kappa_{\text{bal}}\) are obtained with respect to the number of atoms in the unit cell. This scaling is independent of the shape, size, and orientation of the SiNWs, revealing a direct correlation of the lattice thermal properties to the atomistic properties of the nanowires. Thus, engineering the SiNW cross-section shape, size, and orientation open up new ways of tuning the thermal properties in the nanometer regime.

I. INTRODUCTION

The increasing variety of application of silicon nanowires (SiNWs) ranging from MOSFETs to rechargeable batteries, thermoelectric (TE) devices, bio-sensors, solar cells, and so on, requires a good understanding of the lattice thermal properties. Thermal requirements can be very contrasting depending on the type of applications, for example, MOSFETs will require heat dissipation for better performance whereas thermoelectric devices require low thermal conductivity to maintain a good temperature gradient for higher TE efficiency.

Improvement in the process technologies have led to the fabrication of SiNWs with different shapes, sizes, and channel orientations. The most commonly manufactured SiNWs have channel orientations along [100], [110], and [111]. At the nanometer scale, strong geometrical confinement, atomic positions, and increased surface-to-volume ratio (SVR) play significant roles in determining the thermal properties of the SiNWs.

Thermal transport measurements using techniques like the 3\(\omega\) method and thermoreflectance have led to a good understanding of the heat flow in large nanowires (diameter > 30 nm). However, the physics of heat flow in ultra-scaled SiNWs is still not well understood. The phonon spectra of SiNWs can provide a theoretical estimate of heat transport through ultra-scaled structures because phonons (lattice vibrations) are responsible for carrying most of the heat in semiconductors.

In this paper we theoretically explore the effect of (i) cross-section geometry, (ii) cross-section size, and (iii) wire orientation of ultra-scaled SiNWs on thermal properties such as the ballistic thermal conductance \(\kappa_{\text{bal}}\) and the specific heat \(C_v\). Furthermore, analytical expressions for the variation of these physical quantities with size for each cross-section shape and orientation are provided to allow for a compact modeling representation of thermal properties to be used in simulators like Thermal-Spice and Thermoelectric module simulator.

The thermal properties of SiNWs differ considerably from bulk Si. The transition from the particle to wave nature of heat transport with structural miniaturization calls for improved heat transport models. The traditional continuum...
models for thermal conductivity by Callaway17 and Holl-land18 are based on the Debye limit for phonons, sound velocity, and many other parameters, which render these models quite cumbersome at the nanoscale, as discussed by Mingo \textit{et al.}10 The dependence of continuum models on a large set of fitting parameters makes them unsuitable for predicting the lattice thermal properties with dimensional scaling. This limitation can be overcome by atomistic models, which automatically take into account the effects of structural miniaturization like geometrical confinement, orientation effects, cross-sectional shape, and surface-to-volume ratio effects.10,11

Theoretical estimates of the thermal conductivity and the specific heat using phonon spectra have been addressed in the literature in the past. Calculations of thermal conductivity using the full phonon spectra of large to medium sized SiNWs along certain specific orientations have been performed.10,18 The influence of surface roughness on nanowires has been studied.19-22 A study of specific heat in [111] SiNWs is reported in Ref. 23. Mingo \textit{et al.} theoretically benchmarked the thermal conductivity of large SiNWs (diameter \geq 34 nm)10 and also studied the effect of amorphous coating on the thermal conductivity of SiNWs.11 A complete study of orientation effects on the thermal conductivity of SiNW has been provided in Ref. 6. The thermal conductivity of Si nano-clusters24,25 and hollow Si nanowires14,26 has also been studied.

In this work we use a semiempirical phonon model to perform thermal calculations. The phonon dispersion is obtained using a Modified Valence Force Field (MVFF) model.27,28 The continuum models,17,18 though computationally simpler and faster, lack the proper physics to be extended to nanostructures due to the use of open fitting parameters.29 The first principles based models30,31 are limited to extremely small structures ($W < 2$ nm) with a few thousand atoms, and are computationally very expensive. The choice of the MVFF model is guided by the following factors: (i) an adequate amount of physics to understand the thermal properties, and (ii) a lower computational cost; thus, allowing the model to handle up to a few million atoms for phonon calculations in realistic structures.32 At the same time the MVFF model also explains the experimental phonon and elastic properties in zincblende materials very well.27,33,34

The emphasis of this work is to understand the atomistic effects on the thermal properties of ultra-scaled SiNWs, such as the effect of the surfaces and atomic coordination number. This understanding is further translated into analytical equations allowing easy usage for other thermal modeling like thermo-electric circuit simulations, which require C_v and k_v as input.16 Scattering effects dominate at the nanometer scale in determining the lattice thermal conductivity. However, scattering effects have been neglected in the present study in order to understand the geometric and atomistic effects which will be otherwise convoluted by scattering. The ballistic phonon transport also can be supported in SiNWs with width smaller than 20 nm, as pointed out in Ref. 35. The scattering effects could be studied in a future work. Another point to be emphasized here is that thermo-electric figure of merit, ZT, is expressed in terms of thermal conductivity, and not in thermal conductance. However, the analysis of the thermal conductance stems from the fact that in 1D systems like nanowires, conductance is readily available using Landauer’s approach without any wire length dependence.

![FIG. 2. (Color online) Projected unit cells of square free-standing SiNWs with (a) [100], (b) [110], and (c) [111] wire axis orientation. The width and the height of the SiNWs are defined using W. Here, $W = 2$ nm.](image1)

![FIG. 3. (Color online) (a) Dependence of the specific heat (C_v) on cross-section shape and size in [100] SiNWs. (b) Variation in $\Delta C_v = (C_v - C_{v,\text{bulk}})$ with surface-to-volume ratio (SVR) for all the [100] SiNW shapes. $C_{v,\text{bulk}}$ for each shape is given in Table I.](image2)

Table I. Width parameter for C_v in [100] SiNWs at $T = 300$ K.

<table>
<thead>
<tr>
<th>Shape units</th>
<th>$C_{v,\text{bulk}}$ (J/kg·K)</th>
<th>A (J·nm/kg·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular</td>
<td>681.4</td>
<td>47.82</td>
</tr>
<tr>
<td>Hexagon</td>
<td>681.2</td>
<td>53.58</td>
</tr>
<tr>
<td>Square</td>
<td>680.9</td>
<td>52.66</td>
</tr>
<tr>
<td>Triangular</td>
<td>681.0</td>
<td>73.43</td>
</tr>
</tbody>
</table>
The paper is organized as follows. Section II provides a brief description of the MVFF model for the calculation of phonons in SiNWs, the calculation of thermal properties (Sec. II B), and details of the SiNWs used for the study (Sec. II C). The effect of cross-section shape, size, and wire orientation on the specific heat and thermal conductance are discussed in Sec. III A and Sec. III B, respectively. This is followed by a discussion on the atomistic effects on the thermal properties in Sec. III C. Conclusions are summarized in Sec. IV.

II. THEORY AND APPROACH

A. MVFF phonon model

In the MVFF model, the phonon frequencies are calculated from the forces acting on atoms produced by finite displacements of the atoms from their equilibrium positions in a crystal. First the total potential energy of the solid (U) is estimated from the restoring force (F). In the MVFF model, U is approximated as,

\[
U = \sum_{i} \left[\sum_{j \neq i} U_{ij}^{bs} + \sum_{j, k} U_{ijk}^{bb} + U_{ijk}^{bs} + U_{ijk}^{bs}/C_{0}^{bs} + U_{ijk}^{bs}/C_{0}^{bb} \right],
\]

where \(N_{A}\), \(nn(i)\), and \(COP_{i}\) represent the total number of atoms in one unit cell, number of nearest neighbors for atom \(i\), and the coplanar atom groups for atom \(i\), respectively. The first two terms \(U_{ij}^{bs}\) and \(U_{ijk}^{bb}\) represent the elastic energy obtained from bond stretching and bending between atoms connected to one another. The terms \(U_{ijk}^{bs}/C_{0}^{bs}\), \(U_{ijk}^{bs}/C_{0}^{bb}\), and \(U_{ijk}^{bb}\) represent the cross bond stretching, the cross bond bending-stretching, and the coplanar bond bending interactions, respectively. The detailed procedure for obtaining the phonon spectra in bulk Si and NWs are outlined in Refs. 28 and 37.

B. Lattice thermal properties

The complete phonon dispersion provides information about the thermal properties of nanostructures. The constant volume temperature (T)-dependent specific heat \(C_{v}(T)\) can be evaluated using the following relation,

\[
C_{v}(T) = \left(k_{B}/m_{uc} \right) \cdot \sum_{n,q} \left[\frac{\hbar \omega_{n,q}}{k_{B}T} \cdot \exp \left(-\frac{\hbar \omega_{n,q}}{k_{B}T} \right) \right] \cdot \frac{1}{\exp \left(-\frac{\hbar \omega_{n,q}}{k_{B}T} \right) - 1} \cdot \frac{1}{k_{B}T} \cdot \left[\frac{\hbar \omega_{n,q}}{k_{B}T} \right],
\]

where \(k_{B}\), \(\hbar\), and \(m_{uc}\) are the Boltzmann’s constant, reduced Planck’s constant, and the mass of the SiNW unit cell in kg, respectively. The quantity \(\omega_{n,q}\) is the phonon frequency associated with the branch \(n\) and crystal momentum vector \(q\).

For a semiconductor slab/wire with a small temperature difference \(\Delta T\) between its two extremities, the thermal...
The term $\kappa_{\text{bal}}(T)$ is obtained using Landauer’s method \(^{39}\) as,

$$
\kappa_{\text{bal}}(T) = \hbar \int T(\omega) \cdot M(\omega) \cdot T(\omega) \cdot \frac{\partial}{\partial T} \left[\left(\exp\left(\frac{\hbar \omega}{k_B T} \right) - 1 \right) \right] \cdot d\omega \frac{\text{Watt}}{K}.
$$

The term $M(\omega)$ is the number of phonon modes at frequency ω and $T(\omega)$ is the transmission for each mode. For ballistic conductance each mode transmits with a probability of 1 while for coherent scattering dominated conductance the transmission value is less than 1.

C. Si nanowire details

In this study, four types of cross-section shapes for [100] SiNWs have been considered, namely (a) circular, (b) hexagonal, (c) square, and (d) triangular (Fig. 1). Square SiNWs with [110] and [111] channel orientations have been studied too (Fig. 2). The feature size is determined by the width parameter W. The value of W is varied from 2 to 6 nm. The confinement direction of the SiNWs are along Y and Z. The heat transport direction is along X. The surface atoms for the various cross-section shapes result in different coordination numbers, which depict the atomistic effect on the specific heat \(^{40,41}\) due to surface pressure and internal strain.

III. RESULTS AND DISCUSSION

In this section the results of the effect of cross-section shape, size, and orientation on the thermal properties of SiNWs are presented and discussed. All the thermal quantities are calculated at 300 K. However, the analysis holds for any temperature (T) where the anharmonic phonon effects are small. For $T < T_{\text{Debye}}$, the anharmonic interactions are quite small. \(^ {14}\) For bulk Si, $T_{\text{Debye}} \sim 725$ K (Ref. 42) and Debye temperature further increases for SiNWs. \(^ {40}\)

A. Specific heat in SiNWs

1. Influence of the shape and size on C_v

The C_v of SiNWs increases with decreasing cross-section size in all the wire shapes (Fig. 3(a)). The size dependence of C_v can be approximated by the following relation,\(^ {23}\)

$$
C_v(W) = C_{v_{\text{bulk}}} + \frac{A}{W},
$$

where A is a fitting parameter extracted from the linear fit of the numerical simulations. Table I shows the value of $C_{v_{\text{bulk}}}$ and A for each geometry. As $W \to \infty$ (increasing cross-section size), the C_v of all the SiNWs converges to a fixed value of ~ 681 J/kg·K, which is reasonably close to the experimental C_v value for bulk Si (~ 682 J/kg·K as provided in Refs. 23 and 43). The triangular wires show the maximum C_v for all the W values, whereas the other shapes show similar C_v values at any given cross-section size (Fig. 3(a)).

The plot of ΔC_v ($= C_{v_{\text{wire}}} - C_{v_{\text{bulk}}}$) versus SVR (SVR = total surface atoms/total atoms in unit cell) shows a linear behavior (Fig. 3(b)), which can be represented as,

$$
C_{v_{\text{wire}}} \approx m_c \times SVR + C_{v_{\text{bulk}}},
$$

where m_c describes the additional contribution to the C_v of the SiNWs with increasing surface-to-volume ratio. The value of m_c is positive for all the wire shapes (Fig. 3(b)), which corroborates the fact that specific heat increases with increasing surface area. \(^ {23}\) Different coordination numbers of surface atoms for the various cross-section shapes result in different m_c values, which depict the atomistic effect on the C_v value in ultra-scaled SiNWs.

The C_v increase with decreasing W can be attributed to two phenomena, (i) phonon confinement due to small cross-section size and (ii) an increased surface-to-volume ratio.

Table II. Width parameter for C_v in SiNWs at $T = 300$ K.

<table>
<thead>
<tr>
<th>Orientation units</th>
<th>$C_{v_{\text{bulk}}}$ (J/kg·K)</th>
<th>A (J·nm/kg·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[100]</td>
<td>680.9</td>
<td>52.66</td>
</tr>
<tr>
<td>[110]</td>
<td>681.5</td>
<td>43.03</td>
</tr>
<tr>
<td>[111]</td>
<td>681.2</td>
<td>39.4</td>
</tr>
</tbody>
</table>

FIG. 6. (Color online) (a) Surface-to-volume ratio (SVR) for different wire orientations of square SiNWs. (b) Incremental contribution to the specific heat with SVR for different orientations of SiNWs.
The variation of SVR and m_c angular wires depict the highest variation in the SEM. m_c provide the largest surface contribution to W. The increasing SVR results in a higher phonon density of states (DOS) associated with the wire surface, which further enhances the specific heat with decreasing wire cross-section. SVR in smaller wires. With increasing geometrical confinement (smaller cross-section size) the phonon bands are more separated in energy, which makes only the few lower energy bands active at a given temperature (see Eq. (2)). Thus, more energy is needed to raise the temperature of the smaller wires.

The shape dependence of the C_v can be understood from Eq. (5). The variation of (i) SVR and (ii) m_c with W for different shapes decide the eventual C_v order. Figure 4(a) shows that triangular wires have the maximum SVR while the other shapes have similar SVR at a fixed W. The increasing SVR results in a higher phonon density of states (DOS) associated with the wire surface, which further enhances the specific heat with decreasing wire cross-section. SVR in smaller wires. With increasing geometrical confinement (smaller cross-section size) the phonon bands are more separated in energy, which makes only the few lower energy bands active at a given temperature (see Eq. (2)). Thus, more energy is needed to raise the temperature of the smaller wires.

The shape dependence of the C_v can be understood from Eq. (5). The variation of (i) SVR and (ii) m_c with W for different shapes decide the eventual C_v order. Figure 4(a) shows that triangular wires have the maximum SVR while the other shapes have similar SVR at a fixed W. The increasing SVR results in a higher phonon density of states (DOS) associated with the wire surface, which further enhances the specific heat with decreasing wire cross-section.

2. Influence of orientation on C_v

The specific heat is also a function of the SiNW orientation (Fig. 5(a)). The C_v varies inversely with W, similar to the trend extracted from different shapes (Eq. (4)). The width parameters (Eq. (4)) for the variation of C_v with orientation are provided in Table II. The ΔC_v value again shows a linear variation with SVR for different wire orientations (Fig. 5(b)). The C_v has the following trend with orientation for different cross-section sizes, $C_v^{100} > C_v^{110} > C_v^{111}$. This trend can be explained again by looking at the impact of (i) SVR and (ii) m_c (Eq. (5)) on the overall C_v value. The SVR shows the following order with W, $\text{SVR}^{111} > \text{SVR}^{110} > \text{SVR}^{100}$ (increase by a factor of ~ 1.2 from [100] to [111]) as illustrated in Fig. 6(a). However, m_c shows the following order with W, $m_c^{100} > m_c^{110} > m_c^{111}$ (decrease by a factor of ~ 1.7 from [100] to [111]) (Fig. 6(b)). The larger surface-to-volume ratio plays the main role in deciding the C_v trend for SiNWs with different orientations.

B. Ballistic thermal conductance of SiNWs

The thermal conductance indicates how a structure can carry heat. For high thermoelectric efficiency (ZT) a small thermal conductance is needed, whereas for CMOS transistors a high κ_i is preferred to evacuate the heat. The cross-section shape, size, and wire orientation of SiNWs can be used to tune their thermal conductance.

1. Influence of the shape and size on κ_i^{bal}

The ballistic thermal conductance (κ_i^{bal}) for four different shapes (Fig. 1) of [100] SiNWs are calculated as shown in Fig. 7(a). The κ_i^{bal} can be fitted according to the following size (W) relation,

$$\kappa_i^{bal}(W) = \kappa_0 \left(\frac{W}{a_0} \right)^d,$$

where a_0 is the silicon lattice constant (0.5431 nm), d is a power exponent, and κ_0 is a constant of proportionality. The values of d and κ_0 for different wire shapes are provided in Table III. The value of d varies between 1.92 and 2.011, which implies that κ_i^{bal} has a similar size dependence for all the wire shapes. However, the pre-factor value (κ_0) reflects the shape dependence. This pre-factor has the same ordering as the thermal conductance ordering (Fig. 7(a) and Table III). The pre-factor reflects the shape effect dominantly when the size-independent thermal conductance is observed.

The ballistic thermal conductance exhibits a linear behavior with the number of atoms per unit cell (NA) as

![FIG. 7. (Color online) (a) Effect of cross-section shape and size on the ballistic thermal conductance of [100] SiNWs. (b) Variation in κ_i^{bal} with the total number of atoms per unit cell (NA) for different cross-section shapes.](image-url)
depicted in Fig. 7(b). This linear relation can be approximated by the following equation,

\[k_{j_1}^{bal} \approx m_k \times NA + k_{j_1}^{bal}(0), \quad (7) \]

where the slope \(m_k \) represents the average contribution from each atom in the unit cell to \(k_{j_1}^{bal} \) and \(k_{j_1}^{bal}(0) \) is the thermal conductance at \(NA = 0 \). The value of \(k_{j_1}^{bal}(0) \) is 0 within numerical error (\(k_{j_1}^{bal}(0) \sim 1 \times 10^{-7} \)), which is expected for \(NA = 0 \). The value of \(m_k \) takes into account the surface, shape, and atomic effects because the calculation procedure involves the complete phonon dispersion. This relation shows a direct correlation of the atomistic effects to the ballistic thermal conductance.

The size dependence can be explained by the fact that the larger wires have (i) more phonon sub-bands resulting in a higher number of modes (\(M(\omega) \) in Eq. (3)) and (ii) a higher acoustic sound velocity, which is responsible for a larger heat conduction in these SiNWs.\(^3\)\(^7\)

The shape dependence can be explained as an interplay of two effects, (i) the total number of atoms (NA) present in the unit cell of SiNWs, and (ii) the average contribution of every atom toward \(k_{j_1}^{bal} \). For a fixed cross-section size \(W \), the NA ordering is \(NA_{\text{sq}} > NA_{110} > NA_{111} \) (Fig. 8(a)). The total number of phonon branches are \(3 \times NA \), due to the three degrees of freedom associated with each atom.\(^2\)\(^8\) The number of phonon modes (\(M(\omega) \)) is directly proportional to the phonon energy sub-bands. The contribution per atom to the thermal conductance (\(m_k \)) stays almost constant with the wire cross-section size for a given shape (Fig. 8(b)). Because the values of \(m_k \) are quite similar for all the cross-section shapes, the ordering of NA with shape governs the dependence of \(k_{j_1}^{bal} \) on the cross-section shape.

2. Influence of wire orientation on \(k_{j_1}^{bal} \)

The thermal conductance is anisotropic in SiNWs with the following order, \(k_{j_1}^{110} > k_{j_1}^{100} > k_{j_1}^{111} \) (Fig. 9(a)). This result is similar to the one reported in Ref. 6. The \(k_j \) value exhibits a linear variation with NA for all the wire orientations (Fig. 9(b)). The width parameters for the thermal conductance (Eq. (6)) for different wire orientations are provided in Table IV. The order of the ballistic thermal conductance with \(W \) for different orientations can be understood by the product of \(NA \times m_k \) (\(P_{nm} \)). The NA has the following variation, \(NA_{111} > NA_{110} > NA_{100} \) (Fig. 10(a)), whereas \(m_k \) has the following order \(m_{k_{110}} > m_{k_{110}} > m_{k_{111}} \) (Fig. 10(b)). These two orders are opposite to each other. However, the product shows the following order, \(P_{nm}^{110} > P_{nm}^{100} > P_{nm}^{111} \). Thus, [110] wires give the highest \(k_j \) due to the optimal value of NA and \(m_k \).

An important point to note is that \(k_{j_1}^{bal} \) is expected to decrease further in smaller wires due to phonon scattering by other phonons, interfaces, and boundaries,\(^1\)\(^0\),\(^1\)\(^1\) which are neglected in this present study. The main idea here is to understand the geometrical effects on the phonon dispersion and the lattice thermal properties of these small nanowires, which is attributed to (i) the modification of the phonon dispersion and (ii) phonon confinement effects in the coherent phonon transport regime.
C. Discussion

In this work, all the thermal properties are shown to scale with W. NA also depends on W as follows,

$$NA \propto W^\gamma,$$

where $\gamma > 0$. So using Eq. (8), Eqs. (4) and (6) can be recast in terms of NA as,

$$\Delta C_v(NA) = C_0 \cdot (NA)^\rho,$$

$$\kappa_i^{\text{bal}}(NA) = K_0 \cdot (NA)\eta,$$

where C_0 and K_0 are the pre-factors. Thus, a universal power law can be derived for the thermal properties depending on the number of atoms per unit cell (NA), which represents the atomistic effect on the thermal quantities. In these SiNWs, $1.98 \leq \gamma \leq 2.1$, which provide the limits for ρ and η.

$$\rho \in [0.93, 1.03]$$

$$\eta \in [0.48, 0.50]$$

The variation in the thermal conductance with NA is illustrated on a log-log scale in Fig. 11(a). All the SiNWs depict almost the same power law with an average exponent value of ~ 0.97, which is in the limit derived in Eq. (11). Similarly, the variation in C_v with NA is plotted on a log-log scale in Fig. 11(b). All the SiNWs used in this study show the same power law (Eq. (9)) with an average exponent of -0.51, which is in the limit derived in Eq. (12). Thus, the thermal quantities show a universal power law behavior with the number of atoms in the unit cell (NA) irrespective of the details of the unit cell. The details of shape and orientation are embedded in the pre-factors C_0 and K_0 (Eqs. (9) and (10)).

The relationships of C_v and κ_i to the shape, size, and orientation of SiNWs have been provided explicitly in Eqs. (4), (5), (6), and (7). These closed form analytical expressions are very handy for the compact modeling of the thermal and thermoelectric properties of SiNWs. Because these expressions are derived from a physics-based model, they capture the important geometrical and atomistic effects, thus enabling fast modeling of realistic systems.

![Fig. 10](image1.png)

![Fig. 11](image2.png)
IV. CONCLUSIONS

We have shown the application of the MVFF model for the calculation of the thermal properties of SiNWs. It has been shown that at the nanometer scale these thermal properties are quite sensitive to the wire cross-section size, shape, and orientation. Analytical expressions for the size dependence of the thermal properties of SiNWs of different cross-section shape and channel orientation have been provided. They can be used as components for the compact modeling of the thermal properties of ultra-scaled SiNWs. It has been demonstrated that all the SiNWs follow a universal power law for the specific heat and the thermal conductance, which reveals the impact of the atomistic details on these properties. The triangular SiNWs show a high C_v and low k_t, thus making them good candidates for thermoelectric devices. The [110] oriented square Si nanowires are better in terms of heat dissipation due to their high thermal conductance and are therefore good candidates for transistors from a heat management point of view.

ACKNOWLEDGMENTS

The authors acknowledge financial support from Materials, Structures and Devices Focus Center, under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation (SRC) entity, Nanoelectronics Research Initiative (NRI) through the Midwest Institute for Nanoelectronics Discovery (MIND), the National Science Foundation (NSF) (Grant No. OCI-0749140) and Purdue University. Computational support from nanoHUB.org, a Network for Computational Nanotechnology (NCN) operated and NSF (Grant No. EEC-0228390) funded project is also gratefully acknowledged.

10N. Mingo, L. Yang, D. Li, and A. Majumdar, Nano Lett. 3, 1713 (2003).